
www.manaraa.com

www.manaraa.com

Lecture Notes in Computer Science 505

Edited by G. Goos and J. Hartmanis

Advisory Board: W. Brauer D. Gries J. Stoer

www.manaraa.com

E.H.L. Aarts J.van Leeuwen
M.Rem (Eds.)

PARLE '91
Parallel Architectures
and Languages Europe
Volume I: Parallel Architectures and Algorithms
Eindhoven, The Netherlands, June 10-13, 1991
Proceedings

Springer-Verlag
Berlin Heidelberg GmbH

www.manaraa.com

Series Editors

Gerhard Goos
GMD Forschungsstelle
Universitiit Karlsruhe
Vincenz-Priessnitz-StraBe 1
W-7500 Karlsruhe, FRG

Volume Editors

Emile H. L. Aarts
Philips Research Laboratories

Juris Hartrnanis
Department of Computer Science
Cornell University
Upson Hall
Ithaca, NY 14853, USA

P.O. Box 80.000, 5600 JA Eindhoven, The Netherlands

Jan van Leeuwen
Department of Computer Science, University of Utrecht
Padualaan 14,3584 CH Utrecht, The Netherlands

Martin Rem
Eindhoven University of Technology
P.O. Box 513,5600 MB Eindhoven, The Netherlands

CR Subject Classification (1991): C.l-4, D.l, D.3-4, F.l-3

ISBN 978-3-662-23206-4 ISBN 978-3-662-25209-3 (eBook)
DOI 10.1007/978-3-662-25209-3

This work is subject to copyright. All rights are reserved, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, re-use of
illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and
storage in data banks. Duplication of this publication or parts thereof is only permitted
under the provisions of the German Copyright Law of September 9, 1965, in its current
version, and a copyright fee must always be paid. Violations fall under the prosecution
act of the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1991
Originally published by Springer-Verlag Berlin Heidelberg New York in 1991

2145/3140-543210- Printed on acid-free paper

www.manaraa.com

Preface

The innovative progress in the development oflarge- and small-scale parallel
computing systems and their increasing availability have caused a sharp rise
in interest in the scientific principles that underlie parallel computation and
parallel programming. The biannual "Parallel Architectures and Languages
Europe" (PARLE) conferences aim at presenting current research material
on all aspects of the theory, design, and application of parallel computing
systems and parallel processing. At the same time, the goal of the PARLE
conferences is to provide a forum for researchers and practitioners to ex
change ideas on recent developments and trends in the field of parallel com
puting and parallel programming. The first ~wo conferences, PARLE '87
and PARLE '89, have succeeded in meeting this goal and made PARLE a
conference that is recognized worldwide in the field of parallel computation.

PARLE '91 again offers a wealth of high-quality research material for the
benefit of the scientific community. Compared to its predecessors, the scope
of PARLE '91 has been broadened so as to cover the area of parallel algo
rithms and complexity, in addition to the central themes of parallel archi
tectures and languages.

The proceedings of the PARLE '91 conference contain the text of all con
tributed papers that were selected for the programme and of the invited
papers by leading experts in the field. The proceedings are presented in two
volumes:

Volume I: Parallel Architectures and Algorithms

Volume II: Parallel Languages

In the Call for Papers of PARLE '91 papers were solicited describing original
research in the areas of parallel architectures and systems, parallel program
ming, parallel languages, parallel algorithms and complexity, and applica
tions of parallelism (including for example, neural computing). We greatly
appreciate-the efforts of the authors who submitted papers to this year's
conference; a record number of 161 submissions were received. To maintain
the high technical level of PARLE all papers went through an intensive re
view process. We extend our sincere thanks to the Programme Committee
and to the referees who were consulted in the reviewing process, for the ar
duous task of selecting the programme out of these papers. Their dedication

www.manaraa.com

VI

and professionalism have greatly contributed to the technical quality of the
PARLE '91 conference.

No conference ofthis size can be organized without the contributions of many
dedicated people. As for the previous PARLE conferences, the organization
of the PARLE '91 conference was again handled by the Philips Research
Laboratories. A special tribute in this respect is due to Fred Robert and
Frank Stoots, for their skilled and efficient handling of all organizational
details of the conference over the past year.

We feel that the PARLE '91 conference has once again succeeded in bring
ing together a wealth of material on the theme of parallel computing. We
therefore hope that these proceedings will contribute to the tradition of Eu
ropean research on Parallel Architectures and Languages.

Eindhoven/Utrecht
June 1991

Emile H.L. Aarts
Jan van Leeuwen
Martin Rem

Scientific Programme Committee

G. Agha, U.S.A.
P.M.G. Apers, the Netherlands
J.-P. Banatre, France
H.P. Barendregt, the Netherlands
U. Baron, Israel
J .-C. Bermond, France
M. Broy, Germany
W.J. Dally, U.S.A.
W. Damm, Germany
J. Diaz, Spain
D. Gelernter, U.S.A.
A. Gibbons, United Kingdom
J. Gruska, Germany
J. Gurd, United Kingdom
D. Harel, Israel
S. Haridi, Sweden
L.O. Hertzberger, the Netherlands
W.J.-P. Jalby, France

Th. Johnsson, Sweden
Ph. Jorrand, France
V.E. Kotov, U.S.S.R.
F .E.J. Kruseman Aretz, the Netherlands
J .K. Lenstra, the Netherlands
H. Miihlenbein, Germany
E.A.M. Odijk, the Netherlands
E.-R. Olderog, Germany
I. Parberry, U.S.A.
W.P. de Roever, Germany
J.L.A. van der Snepscheut, U.S.A.
J .-C. Syre, France
P.C. Treleaven, United Kingdom
K. Ueda, Japan
M. Valero, Spain
D.H.D. Warren, United Kingdom
P. Wodon, Belgium

www.manaraa.com

Contents Volume I

Invited Lectures

Th. Johnsson
Parallel Evaluation of Functional Programs:
The (v, G)-Machine Approach . 1

Pilar de la Torre, C.P. Kruskal
Towards a Single Model of Efficient Computation
in Real Parallel Machines... 6

P.C. Treleaven
Neural Computing and the GALATEA Project........................ 25

Submitted Presentations

H.H.J. Hum, G.R. Gao
A Novel High-Speed Memory Organization for Fine-Grain
Multi-Thread Computing... 34

K.G. Langendoen, H.L. Muller, L.O. Hertzberger
Evaluation of Futurebus Hierarchical Caching. 52

J.M. Filloque, E. Gautrin, B. Pottier
Efficient Global Computations on a Processor Network
with Programmable Logic . 69

P. Hoogvorst, R. Keryell, Ph. Matherat, N. Paris
POMP or How to Design a Massively Parallel Machine with
Small Developments. 83

J. Vasell and J. Vasell
The Function Processor: An Architecture for Efficient
Execution of Recursive Functions... 101

www.manaraa.com

VIII

R. Milikowski, W.G. Vree
The G-Line: A Distributed Processor for Graph Reduction........... 119

G. Tel, F. Mattern
The Derivation of Distributed Termination Detection
Algorithms from Garbage Collection Schemes.. 137

J.M. Piquer
Indirect Reference Counting: A Distributed Garbage
Collection Algorithm . 150

J.H.M. Korst, E.H.L. Aarts, J.K. Lenstra, J. Wessels
Periodic Multiprocessor Scheduling . 166

M. Baumslag, M.C. Heydemann, J. Opatrny, D. Sotteau
Embeddings of Shuffle-Like Graphs in Hypercubes.................... 179

V. Van Dongen
Mapping Uniform Recurrences onto Small Size Arrays............... 191

P. Ferianc, 0. Sykora
Area Complexity of Multilective Merging........ 209

X. Zhong, S. Rajopadhye
Deriving Fully Efficient Systolic Arrays by
Quasi-Linear Allocation Functions................................... 219

C. Mongenet
Affine Timings for Systems of Affine Recurrence Equations 236

I. Parberry
On the Computational Complexity of Optimal Sorting Network
Verification . 252

Sajal K. Das, Wen-Bing Horng
Managing a Parallel Heap Efficiently................................ 270

C. Alvarez, J.L. Balcazar, J. Gabarr6, M. Santha
Parallel Complexity in the Design and Analysis of
Concurrent Systems. 288

www.manaraa.com

IX

T. Hagerup, A. Schmitt, H. Seidl
FORK: A High-Level Language for PRAMs 304

A.R. Hurson, B. Jin, S.H. Pakzad
Neural Network-Based Decision Making for Large
Incomplete Databases . 321

A. Louri
An Optical Content-Addressable Parallel Processor
for Fast Searching and Retrieving.. 338

G.R. Gao, H.H.J. Hum, J .-M. Monti
Towards an Efficient Hybrid Dataflow Architecture Model... 355

R. Govindarajan, Sheng Yu
Data Flow Implementation of Generalized Guarded Commands....... 372

J. Duato
On the Design of Deadlock-Free Adaptive Routing Algorithms
for Multicomputers: Design Methodologies........................... 390

H. Umberger, S. Thiirmel
A Toolkit for Debugging Parallel Lisp Programs. 406

Author Index Volume I . 423

www.manaraa.com

Contents Volume II

Invited Lectures

J. Misra
Loosely-Coupled Processes.. II, 1

J.W. de Bakker, E.P. de Vink
Rendezvous with Metric Semantics................................ II, 27

E. Shapiro
Embeddings Among Concurrent Programming Languages(Abstract). II, 58

Submitted Presentations

R. Janicki, M. Koutny
Invariants and Paradigms of Concurrency Theory II, 59

L.M. Alonso, R. Pefia
Acceptance Automata: A Framework for Specifying and
Verifying TCSP Parallel Systems. II, 75

J. Fanchon, D. Millot
Models for Dynamically Placed Concurrent Processes.............. II, 92

Y. Sami, G. Vidal-Naquet
Formalisation of the Behavior of Actors by Colored
Petri Nets and Some Applications..................... II, 110

Ambuj K. Singh
Program Refinement in Fair Transition Systems II, 128

J.T. Yantchev
Communication Abstraction and Refinement...................... II, 148

www.manaraa.com

XI

L. Bouge
On the Semantics of Languages for Massively Parallel
SIMD Architectures.. II, 166

J. Hooman
A Denotational Real-Time Semantics for Shared Processors. II, 184

E.G.J.M.H. Nocker, J.E.W. Smetsers, M.C.J.D. van Eekelen,
M.J. Plasmeijer
Concurrent Clean. II, 202

A. van Delft
The Scriptic Programming Language . II, 220

S. Haridi, C. Palamidessi
Structural Operational Semantics for Kernel Andorra
Prolog . II, 238

S. Jagannathan
Customization of First-Class Tuple-Spaces in a
Higher-Order Language . II, 254

M. Factor
A Formal Specification of the Process Trellis. II, 277

C. Autant, Z. Belmesk, Ph. Schnoebelen
Strong Bisimilarity on Nets Revisited. II, 295

J. Magee, N. Dulay
A Configuration Approach to Parallel Programming.. II, 313

J.-L. Gaudiot, Chih-Ming Lin
Chaotic Linear System Solvers in a Variable-Grain Data-Driven
Multiprocessor System.. II, 331

M. Waite, B. Giddings, S. Lavington
Parallel Associative Combinator Evaluation..... II, 349

C. Hankin
Static Analysis of Term Graph Rewriting Systems II, 367

www.manaraa.com

XII

J. Briat, M. Favre, C. Geyer, J. Chassin de Kergommeaux
Reconfigurable, Distributed-Memory Multiprocessor............... II, 385

A. Beaumont, S. Muthu Raman, P. Szeredi, D.H.D. Warren
Flexible Scheduling of OR-Parallelism in Aurora:
The Bristol Scheduler . II, 403

A. Veron, Jiyang Xu, S.A. Delgado-Rannauro, K. Schuerman
Virtual Memory Support for OR-Parallel Logic Programming
Systems. II, 421

P. Szeredi and R. Yang, M. Carlsson
Interfacing Engines and Schedulers in OR-Parallel
Prolog Systems. II, 439

Hwang Zhiyi, Hu Shouren, Sun Chengzheng, Gao Yaoqing
Reduction of Code Space in Parallel Logic Programming
Systems.. II, 454

S. Fujita, M. Yamashita, T. Ae
Search Level Parallel Processing of Production Systems........... II, 471

Author Index Volume II . II, 489

www.manaraa.com

List of Referees

Aerts, A.T.M.
America, P.
Anishev, P.A.
Annot, J.K.
Asveld, P.R.J.
Augusteijn, A.
Augustsson, L.
Beaudoing, B.
Beaumont, T.
Beemster, M.
Belvide, R.
Bekkers, Y.
Benveniste, M.
Best, E.
Bjornson, R.
Blanken, H.M.
Boer, F. de
Bose, P.
Bost, B.
Bronnenberg, W.
Breu, R.
Brix, H.
Carlsson, M.
Carriero, N.
Chassin de Kergommeaux, J. de
Cheese, A.
Cherkasova, L.A.
Ciancarini, P.
Cooper, M.D.
Cortes, U.
Creveuil, C.
Dederichs, F.
Delgado-Rannauro, S.A.
Dendorfer, C.
Dennison, L.R.
Desel, J.
Dutra, J.

Eekelen, M.C.J.D. van
Ellis, J.
Esparza, J.
Feijen, W.H.J.
Feijs, L.M.G.
Fraigniaud, P.
Forshaw, M.R.B.
Fuchs, M.
Gabarr6, J.
Gamane, B.
Gerth, R.
Godefroid, P.
Goltz, U.
Gonzalez, A.
Gribomont, E.P.
Gritzner, T .F.
Gupta, G.
Haaften, P.J.M. van
Hausman, B.
Helmink, L.
Hesselink, W.H.
Hofman, R.F .H.
Hofstee, H.P.
Holden, M.
Horwat, W.
Houck, C.
Houtsma, M.A.W.
Hulin, G.
Hulshof, B.J.A.
Ibanez, M.B.
Inamura, Y.
Ingels, Ph.
Jansen, P.G.
Janson, S.
Jantzen, M.
Jard, C.
Jegov, Y.

www.manaraa.com

Joseph, M.
Kalker, A.A.C.M.
Kamerbeek, J.
Kaplan, S.
Karpov, Ju.G.
Kausche, A.
Kenna way, J .R.
Keen, J.
Keckler, S.W.
Kempf, P.
Khebbal, S.
Koot, J.
Korst, J.H.M.
Labarta, J.
Laborelli, L.
Langendoen, K.G.
Le Metayer, 0.
Lethin, R.
Liang Liang, L.
Lukkien, J.J.
Madelaine, E.
Martin, G .R.
Milikowski, R.
Miriyala, S.
Monien, B.
Morrison, J.P.
Muller, H.L.
Murakami, M.
Mussi, Ph.
Nakata, T.
Nepomniaschy, V.A.
Nijholt, A.
O'Boyle, M.F.
Omtzigt, F.T.L.
Overeinder, B.J.
Paech, B.
Panwar, R.
Tubella, J.

XIV

Parrott, D.J.
Pazat, J.-L.
Peikenkamp, T.
Peleg, D.
Peters, J.G.
Philippe, B.J.
Plasmeijer, M.J.
Priol, T.
Quinton, P.
Raina, S.
Ratcliffe, M.J.
Raucher, R.
Raynal, M.
Remscher, R.
Renardel de Lavalette, G.R.
Roberts, G.
Roelants, D.
Rokusawa, K.
Rouwce, P.A.
Sanders, B.
Santos-Costa, V.
Schalij, F.D.
Scholten, J.
Schoute, A.L.
Sedukhin, S.
Serna, M.J.
Seznec, A.
Sijstermans, F.
Sindaha, R.
Spertus, E.
Sun, C.Z.
Stomp, F.A.
Streicher, P.
Syska, M.
Taubner, D.
Tel, G.
Thibault, 0.
Watson, I.

www.manaraa.com

Twist, R.A.H. van
Valk, R.
Venkatasubramanian, N.
Veron, A.
Vissers, K.A.
Vlot, M.C.
Vree, W.G.
Vries, F -J. de
Wallach, D.

XV

Weber, R.
Wester, R.H.H.
Wei,M.
Wiedermann, J.
Wilschut, A.N.
Wolper, P.
Yang, R.
Yamasaki, S.
Zakaria, L.A.H.J.

www.manaraa.com

Lecture Notes in Computer Science 506

Edited by G. Goos and J. Hartmanis
Advisory Board: W. Brauer D. Gries J. Stoer

www.manaraa.com

E. H. L. Aarts J. van Leeuwen
M.Rem (Eds.)

PARLE '91
Parallel Architectures
and Languages Europe
Volume II: Parallel Languages
Eindhoven, The Netherlands, June 10-13, 1991
Proceedings

Springer-Verlag
Berlin Heidelberg GmbH

www.manaraa.com

Contents Volume II

Invited Lectures

J. Misra
Loosely-Coupled Processes . 1

J.W. de Bakker, E.P. de Vink
Rendezvous with Metric Semantics 27

E. Shapiro
Embeddings Among Concurrent Programming Languages(Abstract).... 58

Submitted Presentations

R. Janicki, M. Koutny
Invariants and Paradigms of Concurrency Theory. 59

L.M. Alonso, R. Peiia
Acceptance Automata: A Framework for Specifying and
Verifying TCSP Parallel Systems. 75

J. Fanchon, D. Millot
Models for Dynamically Placed Concurrent Processes 92

Y. Sami, G. Vidal-Naquet
Formalisation of the Behavior of Actors by Colored
Petri Nets and Some Applications................................... 110

Ambuj K. Singh
Program Refinement in Fair Transition Systems . 128

J.T. Yantchev
Communication Abstraction and Refinement. 148

www.manaraa.com

VIII

L. Bouge
On the Semantics of Languages for Massively Parallel
SIMD Architectures... 166

J. Hooman
A Denotational Real-Time Semantics for Shared Processors. 184

E.G.J.M.H. Nocker, J.E.W. Smetsers, M.C.J.D. van Eekelen,
M.J. Plasmeijer
Concurrent Clean... 202

A. van Delft
The Scriptic Programming Language.. 220

S. Haridi, C. Palamidessi
Structural Operational Semantics for Kernel Andorra
Prolog................................ .. 238

S. J agannathan
Customization of First-Class Tuple-Spaces in a
Higher-Order Language .. 254

M. Factor
A Formal Specification of the Process Trellis. 277

C. Autant, Z. Belmesk, Ph. Schnoebelen
Strong Bisimilarity on Nets Revisited................................ 295

J. Magee, N. Dulay
A Configuration Approach to Parallel Programming. 313

J.-L. Gaudiot, Chih-Ming Lin
Chaotic Linear System Solvers in a Variable-Grain Data-Driven
Multiprocessor System... 331

M. Waite, B. Giddings, S. Lavington
Parallel Associative Combinator Evalu·ation.......................... 349

C. Hankin
Static Analysis of Term Graph Rewriting Systems................... 367

www.manaraa.com

IX

J. Briat, M. Favre, C. Geyer, J. Chassin de Kergommeaux
Reconfigurable, Distributed-Memory Multiprocessor 385

A. Beaumont, S. Muthu Raman, P. Szeredi, D.H.D. Warren
Flexible Scheduling of OR-Parallelism in Aurora:
The Bristol Scheduler . 403

A. Veron, Jiyang Xu, S.A. Delgado-Rannauro, K. Schuerman
Virtual Memory Support for OR-Parallel Logic Programming
Systems... 421

P. Szeredi, R. Yang, M. Carlsson
Interfacing Engines and Schedulers in OR-Parallel
Prolog Systems. 439

Hwang Zhiyi, Hu Shouren, Sun Chengzheng, Gao Yaoqing
Reduction of Code Space in Parallel Logic Programming
Systems. 454

S. Fujita, M. Yamashita, T. Ae
Search Level Parallel Processing of Production Systems.............. 471

Author Index Volume II . 489

www.manaraa.com

Contents Volume I

Invited Lectures

Th. Johnsson
Parallel Evaluation of Functional Programs:
The (v, G)-Machine Approach....................................... I, 1

Pilar de la Torre, C.P. Kruskal
Towards a Single Model of Efficient Computation
in Real Parallel Machines. I, 6

P.C. Treleaven
Neural Computing and the GALATEA Project I, 25

Submitted Presentations

H.H.J. Hum, G.R. Gao
A Novel High-Speed Memory Organization for Fine-Grain
Multi-Thread Computing... I, 34

K.G. Langendoen, H.L. Muller, L.O. Hertzberger
Evaluation of Futurebus Hierarchical Caching. I, 52

J.M. Filloque, E. Gautrin, B. Pottier
Efficient Global Computations on a Processor Network
with Programmable Logic. I, 69

P. Hoogvorst, R. Keryell, Ph. Matherat, N. Paris
POMP or How to Design a Massively Parallel Machine with
Small Developments. I, 83

J. Vasell and J. Vasell
The Function Processor: An Architecture for Efficient
Execution of Recursive Functions I, 101

www.manaraa.com

XI

R. Milikowski, W.G. Vree
The G-Line: A Distributed Processor for Graph Reduction.. I, 119

G. Tel, F. Mattern
The Derivation of Distributed Termination Detection
Algorithms from Garbage Collection Schemes.. I, 137

J.M. Piquer
Indirect Reference Counting: A Distributed Garbage
Collection Algorithm . I, 150

J.H.M. Kerst, E.H.L. Aarts, J.K. Lenstra, J. Wessels
Periodic Multiprocessor Scheduling................................ I, 166

M. Baurnslag, M.C. Heydernann, J. Opatrny, D. Sotteau
Embeddings of Shuffle-Like Graphs in Hypercubes.................. I, 179

V. Van Dongen
Mapping Uniform Recurrences onto Small Size Arrays'. I, 191

P. Ferianc, 0. Sykora
Area Complexity of Multilective Merging........................... I, 209

X. Zhong, S. Rajopadhye
Deriving Fully Efficient Systolic Arrays by
Quasi-Linear Allocation Functions . I, 219

C. Mongenet
Affine Timings for Systems of Affine Recurrence Equations. I, 236

I. Parberry
On the Computational Complexity of Optimal Sorting Network
Verification... I, 252

Sajal K. Das, Wen-Bing Horng
Managing a Parallel Heap Efficiently.............................. I, 270

C. Alvarez, J.L. Balcazar, J. Gabarr61 M. Santha
Parallel Complexity in the Design and Analysis of
Concurrent Systems. I, 288

www.manaraa.com

XII

T. Hagerup, A. Schmitt, H. Seidl
FOR/(: A High-Level Language for PRAMs . I, 304

A.R. Hurson, B. Jin, S.H. Pakzad
Neural Network-Based Decision Making for Large
Incomplete Databases . I, 321

A. Louri
An Optical Content-Addressable Parallel Processor
for Fast Searching and Retrieving I, 338

G.R. Gao, H.H.J. Hum, J.-M. Monti
Towards an Efficient Hybrid Dataflow Architecture Model. I, 355

R. Govindarajan, Sheng Yu
Data Flow Implementation of Generalized Guarded Commands. I, 372

J. Duato
On the Design of Deadlock-Free Adaptive Routing Algorithms
for Multicomputers: Design Methodologies......................... I, 390

H. llmberger, S. Thiirmel
A Toolkit for Debugging Parallel Lisp Programs I, 406

Author Index Volume I . I, 423

www.manaraa.com

List of Referees

Aert.s, A.T.M.
America, P.
Anishev, P.A.
Annat, J.K.
Asveld, P.R.J.
Augusteijn, A.
Augustsson, L.
Beaudoing, B.
Beaumont, T.
Beemster, M.
Belvide, R.
Bekkers, Y.
Benveniste, M.
Best, E.
Bjornson, R.
Blanken, H.M.
Boer, F. de
Bose, P.
Bost, B.
Bronnenberg, W.
Breu, R.
Brix, H.
Carlsson, M.
Carriero, N.
Chassin de Kergommeaux, J. de
Cheese, A.
Cherkasova, L.A.
Ciancarini, P.
Cooper, M.D.
Cortes, U.
Creveuil, C.
Dederichs, F.
Delgado-Rannauro, S.A.
Dendorfer, C.
Dennison, L.R.
Desel, J.
Dutra, J.

Eekelen, M.C.J.D. van
Ellis, J.
Esparza, J.
Feijen, W.H.J.
Feijs, L.M.G.
Fraigniaud, P.
Forshaw, M.R.B.
Fuchs, M.
Gabarr6, J.
Gamane, B.
Gerth, R.
Godefroid, P.
Goltz, U.
Gonzalez, A.
Gribomont, E.P.
Gritzner, T.F.
Gupta, G.
Haaften, P.J .M. van
Hausman, B.
Helmink, L.
Hesselink, W.H.
Hofman, R.F .H.
Hofstee, H.P.
Holden, M.
Horwat, W.
Houck, C.
Houtsma, M.A.W.
Hulin, G.
Hulshof, B.J.A.
Ibanez, M.B.
Inamura, Y.
Ingels, Ph.
Jansen, P.G.
Janson, S.
Jantzen, M.
Jard, C.
Jegov, Y.

www.manaraa.com

Joseph, M.
Kalker, A.A.C.M.
Kamerbeek, J.
Kaplan, S.
Karpov, Ju.G.
Kausche, A.
Kenna way, J .R.
Keen, J.
Keckler, S.W.
Kempf, P.
Khebbal, S.
Koot, J.
Korst, J .H.M.
Labarta, J.
Laborelli, L.
Langendoen, K.G.
Le Metayer, 0.
Lethin, R.
Liang Liang, L.
Lukkien, J.J.
Madelaine, E.
Martin, G.R.
Milikowski, R.
Miriyala, S.
Monien, B.
Morrison, J.P.
Muller, H.L.
Murakami, M.
Mussi, Ph.
Nakata, T.
Nepomniaschy, V.A.
Nijholt, A.
O'Boyle, M.F.
Omtzigt, F.T.L.
Overeinder, B.J.
Paech, B.
Panwar, R.
Tubella, J.

XIV

Parrott, D.J.
Pazat, J.-L.
Peikenkamp, T.
Peleg, D.
Peters, J.G.
Philippe, B.J.
Plasmeijer, M.J.
Priol, T.
Quinton, P.
Raina, S.
Ratcliffe, M.J.
Raucher, R.
Raynal, M.
Remscher, R.
Renardel de Lavalette, G.R.
Roberts, G.
Roelants, D.
Rokusawa, K.
Rouwce, P.A.
Sanders, B.
Santos-Costa, V.
Schalij, F.D.
Scholten, J.
Schoute, A.L.
Sed ukhin, S.
Serna, M.J.
Seznec, A.
Sijstermans, F.
Sindaha, R.
Spertus, E.
Sun, C.Z.
Stomp, F.A.
Streicher, P.
Syska, M.
Taubner, D.
Tel, G.
Thibault, 0.
Watson, I.

www.manaraa.com

Twist, R.A.H. van
Valk, R.
Venkatasu bramanian, N.
Veron, A.
Vissers, K.A.
Vlot, M.C.
Vree, W.G.
Vries, F-J. de
Wallach, D.

XV

Weber, R.
Wester, R.H.H.
Wei, M.
Wiedermann, J.
Wilschut, A.N.
Wolper, P.
Yang, R.
Yamasaki, S.
Zakaria, L.A.H.J.

www.manaraa.com

Parallel Evaluation of Functional Programs:
The (v, G)-machine approach

(Summary)

Thomas Johnsson
Department of Computer Science

Chalmers University of Technology
S-412 96 Giiteborg, Sweden

For a. number of years this author, together with Lennart Augustsson, have been
developing fast implementations of lazy functional languages, based on graph reduction,
for ordinary (sequential) computers. Our approach can be summarised very briefly as
follows.

Our ideas stem from Turner's S, K, I standard combinator reduction approach (Tur79).
But instead of using a standard, fixed set of combinators, a compiler transforms the
program into a new set of specialised combinators, or 'super-combinators' (Hug82). This
transformation process is called lambda lifting (Joll85]. Each of these super-combinators
are then compiled into machine code for the machine at hand, this code implements the
corresponding graph rewrite rule. In other words, the compiler constructs a specialised,
machine-language coded combinator interpreter from each program. However, rather than
compiling each combinator into machine code directly, we first compile them into code for
an abstract machine, the G-machine (Joh84). Also, rather than letting the code rewrite the
graph for a combinator application into the graph of the right hand side of the combinator
definition, quite a lot of improvements to this scheme is possible. The G-machine is a
convenient abstraction for expressing these improved compilation schemes.

An overview of the techniques used in our compiler for Lazy ML can be found in
[Aug84] and [AJ89b]. The compilation of pattern matching into efficient code is described
in (Aug85). Our method of lambda lifting is described in (Joh85], and the G-machine
is described in (Joh84]. The approach to machine code generation used in the Lazy ML
compiler is described in (Joh86).

Parallel computers, consisting of dozens, hundreds, or thousands of processors con
nected to either a shared memory or a message passing network, are now becoming avail
able on the marketplace. Recently, we have done work on extending the G-machine tech
niques to perform parallel graph reduction on such computers [AJ89a), to obtain real
speedup compared to the sequential implementation.

It is possible to modify the sequential G-machine into a parallel one straighforwardly,
by having multiple threads of control each with one or two stacks, all of which perform
graph reduction in a common graph - this is the shared memory model. Such systems
have been designed and implemented by Maranget (Mar91] and (Geo89). This is also the
approach taken in the GRIP project (Jon87, JCS89).

However, there are some properties of the standard G-machine that made us want to
try a different approach for a parallel implementation. Firstly, in the G-machine, when
reduction of a function application starts, the arguments of the application (either in the

www.manaraa.com

2

form of a. chain of binary application nodes, or a. vector application node) a.re moved to the
stack, and when reduction is finished the result is moved back into the hea.p by updating
the root application node with the value of the function application. This seems like a. lot
of unnecessary data. movement when the datum could have been a.ccessed from the node in
the first place (this reasoning has nothing to do with parallelism, of course). Secondly, the
prospect of having to manage a. cactus stack was not very appealing, we wa.nted something
simpler.

In the machines we would like to consider, and in particular the machine we have
implemented our parallel graph reducer on, the Sequent Symmetry TW, a. memory reference
into the hea.p has the same cost as a. reference into a. stack, since they reside in the same
(shared) memory. Thus the cost of moving a. word to the hea.p while building a node is
the sa.me as pushing a. word into the stack.

Thus, in the abstract machine we have designed, called the (v, G)-machine, function
applications are represented by frame nodes. A frame node holds the arguments of the
function application and a pointer to the code for the function being applied, but in
addition also contains enough space for temporaries needed for reduction of the function
application. Figure 1 shows what happens when EVAL is called: the 'current point of
reduction' is moved to the frame node to be evaluated, and a 'dynamic link' field is set to
point back to the frame which called did the EVAL. Thus, instead of an ordinary stack we
have a linked list of stack frames. In the parallel case, we have many points of reduction.
For further details of the abstract machine, see (AJ89a).

Figure 1: Calling EVAL to reduce a frame node.

To be fair, the stack model has some advantages too. The spineless G-machine (BRJ88),
which offers a. more general and efficient tail call mechanism than the 'standard G-machine'
in particular when dealing with higher order functions, requires essentially an arbitrarily
big stack. However, Lester [Les89) has devised an analysis technique based on abstract
interpretation, to determine the maximum size a. stack might have under the 'spineless'
evaluation regime. Thus it would be possible to merge the (v, G)-machine model with the
'spineless' model of execution, by allocating a. frame node of the required maximum size.

Both the stack model and the frame node model have their advantages, and it is too
early to nominate an overall winner.

So far, to introduce parallelism in the LML programs the programmer has to write
spark annotations [CJ86) in the programs explicitly. The spark annotation is advisory: if
there is a. processor available then it may evaluate the sparked expression, otherwise the
process really needing the value will evaluate it itself.

Code generation now works rather differently from the way it was described in [AJ89a).
Code is generated by first translating the combina.tors·into three-addresa form, with
liberal use of temporary names. We illustrate this with the code for the combinator
f x y z • x y, which is:

www.manaraa.com

funstart f 3
load tO,O(nu)
load t 1,1(nu)
load t2,2(nu)
IIOYe t1,t4
IIOYe t4,t6
store t6,0(nu)
eval t2
IIOYe t2,t3
do t3,1

3

start of f, which takes 3 a.rgs
load z from frame into tl
load y from frame into t2
load x from frame into t3

store the arg y of the application into the frame
evaluate x, the function

ta.il call, function is x, one arg in frame

The code for a. combinator starts by loading all arguments into temporaries from the frame
node. Then in the example above the argument y of the ta.il call, is moved into the current
frame a.t the location of the last argument; the function x of the ta.ilcall is evaluated into
function form, and finally the ta.il call is performed with the general ta.il call instruction
do.

This 'raw' code is then subjected to various improvement transformations; for instance,
the loads and stores are moved around to minimise the number om live variables a.crOSB

eval. Finally, temporaries are bound to machine registers. The resulting code is:

funstart f 3
load r0,2(nu)
eval rO
load r4 ,1 (nu)
store r4,0(nu)
do r0,1

start off, which takes 3 args
load x from frame into register rO
evaluate x, the function, in rO
load y from frame into register r4 ...
... and store y, the arg of the application into the frame
ta.il call, function is x, one arg in frame

From this code the actual machine code is generated. A notable feature of the generated
code is that we have abandoned the method of coding the tag as a. pointer, either to a. table
(as described -in [Joh86)) or to code directly, as in the spineless ta.gless G-ma.chine [JS89].
Instead, the tag word contains various tag bits. The reason comes from two observations:
firstly, most of the time when doing eval the node is a.llrea.dy canonical - according
to measurements 80% of the time is typical. Secondly, in most modern architectures
with instruction prefetch, it is rather costly to break the sequential B.ow of control. We
therefore implement eval with code that tests a. canonical-bit in the tag field of the node to
be evaluated; if canonical the next instruction is executed, and only if it is not canonical
does a jump occur to code that performs the actual call to the eval routine. The call
to eva.! is surrounded by code that stores and reloads the content of live registers. Our

implementation of the parallel (v, G)-machine is for the Sequent Symmetry, a bus-based
shared memory machine. The architecture supports up to 30 processors connected to the
bus; our machine has 16 processors. This machine has some features that helps very much
in the implementation of the parallel (11, G)-machine, for instance, any cell in the memory
can be used as an atomic lock.

At the moment of writing this, a new garbage collector is being tested [R.Oj91]. It is
an improved version of the Appel-Ellis-Li garbage collector, which is an efficient real-time
copying garbage collector which runs concurrently with the mutator processes. R.Ojemo
has extended it also to collect processes which have become garbage.

Since the publication of [AJ89a] we have improved the performance somewhat due to
the improved code generation method, as described briefly above. The improvement is

www.manaraa.com

4

about 25% for code purely sequential code, but for parallel programs the improvement is
less than tha.t - depending on how big a proportion of the time is spent in activities like
syncronisation, task switching etc. Figure 2 shows the current speedup charts for three
benchmark programs. Garbage collection time is not included in these figures.

1
1
1
1
1
1

!=Ff
3
21-
1

ti
5
4
3
2
1

j
I _ _.

I
1--t
1--+-
=+=+~~
-1'1-l-t-+

""" ..
.

.....

I
I

/

"
~

/ ,/

" 10q ..
~.--.-

I I

I
I

I I
2 3 4 5 IS 7 8 11101112131415

no of proc:ee-.

15~r;~-r-r~~.-~;,~-r-r/A
141-1-+~~~-+~~~-+~~
131-1-+-+-+-+--i-+-+-+-+--i-+-+-+~--:1 euler
121-1~-+~~+-~-+-r~,*"~~
11~-+-t-+-IH-t-+-H--.t-,r-t-t-i
101~~-+~-+-+-~-+~~+-~-1

" l~ ~ l-1-+-+-+-ll-+-+--+-,_.17·.q.-· f-+·--+-•• -+--l. 10q

u ,.. nib
5 I I I I 1/ / 1 !-" 1 l_f-J.....l

4 ~--+-+->i'>t. ' "'1 I I I I I
3 I [.6V I I I I I I I I I r 1-r-r-r-t-r;
2 ~ I t-.,-1-H--++-H
1 1/1 I .-++-t+H l I I I I I I

2 3 4 58 7 8 11 10 1112131415
no ol procM80IS

Figure 2: Speedup graphs for three benchmark programs: The left graph shows the
speedup relative to one processor, the right graph shows the speedup relative to the 'stan
dard G-machine' in the LML compiler.

References

[AJ89a) L. Augustsson and T . Johnsson. Parallel Graph Reduction with the (v, G)
machine. In Proceedings of the 198g Conference on Functional Languages and
Computer Architecture, pages 202-213, London, England, 1989.

[AJ89b) L. Augustsson and T. Johnsson. The Chalmers Lazy-ML Compiler. The Com
puter Journal, 32(2):127- 141, 1989.

[Aug84) L. Augustsson . A Compiler for Lazy ML. In Proceedings of the 198./ ACM
Symposium on Lisp and Functional Programming, pages 218-227, Austin, 1984.

[Aug85] L. Augustsson. Compiling Pattern Matching. In Proceedings 1985 Conference on
Functional Programming Languages and Computer Architecture, Nancy, France,
1985.

[Aug87] L. Augustsson. Compiling Lazy Functional Languages, Part II. PhD thesis, Dept.
of Computer Science, Chalmers University of Technology, Goteborg, Sweden,
November 1987.

(BRJ88] G. Burn, J . Robson, and S. Peyton Jones. The Spineless G-machine. In Pro
ceedings of the 1988 ACM Symposium on Lisp and Functional Programming,
Snowbird, Utah, 1988.

www.manaraa.com

5

(CJ86] C. Clack a.nd S.L. Peyton Jones. The Four-Stroke Reduction Engine. In Proceed
ings of the 1986 ACM Conference on LISP and Functional Programming, pages
220-232, 1986.

[Geo89] Lal George. An abstract ma.chine for Pa.ra.llel graph reduction. In Proceedings
of the 1989 Conference on Functional Programming lAnguages and Computer
Architecture, London, Grea.t Britain, 1989.

(Hug82] R. J. M. Hughes. Super Combina.tors-A New Implementation Method for Ap
plica.tive La.nguages. In Proceedings of the 1983 ACM Symposium on Lisp and
Functional Programming, pages 1-10, Pittsburgh, 1982.

(JCS89] S. L. Peyton Jones, C. Clack, a.nd J. Salkild. High-Performa.nce Pa.ra.llel Graph
Reduction. In Proceedings of PARLE'89 Parallel Architectures and lAnguages
Europe (Vol I), volume LNCS 365, pages 193-206. Springer-Verlag, June 1989.

(Joh84] T. Johnsson. Efficient Compilation of Lazy Evaluation. In Proceedings of the
SIGPLAN '84 Symposium on Compiler Construction, pages 58-69, Montreal,
1984.

(Joh85] T. Johnsson. Lambda. Lifting: Tra.nsforming Programs to Recursive Equations. In
Proceedings 1985 Conference on Functional Programming lAnguages and Com
puter Architecture, Lecture Notes in Computer Science 201, Na.ncy, Fra.nce, 1985.
Springer Verlag.

(Joh86] T. Johnsson. Code Generation from G-ma.chine code. In Proceedings of the
workshop on Graph Reduction, Lecture Notes in Computer Science 279, Sa.nta.
Fe, September 1986. Springer Verlag.

(Joh87] T. Johnsson. Compiling Lazy FunctionallAnguage8. PhD thesis, Dept. of Com
puter Science, Chalmers University of Technology, Goteborg, Sweden, Februa.ry
1987.

[Jon87] S. L. Peyton Jones. GRIP: A Pa.ra.llel Graph Reduction Ma.chine. In Proceedings
of the 1987 Conference on Functional Programming lAnguages and Computer
Architecture, Portla.nd, Oregon, U.S.A, September 1987.

(JS89] S.L. Peyton Jones a.nd Jon Salkild. The Spineless Ta.gless G-ma.chine. In Proceed
ings of the 198g Conference on Functional Programming lAnguages and Com
puter Architecture, London, Grea.t Britain, 1989.

[Les89] David R. Lester. Stacklessness: compiling recursion for a distributed a.rchitecture.
In Proceedings of the 1989 Conference on Functional Programming lAnguages
and Computer Architecture, London, Grea.t Britain, 1989.

[Ma.r91] Luc Ma.ra.nget. GAML: a Pa.rallel Implementation of Lazy ML. Technical re
port, Department of Computer Sciences, INRIA Rocquencourt, BP 105, 78153
Le Chesna.y CEDEX, Fra.nce, 1991.

(R0j91] Niklaa ROjemo. A Concurrent Ga.rbage Collector for the (11, G)-ma.chine.
Technical report, Depa.rtment of Computer Sciences, Chalmers University of
Technology,S-412 96 Goteborg, Februa.ry 1991.

(Tur79] D. A. Turner. A New Implementation Technique for Applica.tive La.nguages.
Softwore-Practice and Ezperience, 9:31-49, 1979.

www.manaraa.com

Towards a Single Model of Efficient Computation in Real Parallel

Machines

Pilar de la Torre *

Department of Computer Science

University of New Hampshire

Durham, New Hampshire 03824

and

Clyde P. Kruskal

Department of Computer Science

University of Maryland

College Park, Maryland 20742.

*The research of this author was supported in part by the National Science Foundation under Grant

CCR-9010445.

www.manaraa.com

7

Abstract

We propose a model of parallel computation, the Y-PRAM, that allows general parallel

algorithms to be designed for a wide class of the parallel models. There are two ba
sic quantities captured by the model, which the algorithm designer must leave open as

parameters: latency and bandwidth.

We design Y-PRAM algorithms for solving several fundamental problems: parallel

prefix, sorting, sorting numbers from a bounded range, and list ranking. We show that

our model predicts, reasonably accurately, the actual known performances of several basic

parallel models - PRAM, hypercube, mesh, and tree - when solving these problems.

1 Introduction

There is a large variety of models of parallel computation. Typically algorithms are

developed for every model individually. Some understanding of parallel algorithm design

has emerged: for example, we know that parallel prefix and sorting are important basic

routines. And there are now many results showing separations between and equivalences

of different models. But, there is no general framework for developing algorithms that

apply to a variety of models. This paper attempts to introduce such a framework.

Our basic idea is to try to find a model of parallel computation with a limited number

of parameters that capture the performance of an algorithm on a large class of parallel

machines. With this tool, parallel algorithms can be developed once and for all, leaving
open the few parameters for customization to a given machine. Substituting the parameter

values will provide some idea of how well the particular machine can execute the algorithm.

FUrthermore, a compiler could use the algorithm to produce code for the machine.

If the model truly reflects parallel machine performances, it can provide a simple model

for proving general upper and lower bounds. Similarly, by leaving in the parameters, one

can often explicitly see the bottleneck of an algorithm.

We propose the Y-PRAM model of parallel computation, which captures two basic

quantities of parallel computation: latency and bandwidth. We design Y-PRAM algo
rithms for solving several fundamental problems: parallel prefix, sorting, sorting numbers

from a bounded range, and list ranking. We show that our model predicts, reasonably

accurately, the actual known performances of several basic parallel models - PRAM,

hypercube, mesh, and tree - when solving these problems.

A model that has many of the aspects of the Y-PRAM is the X-PRAM model of

www.manaraa.com

8

Valiant [24). Other related work is the investigation of latency by Aggarwal, Chandra,

and Snir in their LPRAM and BPRAM models [1, 2].

1.1 Performance of parallel algorithms

We are restricting consideration to tightly coupled machines. We assume that moderately

sized parallel computers will be used to solve very large problems [9] i.e., problems whose

sequential times are much larger than the number of processors. We follow the work of

Kruskal, Rudolph, and Snir [14], who define six classes of parallel algorithms.

From our point of view, the most interesting class is EP (Efficient Polynomially fast,

or Efficient Parallel), which are those algorithms that achieve "polynomial" reduction in

running time with constant "inefficiency". In order to define these classes formally, we

need some definitions.

Let t(N) be the sequential time for an algorithm to solve some problem of size N. Let

Tp(N) be the time for P processors to solve the same problem. A problem is in EP if

Tp(N) = O(t(N)f P) + po(t).

The first term on the right side guarantees that the inefficiency is at most constant for

large enough problems, and the second term guarantees that the constant inefficiency

obtains whenever the sequential time is polynomially larger than the machine size (for

some polynomial).

1.2 Models of parallel computation

The most powerful parallel models are the synchronous PRAM's (Parallel Random Access

Machines), which allow the processors to access a common memory. The weakest variant

is the EREW (Exclusive Read, Exclusive Write) PRAM; it does not allow concurrent

accesses to a common location. The CREW (Concurrent Read, Exclusive Write) PRAM

allows concurrent reads to a common location, but not concurrent writes. The CRCW

(Concurrent Read, Concurrent Write) PRAM allows concurrent reads and concurrent

writes to a common location. CRCW PRAM itself has many variants including the

common, arbitrary, priority, and random models.

The next most powerful model is the DCM (Direct Connection Machine). It consists

of autonomous unit-cost RAM's, each with its own local memory, that communicate

by message passing - there is no shared memory. (This model is also known as a Fully

www.manaraa.com

9

Connected Direct Connection Machine [12], Module Parallel Computer [19], and Seclusive

PRAM [24]).

Finally, we have the sparse networks. Here each processor are connected only to a

subset of other processors. In this paper, we will concentrate on the hypercube, butter

fly, shuffi.e-exchange, complete binary tree, 2-dimensional mesh, and !-dimensional mesh

models. For conciseness, we will refer to a complete binary tree simply as a tree, a 2-

dimensional mesh simply as a mesh, and a !-dimensional mesh as a linear array. For a

fuller discussion of models than given below see [15, 11, 24].

1.3 TheY-PRAM

Before presenting theY-PRAM model, we provide a few definitions. A parallel machine is

recursively decomposable into halves if the processors can be partitioned into two groups

of equal size, so that each group is itself a submachine (and therefore recursively de

composable into halves). The latency, li(P), of a parallel model is the maximum time

to communicate between any pair of processors (or between any processor and shared

memory). Typically, it will be the diameter of a sparse machine. The bandwidth ineffi

ciency, (3(P), of a parallel model is the ratio of P to the bandwidth. We will discuss these

machine properties below.

Y-PRAM MODEL: The Y-PRAM[(3,li} is a recursively decomposable model consisting

of P = 2" RAM processors, which operate synchronously. Furthermore,

1. It has shared memory, which is partitioned among the processors so that each pro

cessor owns an equal amount.

2. Any submachine can block itself off from the rest of the machine. While blocked off,

the processors within the submachine interleave periods oj computation with periods

of memory access; the accesses may be only to the portion of memory owned by the

processors within the submachine.

3. Memory accesses may not conflict, i.e., there are no concurrent accesses to a common

location. Thus, a blocked off submachilie acts like a little EREW PRAM, except

that the cost of accessing memory depends on li and (3.

4. The time for the processors within a submachine of size S to make a total of M

memory accesses is

e(li(S) + m + M(3(S)fS),

where m is the most accesses of any one processor.

www.manaraa.com

10

In many ways theY-PRAM is an especially good model of the CM* machine at

Carnegie-Mellon [23] and of the Cedar machine at the University of illinois [16]. Both

machines have clusters of processors, which produces a hierarchy of memories - CM*

within the context of a tree and Cedar within the context of a PRAM.

We now discuss the three properties defined above. Many parallel models are re

cursively decomposable into halves, including the PRAM, linear array, and hypercube

models. While many parallel models are not, most come close enough. For example a

2-dimensional mesh decomposes into four meshes, each once fourth the size of the original

mesh. Since this decomposition produces a constant number of copies, it will suffice for

our purposes.

A ring machine does not decompose at all: proper connected subgraphs of a ring are

linear arrays. However, a linear array of size P can emulate a ring of size 2P with only a

constant loss in efficiency, by having processor i of the linear array emulate processors i
and 2P - 1 - i of the ring. Thus a ring of size P can emulate a recursively decomposable

ring of size 2P.

While, a tree machine decomposes naturally into two subtrees, the original root is not

in either subtree. However, every decomposition of a (sub)tree uses more than half of its

processors, so there is only a constant loss of efficiency.

More problematic, are the butterfly and shuffie-exchange models. They are not recur

sively decomposable; in fact, no machine that has only a constant number of connections

per processor and that can permute in logarithmic time is recursively decomposable [18].

However, they have many aspects of recursively decomposable machines. In particular,

ascend-descend algorithms [20], which are recursive, can be implemented efficiently on

them. Furthermore, since many operations take polylogarithmic time, executing them

globally for the whole machine is not much slower than working locally within subma

chines.

Now consider the latency. For sparse networks, it will typically be the diameter of the

machine, i.e., the maximum distance between any pair of processors. The DCM model

has constant diameter; the hypercube, shuffie-exchange, butterfly, and tree models have

diameter E>(logP); and ad-dimensional mesh has diameter E>(P1fd). The latency bound

can be used to capture pipeline delays; many machines have a high start up time to send

a message.

From our point of view, the latency bound is, in some sense, irrelevant: The class

EP is invariant under latency, as long as the latency is a most polynomial in P (i.e.,

8(P) $ P0 <1>) [KRS]. But, without taking latency into consideration our model would

www.manaraa.com

11

predict that a linear array can solve many problems in polylogarithmic time. This seems

too strange to ignore.

Our second parameter is related to the bandwidth. Consider the problem of permuting

elements of an array of size N. For a DCM or sparse network, assume that each processor

holds NIP elements of the array. Let r(N) be the time it takes a machine to perform the

permutation. The bandwidth of the machine is limN-+oo Nlr(N). The PRAM and DCM

models have bandwidth E>(P); the hypercube, shuffle-exchange, and butterfly models have

bandwidth E>(P I log(P)); the mesh has bandwidth E>(VP); and the tree and linear array

models have bandwidth E>(l). Bandwidth E>(P) is optimal. We actually prefer to measure

the ratio of how far from optimal a model is to make the bandwidth metric symmetric

to the latency metric: The bandwidth bound, {3(P), is the ratio of P to the bandwidth,

i.e., {3(P) = limN-+oo Pr(N)IN. So, for the PRAM and DCM models {3(P) = E>(l);

for the hypercube, shuffle-exchange, and butterfly models {3(P) = E>(log(P)); for the

mesh {3(P) = E>(VP); and for the tree and linear array models {3(P) = E>(P). Different

models obtain their bandwidths at different levels of parallelism, and the level depends on

whether the routing algorithm is deterministic or probabilistic (see, for example, [21, 24]

and references therein).

Although we have given here the standard latency and bandwidth bounds for the above

models, these values should be considered flexible. For example, sometimes one considers

PRAM's with a network between processors and memory, which have more than constant

latency. Also, if wire lengths are taken into account, many models will have higher latency

than indicated. Sometimes, each processor of hypercube is assumed to be able to send or

receive messages on all of its wires at the same cycle. This version has bandwidth E>(P),
or {3(P) = E>(l).

2 Note on analysis

Sums of the form
lgP

E>(L: f(2j)),
i=l

where the function f(P) is typically constant, polylogarithmic, or polynomial in P, will

often emerge in our analyses. For f(P) of the form pr, i.e., polynomial, the last term

dominates, so the sum is E>(pr). For f(P) of the form (logP)", i.e., polylogarithmic,

each term counts almost as much as the last, up to a constant factor, so the sum is
E>((log P)•+l).

www.manaraa.com

12

To keep track of these three main cases simultaneously we define

1 JgP .

L[f(P)] = f(P) _(; !(2').

Thus for J(P) polynomial, L[f(P)] is 8(1), and for f(P) constant or polylogarithmic,

L[f(P)] is 8(log P).

3 Parallel prefix

Given an array A[O], ... , A[N- 1], the parallel prefix problem is to compute in parallel

all of the initial sums L:}=o A[j] for 0 $ i $ N- 1. This is one of the most basic problems

in parallel computation. Shared memory machines and machines with 8(log P) diameter

can solve the problem in 8(N I p +log P) time. Typically, a diameter 8(d) machine can

solve the problem in 8(NIP +d) time. A mesh, for example, requires 8(NIP + .Ji5)
time.

Consider the simpler problem of merely finding the sum of just P numbers. We use

the standard tree algorithm:

for j = 0, ... , lg P - 1 do

for all i = 2i - 1, ... , N mod 2i do in parallel

A[i] := A[i - 2i] + A[i]

At step j, the machine sends just one item within each submachine of size 2i+1, so the

throughput cost of the step is 8(,8(2i+l)l2i+1), which equals 8(1), and the distance cost

is 8(c(2i+l)). So the total cost is

lgP-1

8(L[c(P)]c(P)) + E 0(1) = 8(L[c(P)]c(P)).
i=O

Now consider, finding the sum of N ~ P numbers. First, each processor locally finds

the sum of NIp numbers in time 8(N I P), reducing the problem to finding the sum of p

numbers. Thus, the time to sum N ~ P numbers is

8(N 1 P + L[c(P)]c(P)).

Parallel prefix can be computed within the same time bounds, by computing the

partial sums while traversing up the tree and then sending the initial sums down the tree

and appropriately adding them to partial sums.

www.manaraa.com

13

Theorem 1 The parallel prefix problem can be solved by a ?-processor Y-PRAM[(J, 6]

in time

E> (NIP+ L[8(P)]8(P)).

We now substitute typical values for (J(P) and 8(P):

SHARED MEMORY MACHINE. Setting the parameters to match a shared memory

machine gives, i.e., (J(P) = 8(P) = E>(l):

E>((N I P + log(P)).

HYPERCUBE. Setting the parameters to match a hypercube (or butterfly or shuffle

exchange), i.e., (J(P) = 8(P) =log?, gives:

E>(NI P + log2 P).

MESH. Setting the parameters to match a mesh, i.e., (J(P) = 8(P) = /(P) gives:

TREE. Setting the parameters to match a tree, i.e., (J(P) = E>(P) and 8(P)
E>(log P), gives:

E>(NI P + log2 P).

Notice that our time bounds are exact for the shared memory machine and the mesh,
but off by a factor of log P in the second term for the hypercube and tree. This is because
our algorithm assumes that the time to send a data item within a submachine of size P is
E>(log P), whereas the hypercube is able to send items between machines whose sizes differ
by a factor of two in constant time. In other words, some logarthmic distance machines
can implement ascend-descend algorithms [20) especially efficiently.

4 Merge sort

We implement here a fairly simple and straightforward sorting algorithm. The algorithm
locally sorts groups of NIP items, forming P sorted lists that need to be merged into a
single sorted list. It pairwise merges the lists until only a single sorted list remains. At
step j, 1 s; j s; log P, the algorithm merges two sorted lists each of size (N I P)2i-t into

a single sorted list of size (N I P)2i, using all the processors of a submachine of size 2i.

www.manaraa.com

14

The merging can be accomplished in a variety of ways. One method is to have one

processor use binary search to split the merging problem into two independent merging

problems of equal size: To merge the lists a 1 ~ a2 ~ • • • ~ am and b1 ~ b2 ~ • • • ~ bn, the

algorithms finds i,j so that, i+j = (m+n)/2, b11 • .• ,b;-1 ~a; and b;+1, ... ,bn ~a;, and

similarly a11 ••• , a;_1 ~ b; and a;+l, ... , am ~ b;. The processors split into two groups of

equal size and work recursively on ea.ch half until there is only one processor per merging

problem. Then, the sublists can be merged sequentially.

At step j, the time to find the first splitting item is E>(5(2i) log((N/ P)Zi)), and (by

the previous algorithm) the time to broadcast it is E>(E{:~ 5(2")). Notice that when we

find the second two splitting items the total list size has been halved and the submachine

within which a broadcast needs to be done is also halved. After each processor determines

the two sublists that it needs to merge, the processor must access all of its N / P items. This

process is global within the subma.chine of size zi+l, so it takes time (N/ P){3(2i) + 6(2i).

Thus, the total time for step j is

Summing over all log P steps and including the initial sorting time gives

e (~ (% (5(zi-h)log((N/P)zi-h) + ;%1
5(2")) + (N/P){3(zi) + o(zi)))

+E> ((N/P)log(N/P)).

This sums to

E> (L3 [5(P)]5(P) + L2[5(P)]5(P) logN + L[{3(P)]{3(P)N/ P + (N/ P) log(N/ P)),

for the parameter ranges of main interest here; namely, N ~ 2P and {3(P) and c(P)
constant, polyloga.rithmic, or polynomial in P. This proves,

Theorem 2 The sorting problem of size N can be solved by a P processor Y-PRAM[/3, 5]
in time

E> (L3 [5(P)]5(P) + L2 [5(P)]5(P) logN + L[/3(P)]{3(P)Nf P + (N/ P)log(N/ P)),

where N ~ 2P and {3(P) and o(P) are constant, polylogarithmic, or polynomial in P.

For comparison, we consider a. few models.

www.manaraa.com

15

s·HARED MEMORY MACHINE. For parameter values matching a shared memory

machine, f3(P) = o(P) = E>(l), the above result simplifies to

NlogN
E>(p + log2 P log N).

This is not quite as good as the best shared memory sorting results [4], but is still
efficient for N = !l(P1otf P).

HYPERCUBE. For parameter values matching a hypercube (or butterfly or shuffle

exchange) machine, {3(P) = o(P) = E>(logP), the above result simplifies to

E> (NlogN Nlog2 P l 3 Pl N) p + p + og og .

This is efficient for N = pO(logP), which is not as good as the best hypercube sorting

results [6, 7].

It seems that no parallel merge sort can obtain extremely good performance on

our model for parameters matching the hypercube: There must be E>(log P) merge

steps after locally sorting lists of size NIP. Each merge step will permute a total of

N items, and each permutation will require an overhead of E>({J(P)) (on average).

Thus, a term of the form E>(L[f3(P)]f3(P)NI P) seems inherent.

MESH. For parameter values matching a mesh machine, f3(P) = o(P) = E>(JP),
the above result simplifies to

e(NlogN _!!_)
p + JP.

This is optimal for a mesh: the first term accounts for the N log N comparisons that

must be performed in the worst case, and the second term accounts for the data

movement that must be performed. The algorithm is efficient for

TREE. For parameter values matching a tree, {3(P) = E>(P) and 6(P) = E>(log P),
the above result simplifies to

E>(Nlo;N + N).

This algorithm is also optimal for the same reasons as the mesh algorithm is optimal.

Notice that it is not quite as simple as the the algorithm that sorts lists of size NIP
at the leaves of the tree and pairwise merges the lists up the tree using only one

processor per merge. However, our algorithm was developed in a more general

context.

www.manaraa.com

16

We could obtain slightly better results by implementing Cole's merge sorting algorithm

[4] which possesses much inherent locality, but the algorithm is much more complicated.

5 Column sort

We present an alternative parallel sorting algorithm that captures the performance of the

best known algorithm for the hypercube. The general idea, which is based on Leighton's

column sort [17], is due to Han [10].

Column sort works by partitioning the N items to be sorted into a two dimensional

matrix. The columns are sorted and the matrix is permuted (by an appropriate permu

tation). These two steps are executed a total of eight times, at which point the entire list

is sorted. The only requirement is that the number of rows must be quadratically larger

than the number of columns.

One could use this as a parallel sorting algorithm by partitioning the list to be sorted

into an N 213 x N 113 matrix. If the number of columns (N 113) is at least as large as the

number of processors (P), then the algorithm can be implemented directly, by assigning an

equal number of columns to each processor and sorting columns sequentially. Otherwise,

we assign PI N 113 processors per column, and execute the algorithm recursively.

Thus, the sorting time Tp(N) satisfies the following recurrence:

T (N) < { 8TPfNli3(N213) + 0(~(,8(P) + S(P))) if P > 1
P - O((NIP)log(NIP)) if P = 1.

The depth of the recursion is log312 ((log N) I log(NIP)). So, the number of sequential

sorts of NIP elements is (log((logN)Ilog(NIP)))9 <1l, which implies that to total time

spent sorting sequentially is

(log((log N)l log(NI P)))9 <1l0((NI P) log(NI P)).

For (,B(P) = S(P) = 0(logP)) the total time spent permuting is

(log((log N)l log(NI P)))e(t) NIP.

Thus, for (,B(P) = S(P) = 0(logP)) the total time for sorting is

(log((log N)l log(NI P)))9 <1l0((NI P) log(NI P)).

If in addition, N ~ pH•, for some constant e: > 0, the total time for sorting is

0((NIP)log(N)).

www.manaraa.com

17

This matches the best known hypercube sorting algorithm [6].

We have proved,

Theorem 3 Column Sort can be implemented in the P processor Y-PRAM{/3,8} to
sort N elements in time

0((N/ P) log(N)),

for f3(P) = 8(P) = 0(1og P), and N = n(Pl+•), f > 0.

6 Radix sort

We implement the radix sort algorithm of [14, 22, 25] on our model. Assume we wish to
sort N numbers in the range 0, ... , M - 1 using radix R.

One pass of radix sort does the following: Each processor locally contains N / P items.

Create a P X R array. Each processor locally counts how many of its N / P items belong
in each of the R buckets. This takes time 0(N/P). Performing parallel prefix on the
P x R array by columns, and a parallel prefix of the sequence of the total for each column,

determines for each item its global location in the sorted array. By the subsection on
parallel prefix, this takes time 0(R + L[8(P)]8(P)). Move the items to their determined
destinations, which sorts the items by radix R. This takes time 0((N/P)f3(P) + 8(P)).
Thus, the total time for one pass is

0((N/P)f3(P) + R + L[8(P)]8(P)).

To fully implement radix sort, we need (logM)/(logR) passes. Thus, the total time
for all of the passes is

0(11:~~ ((N/P)f3(P) + R+ L[8(P)]8(P)).

which is equal to

logM
0(log((N/ P)f3(P)) ((Nf P)f3(P) + L[8(P)]8(P))).

for R = (N/ P)f3(P). This proves,

Theorem 4 A P-processor Y-PRAM[/3,8} can sort N integers in the range 0, ... ,M-

1 in time
logM

0(log((N/ P)f3(P)) ((N/ P)f3(P) + L[8(P)]8(P))).

www.manaraa.com

18

We can now substitute values for f3(P) and o(P):

SHARED MEMORY MACHINE. Setting the parameters to match a shared memory

machine gives:
(logM)

8(log(N/ P) (N/ P + log(P)).

This is the same result that one gets directly for the shared memory machine [14,

22, 25]

HYPERCUBE. Setting the parameters to match a hypercube gives:

logMlogP
e(log((N/ P) log(P)) (N/ p + log(P)).

MESH. Setting the parameters to match a mesh gives:

8(log M (N/VP).
log(N/VP)

For M at most polynomially larger than N, i.e. M :::; O(N") for some constant

k > 0, this simplifies to 8(N/VP), which is optimal.

TREE. Setting the parameters to match a tree gives:

e(logM N).
logN

ForM at most polynomially larger than N, this simplifies to 8(N) which is optimal

for the tree, although not especially interesting.

The region of interest will typically be Mat most polynomially larger than N, and N

at least polynomially larger than P, i.e. N ~pH< for some constant E > 0. In this case,

our running time simplifies to

8((NJ P){J(P) + L[o(P)]o(P)).

Since routing takes 8((N/ P)f3(P) + o(P)) (for N >> P) on our model, this result shows

that radix sort is essentially equivalent to routing (in this region).

7 List ranking

A problem that is fundamental for graph algorithms is list ranking: One is given a linked

list of size N and wishes to determine the distance of each node from the head of the list.

www.manaraa.com

19

We can implement Wyllie's recursive doubling algorithm [26] for N = P. Assume each
node points to its successor via a next field and starts with count = 1. The next pointer
for the head field is nil. Each processor is assigned a node and synchronously executes
the following code on its own node:

while next "/= nil do

count:= count+ count(next)

next := next+ next(next)

This algorithm takes logP iterations, and each iteration takes 0(~(P) + S(P)) time,
so the total time is 0((~(P) + S(P))logP). One could generalize this toN nodes by
assigning NIP processors per node and iterating through the loop log N times. The time
will then be 0((~(P)NIP + S(P))logN). Notice that this is inefficient because of the

0(~(P)) cost of accessing all of the nodes at each iteration, and because of the the fact
that there are log N iterations.

The basic idea of all efficient parallel list ranking algorithms is to compact in parallel
many pairs adjacent nodes into single nodes. The difficulty is to avoid compacting node a
with node b, while at the same time compacting node b with node c. After the compaction
phases are completed the steps of the algorithm are unwound to "broadcast" the node

ranks.

We implement the algorithm of Kruskal, Rudolph, and Snir [13] There are O(log(N I P))
phases. Each phase reduces the number of nodes by at least a constant fraction until there

are less than 2P nodes. At that point, the recursive doubling algorithm of Wyllie [26] is
used finish up the list ranking.

The algorithm partitions the nodes of the list into a P x NIP array. The processors
synchronously visit the columns of the array, i.e. at step j the ith processor visits the
jth element of the ith row. Each processor compacts its visited node with the node's
successor as long as the successor is not in the same column. This guarantees that

compaction conflicts - described above - are avoided.

In order to compact within a column, the processors partition themselves into NIP
groups, each of size P2 IN, one group for each column. The algorithm is then applied
recursively to each column, until each column is assigned only one processor, at which
point no conflicts can occur. After finishing the recursion, at most 2I3N + 0(1) nodes
remain, since if a node has not been compacted then both of its neighbors must have
been compacted. The remaining nodes are packed into an array of size 2I3N + 0(1) (or

smaller). The packing is accomplished by doing a parallel prefix on the nodes with 1

www.manaraa.com

20

assigned to live (not yet compacted) nodes and 0 assigned to dead (already compacted)
nodes, then updating the pointer values for live nodes, and finally moving the live nodes
(to the location indicated by the parallel prefix value). This completes the first phase.
Now the whole algorithm is applied recursively to the resulting smaller list, which has
O(N/d) elements, d = 2/3.

To analyze the algorithm we let Hp(N) be the time for P processors to compact N
nodes. Then, by our recursive construction,

H (N) < { Hp•JN(~) + 6(~(,B(P) + h(P))) if P > 1
P - e(N/P) ifP=l.

Let Up(N) be the time for P processors to execute the entire list ranking algorithm on
N nodes. Then, by our recursive construction,

Up(N):::; Up(N/d) + Hp(N) + N/P + L[,B(P)],B(P) + ~,B(P) + h(P)

where N > 2P and d = 3/2. Note that computing the locations for the packing is done
with a parallel prefix which takes N / P + L[,B(P)],B(P), and moving the elements to the
computed locations takes ~,B(P) + h(P).

Then the total time for our list ranking algorithm Tp(N) is Up(N) plus the time list
rank on a list with at most 2P nodes, Tp(N) = Up(N) + 6((,8(P) + h(P))logP). We
have thus proved,

Theorem 5 The list ranking problem of size N can be solved by a P-processors Y
PRAM{,B, 6} in time Tp(N) such that

T (N) < { Tp(N/d) + Hp(N) + 6(N/P + L[,B(P)],B(P)) + ~,B(P) + h(P) if N > 2P
P - e((,B(P)N/P+h(P))logN) ifN=2P,

where d = 2/3, and

H (N) < { Hp•JN(~) + ~(,B(P) + h(P)) if P > 1
P - O(N/ P) if P = 1.

We will not solve this recurrence in general, but rather solve some special cases of
interest:

SHARED MEMORY MACHINE. Setting the parameters to match a shared memory
machine gives:

N logN
Tp(N) = e(P log(2N/ P)).

www.manaraa.com

21

This is optimal for N ;::: pH• for any constant f ;::: 0. The best parallel list ranking

algorithms for a P processors EREW PRAM take O(N/P+logP) which is optimal

for N = fl(Plog P) [3, 5].

HYPERCUBE. Setting the parameters to match a hypercube gives:

N logN
Tp(N) = 9(p log(2N/ P) log P) (N;::: 2P).

Again, this is optimal for N ;::: pH• for any constant f ;::: 0. This matches the

performance of the fastest known list ranking algorithm for the (strict) Hypercube,

whose complexity is O(.Jfo~;rN~)) and becomes optimal for N;::: pt+• [6].

MESH. Setting the parameters to match a mesh gives:

Tp(N) = e(:fp + .fPlogP).

This is optimal for N > ..fi5log P. For the case N = P, the parallel list ranking

problem can be solved on a .;Jii X .;Jii mesh in 0(.Jlii) time, which is optimal [8].

TREE. setting the parameters to match a tree gives:

Tp(N) = 9(N + PlogP),

which is optimal for N > P log P.

8 Conclusion

We have proposed a model of parallel computation, theY-PRAM, that takes into account

latency and bandwidth. It allows parallel algorithms to be designed independently of the

parallel model. We presented Y-PRAM algorithms for parallel prefix, sorting, sorting

numbers from a bounded range, and list ranking. It seemed to be easy to write programs

for this model.

TheY-PRAM model seems to provide a reasonably accurate prediction of actual per

formance. Many Y-PRAM time bounds exactly match the best parallel bounds, when the

parameters are set to match a particular machine. Sometimes the bounds were off by a

log P factor in the second term, as in the parallel prefix algorithm for the hypercube. This

discrepancy occurred because our model assumes that the time to send a data item within

a submachine of size P is 9(1og P), whereas the hypercube is able to send items between

machines whose sizes differ by a factor of two in constant time. In other words, some

www.manaraa.com

22

logarthmic distance machines can implement ascend-descend algorithms [20] especially

efficiently. We believe that it may unnecessarily complicate the model to try to account

for this low level effect.

There are many problems left open by this work, some of which we plan to tackle in

the future. For example, it would be nice to design algorithms for more problems. TheY

PRAM is only a first approximation; more experience designing algorithms will indicate

how the model should be generalized or restricted, and also what other parameters, if any,

sho1,1ld be included. It can be refined in a variety of ways. Many machines communicate

by "randomly" sending message around the machine. In that case, a small amount of

more global background traffic would not seriously degrade performance, as measured

by bandwidth. Such a model would probably provide a more realistic reflection many

machines including CM* and Cedar, However, it seems to be more difficult to define

cleanly, and none of our current algorithms take advantage of this extra traffic.

Another variant of our model, which would also be a more realistic reflection of real

machines, would be to restrict the submachines so that they can communicate only via

routing, rather than allowing the full power of a shared memory. In this case, m would be

maximum number of messages that any one processor sends or receives. This refinement

would complicate algorithm design for questionable improvement in estimating perfor

mance. Our Y-PRAM model defines what might be called an EREW Y-PRAM. Any

other PRAM model could be used for the communication within submachines.

References

[1] A. Aggarwal, A. Chandra, and M. Snir. Communication complexity of prams. Tech
nical Report RC 14998((!4644), IBM Tech. Report, 1989.

[2] A. Aggarwal, A. Chandra, and M. Snir. On communication latency of prams. Tech
nical Report RC 14973(66882), IBM Tech. Report, 1989.

[3] R. J. Anderson and G. L. Miller. Deterministic parallel list ranking. In Proc. 3rd
AWOC, pages 81-90, 1988.

[4] R. Cole. Parallel merge sort. In Proc. 27th Annual IEEE Symp. on Foundations of
Computer Science, pages 511-516, 1986.

[5] R. Cole and U. Vishkin. Approximate parallel scheduling, part i: the basic tech
nique with applications to optimal parallel list ranking in logarithmic time. SIAM
J. Comput, 17:128-142, 1988.

[6] R. Cypher. Efficient communication in massively pamllel computers. PhD thesis,
University of Washington, 1989. Department of Computer Scienceeig.

www.manaraa.com

23

[7] R. Cypher and C. G. Plaxton. Deterministic sorting in nearly logarithmic time on
the hypercube and related computers. In Proc. 15th Annual ACM Symp. on Theory
of Computing, pages 193-203, 1990.

[8] A. M. Gibbons and Y.N. Srikant. A class of problems efficiently solvable on mesh
connected computers including dynamic expression evaluation. Information Process
ing Letters, 32:305-311, 1989.

[9] A. Gottlieb and C. P. Kruskal. Complexity results for permuting data and other
computations on parallel processors. JACM, 31:193-209, 1984.

[10] Y. Han. Parallel algorithms for computing linked list prefix. J. of Parallel and
Distributed Computing, 6:537-357, 1989.

[11) R. Karp and V. Ramachandran. A survey of parallel algorithms for shared-memory
machines. In Handbook of Theoretical Computer Science, 1988. Ed. J. van Leeuwen,
North Holland, to appear.

[12) C. P. Kruskal, T. Madej, and L. Rudolph. Parallel prefix on fully connected direct
connection machine. In Proc. International Conference on Parallel Processing, pages
278-283, 1986.

[13) C. P. Kruskal, L. Rudolph, and M. Snir. The power of parallel prefix. IEEE Trans
actions on Computers, pages 965-968, 1985.

[14) C. P. Kruskal, L. Rudolph, and M. Snir. Efficient parallel algorithms for graph
problems. In Proceedings International Conference on Parallel Processing, pages
869-876, 1986.

[15] C. P. Kruskal, L. Rudolph, and M. Snir. A complexity theory of efficient parallel
algorithms. In Proc. 15th Annual ICALP. Springer Verlag Lecture Notes in Computer
Science, Vol. 317, pp. 333-346, July 1988. (Theoretical Computer Science, to appear
1989).

[16) D. J. Kuck, E. S. Davidson, D. H. Lawrie, and A. H. Sameh. Parallel supercomputing
today and the cedar approach. Science, 231:967-974, 1986.

[17] F. T. Leighton. Tight bounds on the complexity of parallel sorting. IEEE Transac
tions on Computers, C-34:344-354, 1985.

[18] L. Meertens. Recurrent ultracomputers are not log n-fast. Technical Report 2, New
York University, 1979. Ultracomputer.

[19] K. Mehlhorn and U. Vishkin. Randomized and deterministic simulations of prams
by parallel machines with restricted granularity of parallel of parallel memories. Acta
Informatica, 21:339-374, 1984.

[20] F. P. Preparata and J. E. Vuillemin. The cube-connected cycles: A versatile network
for parallel computation. CACM, 24:300-309, 1981.

[21] T. Leighton B. Maggs S. Rao. Universal packet routing algorithms. In Proc. 29th
Annual IEEE Symp. on Foundations of Computer Science, pages 256-271, 1988.

www.manaraa.com

24

[22] J. H. Reif. An optimal parallel algorithm for integer sorting. In Proc. 26th Annual
Symp. on Foundations of Computer Science, pages 496-504, 1985.

[23] R. J. Swan, S. H. Fuller, and D.P. Siewiorek. Cm*- a modular, multi-processor. In
Proc. AFIPS Con/., volume 46, pages 637-644, 1977.

(24] L. G. Valiant. General purpose parallel architectures. In A handbook of Theoretical
Computer Science. MIT Press, 1990. J. van Leeuwen (ed.).

[25] R. A. Wagner and Y. Han. Parallel algorithms for bucket sorting and the data
dependent prefix problem. In Proc. International Conference on Parallel Processing,
pages 924-930, 1986.

(26] J. C. Wyllie. The complexity of parallel computation. PhD thesis, Cornell University,
1979.

www.manaraa.com

Neural Computing and the GALATEA Project

Philip Treleaven

Department of Computer Science
University College London

ABS'IRAcr

This paper reviews the fundamentals of neural computing which includes: neural network
models, neural network programming environmeniS, and neurocomputer; specialised hardware
for neural networks.

It then describes the ESPRIT II GALATEA project, and its predecessor PYGMALION, which
provide the focus of neural computing research in the European Community. PYGMALION has
developed a general programming environment for neural networks, and the goal of GALA TEA
is to build upon this environment, to produce a comprehensive neurocomputing system. This
neurocomputing system will comprise: a sophisticated programming environment capable of
mapping a network on to a range of conventional computers, including parallel machines; a novel
general-purpose neurocomputer; and an integral silicon compiler for translating a network into
VLSlchips.

1. Artificial Neural Networks
Neural networks1 are a novel form of computation that attempts to mimic the functionality of the

human brain, in order to solve demanding pattern processing problems. The term neural computing
spans artificial neural networks, neural programming environments and neurocomputers, applying them
to a broad class of pattern processing applications. These applications include: control, image process
ing, speech processing, inexact knowledge processing, natural-language processing, sensor processing,
planning, forecasting and optimisation.

The key to neural computing is understanding the ways in which the brain uses neuronal systems
for pattern processing2• The biological neuron basically consists of a cell body called a soma (Figure
la), branching complex extensions called dendrites, and an axon, the output channel of the cell, can'ying
an electric signal to other cells. The axon connects to the dendrites of other cells through specialized
contacts called synapses that can change, positively or negatively, the axon potential. The traditional
view is that the neuron performs a simple threshold function - "weighted" input signals are summed; if
the result exceeds a certain threshold, a signal is send out from the neuron.

The artificial neuron is made up of three sections (see Figure lb), corresponding to the simplified
model of the biological neuron: the weighted input connections, the summation function and a thres
hold function, that generates the unit output (usually off or on). The artificial neuron operates as a simple
threshold device, depending on the state S of its input elements and the connection weights (W).

In an artificial neural network, neurons are generally configured in regular and highly intercon
nected topologies. Programming of a neural network, firstly involves specifying the mathematical func
tion of the artificial neurons and their connections, and secondly involves the training of the network to
recognise a set of patterns.

Typically the artificial neurons (called processing elements - PEs) are organised into layers with
each PE in one layer having a connection to each PE in the next layer, as illustrated by Figure 2. Asso
ciated with each connection is a weight and with each PE is a state (usually off or on). Together these
weights and states represent the distributed data of the network. The weights of a network together
represent an energy surface, and their actual values determine the set of patterns recognisible by the net
work. During pattern recognition, each PE operates as a simple threshold device. A PE sums all the
weighted inputs (multiplying the connection weight by the state of the previous layer PE) and then

www.manaraa.com

26

Dendrites

~
Soma

,.---, r---, s,

L I I I

~ I I I s2 s ~"l
I I I Axon
I I I s,

'
~ ----' L - - - .J

Synapse

(a) Biological Neuron (b) Aniliclal Neuroo

Figure 1: Simplified Models of Neurons

applies a threshold function, such as a sigmoid function.

n
p
u
t
s

first
hidden
layer

Figure 2: Multilayer Neural Nctworlc.

0
u
t
p
u
t
s

l

A widely used neural network model is Back PropagaiWnl. A Back Propagation model is trained
to recognise patterns by presenting example training pairs of input-target pattern (e.g. a hand-written A
with a perfect A}. The input pattern is presented and passes through the network to produce outputs.
This output pattern is then compared with the "ideal" target pattern, and an error is propagated back
through the network. The propagated error is used to adjust the weights of the connections. This train
ing process is then repeated with a new training pair, and a new (hopefully smaller} error is propagated
backwards. This training process is repeated with example pairs of patterns until the error is negligible,
at which time the network is trained.

2. Neural Programming Environments
Interest in neural networks has stimulated the availability sophisticated software Environments for

programming neural networks3. Environments range from commc:rcial products from both established
and Startup companies, to public-domain software, available free from university research groups.

These diverse neural programming environments share many common features. A typical neural
network programming environment, as illustrated by Figure 3, might comprise:

• a graphic interface, with menus and a command language: for configuring a neural network, then
controlling and monitoring its execution;

• an algorithm Ubrary of common, parameterised neural network algorithms, such as Back Propaga
tion, Hopfield, Boltzmann etc.;

• a high-level longuage, often object-oriented, for programming or customising an algorithm or
-application;

www.manaraa.com

27

• a Mlwork specjficalion lllnguage, a low-level, machine-independent, language (often based on C)
defining the neural network simulation;

• luudware conjiguraJion information for defining the organisation of the target machine to run the
network simulation; and

• tramlllJon for mapping the network specification language to various target machines.

Figure 3: Typical Neural Programming Environment

Neural programming environments may be classified into three major groups: application-oriented,
algorithm-oriented and general programming systems.

AppliciJiiou-orknkd JYSienu
are designed for specific market domains, such as fiiUJIICe or transportatkJn. These application
domains form a natural subdivision. A good example is Nestor's Decision Learning System4.

Algorilhm-omnted JYstenu
support specific neural network models. This class has two major subclasses which are:
algorillun-specijic supporting a single model, such as Back Propagation of errors, and algorithm
libraries supporting many models coded in a common language like "C". These algorithm
oriented systems are often supplied as source code routes and therefore are easily incorporated in
user applications. A popular algorithm library is OWLS.

Programming JYSiems
the third class, provide general "tool-kits" comprising many algorithms and programming tools,
that can be used for a wide range of algorithms and applications. Programming systems can be
further sub-divided into: educational systems for the novice user to obtain a hands-on introduction
and normally suppon only small networks based on common algorithms; getllral-purpose systems
provide comprehensive tool-kits for programming any algorithm or application; open systems
where the user can modify any pan of the system; and hardware-oriented systems typically sup
porting panicular parallel computers.

As an illustration of our Taxonomy, Figure 4 lists some of the well known environments in each
class.

The level of sophistication and usage of a given environment depends on the target group of users.
Business professionals, interested say in financial forecasting, have little concern for the details of
neural networks. For them, an applications-oriented system gives emphasis to the graphic interface and
a specific, possibly proprietary, algorithm. The user merely configures a parameterised network, applies
the data and monitors the network's execution.

www.manaraa.com

28

Class Category Organisation System

Application-Orionled Financial Nestor Decision Learning System (DLS)
Transportation BohavHcuristics Airline Marketing Tactician (AMT)

Excalibur Savvy

Algoritlun.Oricnled Algoritlun-Spccific Cal. ScicnL Softw. BrainMakcr
Algoritlun Libraries Olmstead & Watkins Owl

Mime tics Galatea C-libriii)'

Programming Systems Educational Systems UCSD PDP
Ncura!Warc Explorer

General-Purpose Systems SAIC AN Spec
HNC Anza/Axon
Ncura!Warc Ncura!Works Professional ll

Open Systems. Lucid Plcxi
UCL Pygmalion

Hardwarc-Oricntod Systems Oregon Grad. Institute Anne

Figure 4: Neural Network Programming Environments

For the novice user wishing to learn about neural networks there are many good educational sys
tems that allow small parameterised networks to be configured, and their execution monitored. These
systems typically have an easy to use graphic interface, a library of a few common networks, such as
Hopfield, Back Propagation etc. and simple demonstration applications. Essentially these environments
are "skeleton" general-purpose programming systems.

For the computing professional wishing to incorporate a common neural network algorithm in an
application, there are source code algorithm libraries available in C and LISP. These libraries, provide
an optional rudimentary graphic interface, and any additional programming is done in C or LISP. This
is a straight-forward, and popular, way of incorporating neural networks into conventional applications.

For neural network experts who need to program their own algorithms and applications there are
many general-purpose programming systems. Besides providing a comprehensive graphic interface and
algorithm library, they also usually provide a high level language with specialised data structures,
classes and functions. These languages are usually object-oriented, possibly based on C++. Many of
these general-purpose systems are also "open", allowing the programmer to modify any part of the.
environment.

Finally, an increasing number of users are interested in mapping neural networks on to specific
hardware, such as parallel computers like Transputers, or even into silicon. Hardware-oriented pro
gramming systems emphasis the hardware configuration component, specifying the structure of the tar
get hardware, and the translator which uses this configuration information to map the neural
specification language on to the hardware. Certain hardware-oriented systems are little more than
parameterised code for running a specific neural network. Others are translators for mapping the net
work specification language to a parallel machine or to a silicon chip.

3. Neurocomputers
The computational demands of neural networks have also stimulated the development of special

ised hardware, referred to as neurocomputers, to speed up execution. There are two basic classes of
neurocomputer:

• General-Purpose Neurocomputers - generalised, programmable, neural computers for emulating
a range of neural network models, thus providing a framework for executing neural models in
much the same way as traditional computers.

• Special-Purpose Neurocomputers • that are dedicated hardware implementations of a specific
neural network model.

www.manaraa.com

29

The essential difference between them is whether the neurocomputer is programmable, hence general
purpose and capable of supporting a range of neural network models, or is special-purpose, implement
ing a dedicated neural network.

General-purpose neurocomputers subdivide into commercial co-processors boards and parallel
processor array/'. Commercial co-processors are typically floating-point or signal processing accelera
tor boards, usually supplied with a large memory (e.g. 4M byte), that plug into the backplane of an mM
PC, or interface to a SUN Workstation. Parallel processor arrays are cellular arrays, composed of a
large number of primitive processing units, connected in a regular and usually restricted topology.
Their general architecture is shown in Figure 5. The structure resembles a parallel array processor,
comprising identical processors connected through a parallel broadcast bus, where each physical unit
executes a section of the "virtual" network. To program the neurocomputer, the virtual PEs are parti
tioned across the local memories of the physical processors. Updating a virtual PE implies broadcasting
the update through the bus. Units that need access to that information accept and store the update in
their system state memory.

l'aranct uroaacast Hus

l I l
Bus 1- Bus 1- Bus 1-Interface Interface Interface

l I l
Loco! System Loco! System Loco! System I

Stale Copy State Copy StateCcpy

l l]
Physical Physical Physical I Processing Processing Proc:Cssing

Unit Unit Unit

] 1 a a D]
Virtual PH VirtuaiPE Virtual PH

IntcrcoiUicct IntcrcoiUicct Interconnect
and Weight and Weight and Weight

Memoty Memoty Memory

1 2 R

I
I System ControUer Eatcmal Computer

Interface

Figure 5: General-Purpose Virtual Neurocomputer Architecture
(from Hecht-Nielsen)7

These two categories of general-purpose systems differ basically in the number and complexity of
the physical processing units employed. Parallel processor arrays aim to attain high performance and
real parallelism by (mainly) increasing the number of the implemented processing units, while co
processors attempt to improve performance by strengthening the processing/storage capabilities of stan
dard microprocessors.

Hardware accelerators, such as the HNC ANZA8, the SAIC SIGMA-19 and, from Japan, the NEC
Neuro-0710, have allowed neural network experiments to be carried out over 100 times faster than the
usual simulators of neural network models. They are programmable and can implement large networks
of virtual processing elements with a limited number of hardware implemented processors. Processors
are usually implemented by means of an industry-standard signal processing chip or microprocessors
such as the MC68020 (and its MC68881 floating point co-processor), interconnected through a standard
parallel broadcast bus, such as the VME bus. Physical processors and interconnections are multiplexed
across a large number of virtual processing elements and virtual interconnections, so demanding large

www.manaraa.com

30

memories to represent them. Perfonnance comparisons between these products are based on capacity,
meaning the maximum size of neural network, and speed, the time to process a neural network. Speed is
usually expressed in network updates per second, for both the training phase and the recall phase. For
instance, the ANZA Plus supports 1M PEs with 1M interconnections, and is capable of 1.5M connection
updates per second during training and 6M updates during recall.

Several examples of very high performance special-purpose neurocomputers have been success
fully built6. They are, typically, analog eleclronic implementations of neural networks and usually
employ slrUctures that resembles the simplified model of the neuron.

In a simple model of the neural function, the neuron state is given by:

s = T(.t S. W- 8)
The circuit of Figure 6a is a straightforward elecll'Onic implementation of the above equation 11. Wires
replace the input slrUcture (dendrites) and the output (axon); the conductances (1/R) model the synaptic
connections between neurons; and the amplifier models the cell body by executing the threshold func
tion. Inputs appear as voltages to the summing wire. Using these elec1r0nic neurons, a neural network is
implemented as a crossbar representation (Figure 6b). Outputs (vertical lines) are connected through
resistors to the horizontal summing wires, which represent the weighted sum of the output signals of
other PEs. Inverted input lines are provided when both positive and negative values are required.

For many neural network applications, however, it is necessary to change the synapses values12.
To implement programmable connections, resistors can be replaced by a "synapse circuit", capable of
providing different types of connections: excitatory, inhibitory and disabled.

In the design of special-purpose chips, the coupling network occupies most of the chip area. This is
due to the difference between the silicon areas required by the PEs (containing many transistors) and by
the wires (plus spacing).

Input

~-den-:7dri~·tes~)~--:-:...--!.l:> // Output 777 Ampli.lier (axon)

Resistors (cell body)
(synapses)

(a) Elccttonic Neuron

i I
n i
Pn
u e
t s

A1

output lines

A1 A2 A3

A2 A3 A4

(b) Intctconncctcd Neurons

Figure 6: Special-Purpose Neurocomputer

A4

Special-purpose neurocomputers are naturally subdivided by their implementation technology into:
silicon processors, optical processors and molecular processors. The approach for special-purpose neu
rocomputer architectures is to directly implement a specific neural network model in hardware to pro
duce a very high performance system. Any neural network model could theoretically be chosen,
although currently the Kohonen or the Hopfield associative memory model3 are typically favoured,
because of their simplicity. Most silicon implementations use an analog elecll'Onic neuron model, as
described above.

Further details of neural networks, neural programming environments and neurocomputers are
given in the references6.

www.manaraa.com

31

4. The GALATEA Project
In the European Community, the focus of neural computing research is the ESPRIT ll GALATEA

Project, and its predecessor PYGMALION. PYGMALION and GALATEA broadly aim to promote the
application of neural networks by European industry, and to develop European "standard" computa
tional tools for programming and simulation of neural networks. The projects, as shown by Figure 7,
bring together many of the leading neural computing research groups from European industry, research
institutes and universities.

Partner Labontorr Role
ThomS<XI.CSF Divi11on Outil& lnformatiqUCI1 Paris Pr~ CtJidrdclor

Manager inle&ration wodc:packagc
OCR applicotion

Philip Lab. d'Eiec:&runique e1 de Phyaique Appliquce,Paria Moaager imasc pRICCIIina applicotion
IICIIrocx>mplllCr

SiancnaAG CcnlnllWcan:h labonJoriaa Moaascr hardw ... workpackas•
IICIIIOOOIIIpuiCt

programming environment
MimcticaSA Manager ailic:on c:ompillllioo

Moaascr OCR applicolioo
prognmmin& environment.

UCL Univcmly College Lcndoo Moaascr aoflwarc wod<paqe
prognmmingcn~
ailicon c:ompillllion

SGS·Thomaoo Microclec:&runics Sd ai1icoo ccmpUIIIion
INPO lnslilUl National Polylcchniquc de GICIIoblc ai1icoo compUIIIion

IS lnfonnatica Sistemi. Spa image proceaaing applicotioo

CRAM Conaorsio per Ia Ricen:a in Agric:ulln ncl Mcuogiomo imaac proec11ing application
INESC Jmtituto de Engtnharia Sistanas e Ccmputadorcl algorilhm libnl)'

Cl1 Componer Tcc:hnology InatilULc. Patru panllcl proccuina

Figure 7: Partners in the GALATEA Project

PYGMALION13 has produced a rudimentary environment for programming neural networks. Its
design philosophy is threefold. Firstly, to provide a general environment for neural networks with the
same facilities (e.g. graphic monitor, algorithm library etc.) and functionality as commercial systems
such as those of Hecht-Nielsen, Neural Ware and SAIC. Secondly, to provide a rudimentary "platform"
- that can be easily extended and interfaced to other tools. For this reason the core of the environment is
X-windows, C and C++; running on a colour workstation. Thirdly, to provide "portable" neural network
applications, so that trained and partially trained networks can be easily moved from machine to
machine. For this reason the {partially) trained neural network applications are specified in a subset of
C; essentially a C data structure.

The environment comprises 5 major parts:

• Graphic Monitor, the graphical software environment for controlling the execution and monitor
ing of a neural network application simulation.

• Algorithm Library, the parameterised library of common neural networks, written in the high
level language N.

• High Level Language N, the object-oriented neural programming language based on C++.
• Intermediate Level Language nC, the low level machine independent network specification

language, which is a subset of C.
• Compilers to the target UNIX-based workstations and parallel Transputer-based machines.

PYGMALION embodies a hierarchical data structure encompassing: system, network, layer, cluster,
plus neuron and synapse. Network information is encoded in the C data structure system, as shown in
Figure 8.

www.manaraa.com

int n_rulea;
rule type *rulea;
int ;_para .. tara;
par_type *par ... tera;

(...)
(...)

(•••)_type;

32

/ 0 1olrub 0 /

/ 0 lialofrub 0 /

t•lol-~·1
,. llat of -..,ponmeiOr .,

t• ~ vlrilblol (e.,. int cluatan;) •I
t• lo...,.. J.vol a-(•.,. cluatar_type •cluatar:) • I
t• nameoflhekvol(.. , . layer) •t

Figure 8: nC Data Structure for Network Information

The Graphic Monitor sits on top of the nC data structure and displays its contents, with a window
corresponding to each level in the data sttucture. There are two types of window: Top Window, pro
viding facilities for controlling the simulation and displaying status information plus the program text of
the neural network; and Level Windows, providing control facilities, and displaying status infonnation
and a graphic representation, for each specific level. A window has three areas: coaunands,
graphi~text, and parameters (i.e. status). A command area, comprises a series of button boxes (i.e.
labels), each associated with a command or a "pull-down" menu. For example, at the top level, the
boxes are create, start, pause. resume, input/output and quit A graphic area presents a graphical view of
the specific level and its pattern of intra-connectivity. Lastly, a parameter area displays status informa
tion in a textual form.

The PYGMALION programming environment is available free from University College London,
and has been distributed to over 250 organisations.

The goal of GALATEA is to build upon this environment, to produce a "general-purpose" neuro
computing system. We visualise a general-purpose neurocomputing system as being a fully integrated
environment of software and hardware components for the development and implementation of artificial
neural networks. This neurocomputing system (see Figure 9) will comprise: a sophisticated program
ming environment capable of mapping a network on to a range of conventional computers, including
parallel machines; a novel general-purpose neurocomputer; and an integral silicon compiler for translat
ing a network into VLSI chips.

Figure 9: The GALA TEA Neural Computing System

www.manaraa.com

33

The programming environment will be similar to PYGMALION, and execute on a conventional
workstation. Once programmed, a neural application can be compiled into binary (i.e. software), or sili
con (i.e. hardware) for execution:

• woricsllllion slmullllion - a binary representation could be executed on the workstation itself
(e.g. SUN, DEC).

• pal'tll#l simulalion - the binary could be down-loaded to a conventional parallel computer con
nected to the workstation (e.g. a Transputer accelerator).

• uurocompukr emullllion - the binary could be down-loaded to general-purpose sub-systems
used in a specialised neurocomputer connected to the workstation.

• sillcon chip- a silicon representation in a special-purpose integrated circuit (digital or analog).
• specilll-prupose sub-system - special-purpose silicon chips mounted in a sub-system for usc in

the neurocomputer.
In addition, applications composed of multiple networks may combine the binary or silicon execution
strategies specified above.

In conclusion, GALA TEA aims to develop a fully integrated, general-purpose ncurocomputing
environment, covering all possible aspects of neural network application in real-world tasks and
rcscan:h. A key component of the environment is the neurocomputer, viewed as a heterogeneous sys
tem containing a number of general-purpose programmable sub-systems. It could also include one or
more special-purpose, domain-specific sub-systems.

References

1. I. Alcksandcr and H. Morton, "Introduction to Neural Computing," in North Oxford Press, 1990.
2. G. Shepherd, "Synaptic Organisation of the Brain," John Wiley & Sons.
3. P .D. Wasserman, "Neural Computing: theory & practice," in Van Nostrand Reinhold, 1989.
4. Nestor, "Nestor Development System User's Guide," Nestor Inc., 1988.
S. Olmsted & Watkins, "Neural Network Library," Olmsted & Walkins Inc, 1988.
6. P.C. Tn:1cavcn, M. Pacheco, and M. Vellasco, "VLSI Architectures for Neural Networks," IEEE

Micro, vol 9, no. 6, pp. 8-27, December 1989.
7. R. Hccht-Niclscn, "Performance Limits of Optical, Electro-Optical, and Electronic Neurocomput

ers," Optical and Hybrid Computing SPIE, vol. 634, pp. 277-306, 1986.
8. Hecht Nielsen, "Hccht-Niclscn Neurocomputing ANZA and AXON," Hecht-Nie/sen Neurocom-

puting, 1988.
9. SAIC. "DELTA/SIGMA/ANSim, editorial," Neurocomputers, vol. 2, no. 1, 1988.
10. NEC. "Neuro-07 ('m Japanese)," Nikkan Kogyo, February 1989.
11. L.D. Jackel, H.P. Graf, and R.E. Howard, "Electronic neural network chips," Applied Optics, vol.

26, pp. 5077-5080, December 1987.
12. H.P. Graf, L.D. Jackel, and W. Hubbard, "VLSI Implementation of a Neural Network Model,"

IEEE COMPUTER, pp. 41-49, March 1988.
13. Angcniol B., "Pygmalion: ESPRIT II Project 2059, Ncurocomputing," IEEE Micro, vol. 10, no. 6,

pp. 28-32, December 1990.

www.manaraa.com

A Novel High-Speed Memory Organization for
Fine-Grain Multi-Thread Computing

Herbert H.J. Hum
Centre de recherche informatique

de Montreal
3744 Jean Brillant, Bureau 500
Montreal, Canada, H3T lPl.

and
McGill University

Guang R. Gao
McGill University

School of Computer Science
McConnell Engineering Building

3480 University St.
Montreal, Canada, H3A 2A 7.

Abstract

In this paper, we propose a novel organization of high-speed memories, known
as the register-cache, for a multi-threaded architecture. As the term suggests, it
is organized both as a register file and a cache. Viewed from the execution unit,
its contents are addressable similar to ordinary CPU registers using relatively short
addresses. From the main memory perspective, it is content addressable, i.e., its
contents are tagged just as in conventional caches. The register allocation for the
register-cache is adaptively performed at runtime, resulting in a dynamically allo
cated register file.

A program is compiled into a number of instruction threads called super-actors.
A super-actor becomes ready for execution only when its input data are physically
residing in the register-cache and space is reserved in the register-cache to store
its result. Therefore, the execution unit will never stall or 'freeze' when access
ing instruction or data. Another advantage is that since registers are dynamically
assigned at runtime, register allocation difficulties at compile-time, e.g., allocat
ing registers for subscripted variables oflarge arrays, can be avoided. Architectural
support for overlapping executions of super-actors and main memory operations are
provided so that the available concurrency in the underlying machine can be bet
ter utilized. The preliminary simulation results seem to be very encouraging: with
software pipelined loops, a register-cache of moderate size can keep the execution
unit usefully busy.

1 Introduction

The current microelectronics technology is passing the mark of a million transistors per
microprocessor chip, and computer architects are facing the increasing challenge of ULSI
- ultra large scale integration - technology, which may boast the capability of 50-100

www.manaraa.com

35

million transistors on a chip by the year 2000[10]! One direction to utilize such enormous
hardware parallelism is to increase significantly the architectural support for fine-grain
parallelism. Examples include superscalar machines which can issue multiple instructions
per cycle like the Intel i860 and the IBM RS/6000, superpipelined machines which use
deep instruction pipelining like the CDC-7600, or a combination of both[14].

However, conventional single-instruction-stream processors have inherent limitations
in fully exploiting instruction level concurrency. This is due to the fact that a processor
equipped with only the mechanism of executing a totally ordered instruction stream, lacks
the capacity of tolerating long and unpredictable memory and communication latencies -
latencies which are unavoidable in a multiprocessing system [4]. An alternative approach
is to directly support multiple instruction threads at the processor architecture level, the
so-called multi-threaded architectures. Multi-threaded architectures have the potential to
keep the processor pipelines usefully busy by rapidly switching between threads on long
latency operations. Research on multi-threaded architectures can be found in [1, 15, 17,
13].

For a pipelined multi-threaded architecture, including the target architecture in our
research, the ability to exploit the principle of locality (temporal and spatial) is both
important and challenging. In conventional modern RISC architectures, the reduction in
memory latencies is achieved by providing (explicit) programmable registers and (implicit)
high-speed caches. A small number of programmable registers alone can only provide
a partial solution - two reasons for this are: (1) the register allocation for subscript
variables of array (vector) data is difficult. In fact, "most compilers fail to recognize
even the simplest opportunities for re-use of subscripted variables" [7]. (2) Increasing
programmable registers will increase the "context" of a thread. If the registers are to be
shared between different threads, a large context may present a high context switching
overhead.

For the conventional cache solutions, we point out the following important limitations:
1) the published high hit ratios were reported mostly on non-scientific benchmark pro
grams. The effectiveness of a cache for scientific applications where large arrays (vectors)
of data are accessed in the computation is less than satisfactory [6]. 2) When a cache miss
occurs, the instruction pipeline usually stalls or freezes, causing considerable performance
degradation [12]. This degradation will become more severe as the mismatch in proces
sor speed and memory access times continues to grow, as witnessed in new generations of
processors. 3) The fact that a conventional cache is transparent to the programmers (com
pilers) makes performance improvements by optimizing compilers difficult. 4) Lastly, the
conventional cache memory is not designed to accomodate multi-threaded architectures.
Frequent switchings between instruction threads have a negative impact on the locality
of reference. Moreover, multiple active contexts contend for limited cache space, thus
further eroding the benefits of the cache because of unwanted cache line replacements.
Some notable examples of multi-threaded architectures have rejected the use of caches,
such as in the Horizon[17].

The target architecture studied in this paper is the Super-Actor Machine (SAM) -
a multi-threaded architecture based on an hybrid dataflow and von Neumann evaluation
model. A number of instructions can be issued simultaneously in the SAM so that effec
tive overlapping of floating point ALU operations with other operations can result in a

www.manaraa.com

36

higher floating point performance. This processing model demands low latency and high
throughput from its memory subsystem. In this paper, we propose a novel organizatiqn
of high-speed memories, known as the register-cache. As the term suggests, it is orga
nized both as a register file and a cache. Viewed from the execution unit, its contents are
addressable similar to ordinary CPU registers using relatively short addresses. From the
main memory perspective, it is content addressable, i.e., its contents are tagged just as in
conventional caches. The register allocation for the register-cache is adaptively performed
at runtime, resulting in a dynamically allocated register file.

In our execution model, a program is compiled into a number of instruction threads
called super-actors. A super-actor becomes. ready for execution only when: 1} the data
dependence is satisfied, i.e., all its input data are generated and its result data from the
previous activation, if any, have been used; and 2} space locality is satisfied, i.e., its input
data are physically residing in the register-cache and space is reserved there to store its
result. The first condition is similar to the so-called firing rule in a traditional dataflow
machine, however each scheduling quantum in the SAM is an instruction thread instead
of one instruction. The second condition, a more radical feature unique to the SAM
architecture, ensures that an enabled super-actor can be scheduled for execution only
when all memory accesses of its instructions are guaranteed to be in the high-speed buffer
memory. Therefore, the execution unit will never freeze when accessing instructions or
data. This eliminates one main source of pipeline performance degradation.

To study the multi-threaded capability of the SAM, and indirectly, the effectiveness of
the register-cache, detailed simulations were performed. The simulation results are very
encouraging: with software pipelined loops, a register-cache of moderate size can keep
many threads in concurrent execution and effectively hides the local memory latencies
and the latencies associated with fine-grain synchronization support.

In the next section, the Super-Actor Machine's abstract model will be described.
Section 3 will provide an overview of the Super-Actor Machine and section 4 will describe
the architecture of the register-cache along with the 'check-in process' - the process of
ensuring that the required data are present in the register-cache. Section 5 will examine
the effects of the register-cache on multi-threaded computing in the Super-Actor Machine
via simulation results and analysis, and discussions of related work will ensue. Finally,
conclusions are drawn in section 6.

2 The Abstract Model of the Super-Actor Machine

In a dataflow graph, each individual instruction ('actor'} is the basic unit of work and
scheduling quantum for the underlying machine, and fine-grain synchronization is per
formed to schedule each instruction. However, some actors can be logically grouped
into threads so that the cost of synchronization can be reduced by performing the syn
chronizations only among the threads, while actors within a group can be scheduled via
the conventional technique of sequencing with a program counter- ala von Neumann.
Grouping instructions into threads and sequentially executing the instructions within the
threads while performing dataflow-like fine-grain synchronizations at the thread level is
referred to as the hybrid dataflow/von Neumann model of computation. It belongs to a

www.manaraa.com

super-actor =

state : (donnant, enabled, ready, active);
blocks of operands : list of pointers;
blocks of results : list of pointers;
temporary registers : registers;
instructions : list of instructions;
enable count, reset count, initial count : integer;
signal list : list of actor ids.

instruction ~

operator: (+,-, *,etc.);

37

operand 1, 2: offsets from block ptr.l register name;
result : offset from block ptr.l register name.

(a)

initial

(b)

Figure 1: Definition and States of a super-actor.

subclass of the so-called multi-threaded architectures [11].
In our work, we call aggregates of one or more actors, super-actors. From this point

onward, individual actors in the pure dataflow terminology will be referred to as instruc
tions and a thread of one or more of these instructions will be called super-actors, or
actors for short. The attributes of a super-actor are illustrated in 1 (a), and the opera
tional semantics of a super-actor are defined by the state transition diagram in figure 1
(b).

A super-actor has 4 states, and typically, it goes through the following state transitions:
1) A super-actor is in its dormant state when it is waiting on its neigbouring actors to
signal to it that it can be enabled. 2) For an enabled super-actor to make a transition
into the ready state, the following must be prepared: all of the memory blocks containing
its input values must be in fast memory and a block of fast memory must be reserved
for its result values. 3) A ready super-actor enters the active state when it is assigned
an available physical domain (context) for it to be executed. 4) Instructions in an active
super-actor can be scheduled for execution (to be explained later). After execution, an
active super-actor will signal its completion to all of the actors requiring notification that
it has been executed, and re-enter the dormant state.

One important feature of the architecture model is the atomicity of the super-actor
activation. Once a super-actor becomes active, it will be executed atomically until its
completion without the possibility of suspension, i.e., all instructions in the super-actor
perform operations entirely local to the execution unit, causing no external transactions.
Furthermore, it requires no synchronizations with other super-actors during its execution.

Since super-actors are processed atomically, scheduling them based on the data-driven
principle will ensure that the data dependencies among the super-actors are satisfied,
thus the determinancy of the dataflow computation model is retained, where a node in
the super-actor machine model is an instruction thread. A more radical feature unique to
the model requires that an enabled super-actor be scheduled for execution only when all

www.manaraa.com

38

memory accesses of its instructions are guaranteed to be in the high-speed buffer memory.
Thus, not only do super-actors decrease the synchronization cost, but they also offer the
opportunity to exploit the locality of reference so as to minimize the latencies in memory
accesses in the execution system.

Two types of super-actors have been investigated in this paper. In a sequential super
actor, the data dependencies between the instructions requires that they be sequentially
executed. A sequential super-actor may contain conditional branch instructions which
jump to another instruction within the same super-actor. We call these instructions, short
branches. Conditional instructions which fork multiple super-actors or alter the stream of
evaluation of super-actors are restricted to being tail-instructions since the scheduling of
super-actors are performed in a separate unit from the execution unit. The second type of
super-actor is called a parallel super-actor, a special case of sequential super-actors where
the instructions are data independent, i.e., instructions within a parallel super-actor does
not depend on any results produced by any other instruction within the super-actor.
Instructions in parallel super-actors can be executed every pipe beat.

Instructions with long and unpredictable latencies are excluded from ordinary super
actors. These instructions include non local memory access operations, explicit 'send'
and 'receive' instructions which perform inter-PE communications, etc. A long-latency
instruction is grouped by itself and the actor containing it is called a long-latency actor
('L-actor' for short). L-actors will be handled by a dedicated unit.

Furthermore, instructions which modify the memory addresses of the lines a super
actor operates on (its operand or result lines) should be grouped separately into aggregates
called support-actors. (Instructions which modify memory addresses are used to realize
address computations in the underlying machine.) The separation of these instructions
from super-actors will be explained when we discuss the architecture of the machine.

3 The Super-Actor Machine

The Super-Actor Machine is to be a multi-processor system consisting of multiple process
ing elements linked together by some interconnection network. Memories are distributed
to each processor in the machine, and the aggregation of these memories present a global
address space which is shared among all processors. In this paper, we will concentrate our
discussions on one processing element. Due to space limitations, only a brief overview of
the Super-Actor Machine will appear below, nonetheless we hope it provides enough back
ground information for understanding the organization of the register-cache (R-cache).

A processing element of the Super-Actor Machine has 5 basic components: the Super
actor Execution Unit (SEU), the Actor Preparation Unit (APU) which has an adjoining
support-actor execution pipe, the Actor Scheduling Unit (ASU), the L-actor Execution
Unit (LEU), and the local main memory (cf. fig. 2).

The structure of the execution unit is shown in figure 3. In this section we discuss
the smooth execution pipeline and the collection of physical contexts realized by multiple
sets of registers. The organization of the register-caches (i-R-cache and d-R-cache) is left
for a later secti"on.

The architecture of the smooth execution pipeline is like any standard instruction

www.manaraa.com

main
memory

39

SEU
~

I I LEU
:

suppon:

1-e- actor : APU
exec.
pipe ' ' '

'--- ASU

SEU = Super-actor Execution Unit
LEU - Long-latency actor Execution Unit
APU = Actor Preparation Unit
ASU = Actor Scheduling Unit

-

I It'

Figure 2: A Processing Element of the Super-Actor Machine.

from -----t contexts
APU

main
memo=-~-----------L------------~

Figure 3: The Super-Actor Execution Unit.

l.'llier
PEs

www.manaraa.com

40

processing pipeline except that the ALU stage is made up of sub-pipes which can handle
integer and floating point operations. The other stages are the standard ones like the
instruction fetch, operand fetch, etc. The aim of the smooth pipeline is to initiate an
independent instruction at a sustained rate of one instruction per cycle, thus the pipeline
has the following features: (1) it is clean or free of structural hazards, and (2) all stages
in the pipeline have a uniform and fixed processing time for all types of instructions.

A physical context, realized by a set of registers, will be assigned to each super-actor
when it becomes active, and will be returned to the pool of free physical contexts when
it leaves the execution unit. The purposes of the set of registers are to store information
of a super-actor and to be temporary scratch-pad registers for an active sequential super
actor. Values in the registers are not retained after the activation of the super-actor and
cannot be used by other super-actors.

All contexts share an instruction issuer. The issuer chooses a ready context, incre
ments its counter value and sends the instruction into the execution pipe. An activation
id is associated with each context and is sent along with each instruction when it enters
the execution pipe so that the proper set of registers are used. The issuer is also respon
sible for sending a 'decrement-reserve-counter' signal to the R-eaches when a super-actor
exits the SEU (The purpose of this will be explained later). If a context is assigned to
a parallel super-actor, it can be ready every machine cycle. Otherwise, the instructions
in the super-actor must be executed sequentially and the context must wait for a signal
from the execution pipe before it can progress.

Attached to the APU is a simple RISC pipeline which is responsible for processing
instructions within a support-actor. The only instructions which the pipeline can process
are loads and stores, and integer add and multiply since the sole purpose of support-actors
are to perform address calculations, e.g., array indexing, etc. The reason for processing
address calculations in the APU is that the R-cache loader must access those calculated
addresses, thus the attached RISC pipeline. The LEU is responsible for fetching the
instruction and necessary operands from main memory, and processing the long-latency
instructions.

Upon completion of an active super-actor, the SEU sends a done signal to the ASU
indicating that that super-actor has been executed. The ASU, in turn, processes the
signals and decrements the associated enable count of actors. When an actor is enabled
(its enable count is zero), its enable count is reset and the enabled actor along with its
attributes is sent to the APU. There the enabled actors are enqueued for entry to either
the SEU, the LEU, or the support-actor execution pipe. The structure of the ASU and
the handling of the signals is similar to the instruction scheduling unit as described in [9].

4 The Register-Cache Architecture
The R-eaches are organized both as a register file and a cache. Viewed from the execution
unit (SEU), its contents are directly accessible using relatively short addresses; a process
similar to the addressing of general registers in conventional CPUs. Moreover, from
the APU's perspective, it is content addressable, i.e., its contents are tagged just as in
conventional caches (cf. fig. 4). To make effective use of all R-cache lines, the APU will

www.manaraa.com

41

execution pipe

instruction issuer

tags

APU·~--'--~

main memory~-------'

Figure 4: A register-cache.

see a fully-associative cache.
The R-cache retains the transparency feature of conventional caches in the sense that

it is not visible to the programmers or compilers; thus, no register allocation by the
compiler is required for the R-cache. The allocation of an R-cache line for a block of
memory is done entirely at runtime and is performed using cache update and replacement
algorithms. Once this is done, the R-cache locations within a line can be accessed by the
SEU directly using short addresses, just as if they were general registers (cf. fig. 5). This
binding process is called registering.

4.1 The Check-In Process for the R-Caches

The APU consists, among others, a queue for enabled parallel and sequential super-actors
(PSA/SSA) and a queue for ready super-actors (cf. fig. 6).

The APU also contains an R-cache loader which is responsible for checking-in enabled
super-actors, i.e., ensuring that all the necessary data for the operation of the super-actor
(SA) is in the R-cache and that space is reserved in R-cache for its results. The checking
in algorithm is shown in figure 7. An analogy of this check-in process can be found at the
ticket counter in an airport. Before boarding the airplane (execution unit), the tour group
(super-actor) must first receive their boarding passes indicating that a block of seats are
reserved (set of cache lines L it requires is in place). The assignment of seats within
the block (relative locations of operands and results) to each member (instruction) of the
tour group can be done statically by the tour group manager (at compile-time). However,
the final row numbers are assigned dynamically prior to the departure (the processing of
the super-actor) during the check-in time. The key (and a divergence from the analogy)
is that the SAM architecture can overlap the check-in process of super-actors with the
execution of other ready super-actors.

www.manaraa.com

42

main memory

1----1-------------
-- --

5'""'11-------+--------- --

line registers/
tags nd.. cache lines ·.

(
toAPU

·. .
22

5604 L21 1 I 1
20

SEU uses 21 concatenated with offset to access
memory loacations 5604 -> 5607
where 0 <• offset <• 3

Figure 5: The registering process.

toSEU

~---o._ reg-caches

Figure 6: The APU

www.manaraa.com

algorithm check-in
do forever

43

if PSA/SSA ready queue has an empty space then
take next available SA from PSA/SSA enabled queue,
fetch and/or calculate addr. ptrs. to operand and result line(s), if needed,
send addr. pti's. to d-R-cache and receive R-cache line nos.,
send head-instruction addr. to i-R-cache and receive R-cache line no.,
package R-cache line nos. with SA packet and put it in PSA/SSA

ready queue,
endif

end do.

Figure 7: The check-in algorithm.

Now let us elaborate on the algorithm. The addresses for the operand and result lines
will need to be calculated if they are offset values from the base address. If they are
pointer values, then the memory location must be calculated (ptr + baseaddress) and
the address fetched from the data cache which is shared with the support-actor execution
pipe. Otherwise, the values are absolute addresses and are sent to the d-R-cache without
modification. Once the addresses are sent to the d-R-cache, the R-cache will return a line
number for each address sent. When the loader has received all the line numbers from
the two R-eaches, it will send the super-actor, consisting of its id, base address, length,
instruction and data R-cache line numbers, to the ready PSA/SSA queue. There, it will
wait till a context is free in the SEU.

The algorithm describing the operation of the data R-cache is shown in figure 8. The
registering process begins when a memory address is sent to the R-cache from the APU.
Read-in requests are issued for operand lines and reserve requests are issued for result
lines. After the registering process, we say that the instruction is checked-in. If the R
cache is full, the Least-Recently-Used (LRU) cache replacement policy is used on lines
which are no longer needed (i.e., lines with reserved counters equal to zero) to find a
replacement line. The LRU algorithm uses the "age counters" to decide which line to
replace. Note that the age counters are only updated by requests from the APU, not by
accesses from the SEU.

A decrement-reserved-counter signal along with the line numbers are sent from the
instruction issuer in the SEU when a super-actor exits the SEU. Forced write-backs are
used to handle super-actors passing their results to long-latency actors, because the LEU
does not access the R-cache. Mandatory read-ins are necessary in the d-R-cache because
operand lines of a super-actor which was written by a long-latency actor must be brought
in since the the LEU can only write into main memory.

Thei-R-cache check-in algorithm is similar except simpler due to the fact that it is
read only.

www.manaraa.com

44

algorithm d-R-cache
in parallel do forever

if read or write request from SEU then service it,
if decrement-reserved-counter signal from SEU then service it,
ifforced write-back from SEU then

write corresponding line to memory and send acknowledgement back
to SEU,

I* the registering process *I
if mandatory read-in request from SPU then

use LRU replacement policy on not needed lines if there is no free line
and write back dirty line if necessary,

read in from memory, update reserved counter, and send assigned line no. to SPU,
update age counter of not needed lines,

else if read-in request from SPU then
check, in parallel, tags for requested line,
ifthere then update reserved counter and send line no. to SPU
else do as in mandatory read in,

else if reserve request from SPU then
check, in parallel, tags for requested line,
if there then update reserved counter and send line no. to SPU
else use LRU replacement policy on not needed lines if there is no free line and

write back dirty line if necessary,
send assigned line no. to SPU,

update age counter of not needed lines,
endif

enddo.

Figure 8: The algorithm for the data register cache.

www.manaraa.com

45

4.2 The Size of the Register-Cache

For the tandem of the APU and R-cache (i-R-cache or d-R-cache) to function correctly,
i.e., the SEU is guaranteed that its operations will always find their value in the register
cache, there is a minimum number of required R-cache lines. The minimum number of
lines is (J + K) X L for (J + K) active super-actors. J is the number of slots in the
PSA/SSA ready queue, K is the maximum number of allowable super-actors in the SEU,
and L is the maximum number of register-cache lines allocated to a super-actor. The use
of the 'reserved counters' in the R-cache guarantees that the reserved or read-in register
cache lines of the (1 + K) active super-actors will not be replaced until the super-actor
that requested it exits the SEU.

4.3 A Bypass Path to Avoid Unnecessary R-Cache Probing

The bypass path called a fast-path is used to avoid unneccessary probing of the R-eaches.
For super-actors in loop constructs which are enabled every time the loop iterates, the
lines they use might still be in the register-caches when they are enabled. These super
actors can be tagged by the compiler as possible fast-path candidates so that when they are
enabled, a small cache (called an actor-cache) containing the recently fired super-actors
can be checked for its presence. To ensure that the super-actors present in the actor-cache
would still have their lines in the R-eaches, the cache should only have J + K entries. If
an enabled super-actor has its entry in the actor-cache, then the cache line numbers which
it used previously are retrieved, the lines reserved, and the super-actor enters its ready
state immediately. But if that instance of a super-actor is not present in the actor-cache,
it will be sent back to the regular path where its other attributes can be fetched and the
R-eaches probed.

5 Performance Effects of the Register-Cache

To investigate the effects of the register-cache on multi-thread computing, a detailed
simulator was written in Common Lisp with Flavors. The architectural simulator models
the Super-Actor Machine down to the machine cycle level, i.e., for each object modelling a
particular task, a processing time of z machine cycles was assigned for which the authors
believe is attainable with today's device technology.

5.1 The Simulated Architecture

In the simulations, some of the following design parameters were arrived at arbitrarily
while others were based on rough calculations of the requirements for efficient processing.

The local main memory is made up of 16 banks with access times of 6 machine cycles
and a memory controller regulating access to them. Addresses are interleaved amongst
the banks and each bank can service a request independently from the others. FIFO
queues are used to smooth out the throughput rates between the ASU, APU, SEU and
LEU.

www.manaraa.com

46

The signal processor and the enable controller of the ASU are pipelined functional
blocks with a pipe beat of 1 machine cyle. A 1K word 4-way set-associative cache with a
line size of 8 words is used to buffer requests for signal lists from the signal processor to
the main memory. The enable controller goes through a 512 word 4-way set-associative
cache with a line size of 4 words. (Note that an enable count is only 4 bits, so 1 word
contains the enable counts of 8 actors.)

There are 16 available physical contexts in the SEU, so there are 16 sets of registers
where each set contains 8 32-bit registers. We chose the value 16 because the execution
pipe has 10 stages through its longest path, and if the contexts contained only sequential
super-actors, then we would require a minimum of 10 active super-actors to keep the pipe
fully busy. The execution pipeline has a pipe beat of 1 machine cyle and the instruction
issuer is also pipelined with a cycle time of 1 machine cycle. The floating point add,
multiply and approximate reciprocal pipes are six stages long with a pipe beat of 1 cycle,
and the integer pipe is one stage long. Fetch and stores from the register set or register
cache each take 1 cycle. The i-R-cache is 1K words with 16 words per line. This implies
that a super-actor can only contain a maximum of 16 instructions. It has been found that
the average grouping of dataflow actors are of size 4 [3], so 16 should be plenty1 • The
d-R-cache is also 1K words with 4 words per line and the path to main memory is 4 words
wide. Each super-actor is allowed a maximum of 4 lines.

The fetching of actor attributes in the APU goes through a 1K word 4-way set
associatve cache with· a line size of 8 words. The R-cache loader can load a R-cache
line in a maximum of 8 cycles (one to form the address, 6 for the access and one to load).
Requests to the i-R-cache and d-R-cache are performed in parallel. The actor-cache in
the fast-path has space for 63 entries.

The support-actor execution pipe is a basic RISC pipe with a pipe beat of 1 cycle.
The i-cache and d-cache are both 1K words 4-way set-associative with a line size of 4
words. The LEU was not modelled since the preliminary experiments were only used to
investigate the impact of the register-caches in a PE of the Super-Actor Machine.

5.2 The Test Programs

Work is currently under way in producing an assembler for SAMAL (Super-Actor Machine
Assembly Language) and in generating SAMAL code from the program graph form of the
ld compiler[18]. For this study, we have hand-coded three small benchmark programs.

The three benchmark programs are: SAXPY, SAXPBYPC, and Lawrence Livermore
Loop 1. SAXPBYPC is the same FOR-loop construct as SAXPY except the expression
is a* X[i] + b * Y[i] + c instead of a* X[i] + Y[i]. For all three benchmarks, the loops
were unrolled four times so that parallel super-actors can be formed by aggregating four
identical operators in the loop2 • The index sequencing is handled by a sequential super
actor which can either trigger super-actors in the loop body or exit when it is finished. The

1This does not mean that the rest of the cache line goes to waste. In fact, other super-actors can
share the same i-cache-line, the only requirement being that an assembler or compiler must handle the
arrangement of instructions into contiguous blocks which are aligned on 16-word boundaries.

20ther techn.iques for grouping instructions into super-actors are possible, but they are not investigated
in this paper.

www.manaraa.com

47

1 Loop 4 Loops
Benchmark execution SEU execution SEU

time (cycles) utilization time (cycles) utilization Speedup
SAXPY 30799 13% 8621 46% 3.6
SAXPBYPC 33527 19% 10797 59% 3.1
Loop1 32151 23% 13442 56% 2.4

Table 1: Results for SAXPY, SAXPBYPC and Loopl.

arrays which the loops process are stored locally in main memory and support-actors are
used to perform address calculations for the super-actors in the loop body. The indexing
super-actor has 6 instructions while the parallel super-actors in the loop body have 4
instructions each. The support-actors have an average of 7 instructions each.

Dataflow software pipelining[8] was utilized to increase the amount of exposed paral
lelism in the programs. With dataflow software pipelining, a code body for SAXPBYPC
was reconstructed with 4 stages, thus handling 2 simultaneous iterations and exposing
more parallelism, while a code body for Loop1 was reconstructed with 5 stages. However,
SAXPY could not really benefit from software pipelining due to its small loop body -
only 2 stages were produced when it was software pipelined.

5.3 Simulation Results
Two versions of each program were written: one which only had one loop that iterated
from element 1 to 1200, and the other version with 4 simultaneous loops, i.e., each loop
was invoked in parallel where a loop iterated through 300 elements. The results are shown
in table 1. The reader should note that several operations can be issued each cycle besides
an AL U operation in the SEU, and the utilization rate shown in table 1 does not reflect
the processing of those other operations. The speedup factor was calculated by dividing
the execution time for the 1-loop version by that of the 4-loop version. From the table,
one can conclude that more parallelism results in a higher utilization of the SEU and the
more parallelism the compiler exposes in a program, the faster the execution due to the
opportunity of overlapping memory loads to the R-cache with the processing in the SEU.
However, there appears to be a limit as to how much exposed parallelism the current
configuration of the Super-Actor Machine can exploit, as shown by the smaller speedup
for Loop1 as opposed to SAXPY and SAXPBYPC, and by the leveling off of the SEU
utilization.

On closer monitoring of the simulator, we realized that the register-cache loader had
become a bottleneck because of the increased number of ready super-actors which must
wait to enter the loader. To overcome this bottleneck for memory-intensive programs,
the loading phase could be sped up by pipelining the R-cache loads or a load request can
bring in a larger memory block. We decided to investigate the latter since it is less costly
in terms of hardware. In the following experiment, the d-R-cache line is increased to 8

www.manaraa.com

48

8-word 16-word
eXecution SEU execution SEU

loop(s) time (cycles) util. Speedup time (cycles) util. Speedup
1 15759 19% 1.0 8845 30% 1.0
2 7981 38% 2.0 5321 50% 1.7
4 4897 62% 3.2 3690 73% 2.4
8 4005 76% 3.9 3422 80% 2.6

Table 2: SAXPY for 8-word and 16-word long d-R-cache line .

. ,~--------------------------------~ • llne 3422

Plot cut &hndou

Figure 9: SEU utilization profile for the 8-loop, 16-word wide version of SAXPY.

words and 16 words3 , so the R-cache size increases accordingly. Thei-R-cache organization
remains the same since the real backlog is caused by the loading of array elements into the
d-R-cache. To exploit the larger d-R-cache lines, SAXPY was re-written with an unrolling
factor of 8 and 16 so that a parallel super-actor has 8 and 16 instructions respectively.
Table 2 shows the results of this experiment where the loops iterated from 1 to 1152. The
numbers in the speedup column is relative to the 1-loop case. As one may notice, the
SEU utilization has increased significantly for the 16-word R-cache line case as compared
to the 4-word R-cache case. Indeed, the bandwidth from R-cache to main memory is a
major factor in keeping the SEU usefully busy. In fact, for the 8 simultaneous loop and
16-word R-cache line case, the SEU can be kept at about 90% busy when the start-up
and wind-down phases are discounted (fig. 9).

3 A 16-word cache line is not impossible, the IBM RS6000 has a 128 byte cache line.

www.manaraa.com

49

5.4 Discussions and Related Work

Local memory latencies and the latencies associated with fine-grain synchronization have
always been a challenge to dataflow architectures. The above simulation results show
that with enough exposed instruction-level parallelism, these two sources of latencies can
be effectively hidden via the actor-preparation unit and R-cache mechanism of the SAM.
However, further research remains in addressing the efficiency issues and the multitude of
tradeoffs present in the Super-Actor Machine.

In the SAM, a number of supporting operations can be issued at each cycle while the
SEU is issuing an ALU operation. These operations may include: (1) an integer operation
(+/-)in the APU for address calculation, (2) a memory load/store operation (integer or
floating-point), (3) a 'fork' or 'join' operation in the ASU\ and (4) some long-latency
operation in the LEU. Moreover, the execution pipes in the SEU are fully pipelined. In
this manner, one processing element of the SAM can be considered a superscalar, super
pipelined machine as defined in [14]. However, it really belongs in a superset of this class
due to its support for partial order execution and the issuing of multiple instructions from
multiple streams. (A superscalar machine issues multiple instructions around one pro
gram counter, i.e. from a single stream.) To roughly guage the efficiency of the SAM in
hiding local memory latencies and fine-grain synchronization costs, we examined the per
formance of SAXPY on the IBM RS6000/530- a superscalar, somewhat superpipelined
machine. The sustained performance is about 1 floating-point operation per clock cycle[5]
when the combined floating-point multiply add instruction is used. In the SAM, a 0.76
floating-point operation per cycle can be obtained on SAXPY (the 8-loop, 16-word ver
sion). Note that the floating-point pipe on the SAM is 6 stages deep whereas the RS6000
only has a 3-stage floating pipe. This crude comparison has given us great hope in that
a fine-grain multi-threaded architecture can indeed hide the overhead associated with
fine-grain synchronization.

Some multi-threaded architecture researchers are also investigating high-speed mem
ory between main memory and the execution unit. In particular, Nikhil and Arvind
(P-RISe)[15], Agarwal et al (APRIL)[1], and Iannucci (EMPIRE)[13]. In P-RISe as in
EMPIRE, the key to exploiting temporal and spatial locality is to continuously process all
the threads within an active frame (the frame contains threads of a code block) until there
are no more. A set of active frames would be kept in a high speed memory to minimize the
local memory latency. EMPIRE is more unique in that a frame must be in fast memory
before any of its threads are picked for execution. These architectures have addressed
the local memory latencies, however, their fine-grain synchronization support mechanism
is within the execution unit, thus those associated costs cannot be totally hidden. In
APRIL, a regular cache is put between main memory and a RISe processor. For its cache
to be effective, a small amount of active threads can only be supported, otherwise cache
interference can have deleterious effects. Since only a limited number of active threads are
loaded into fast memory at any given time, the ominous possibility of constantly loading
and unloading active threads exists. Furthermore, the fine-grain synchronization support
is also embedded within the execution unit. With all RISe implementations, the question

4We note that the ASU performs fork/join operations implicitly through signal processing functions,
while some other multi-threaded architectures may execute explicit machine instructions (16].

www.manaraa.com

50

of floating-point performance remains.
Thus far, we have only mentioned architectures with non-superscalar processing ele

ments. Burton Smith's Tera computer[2], however, is a multi-threaded superscalar archi
tecture. Again, his architecture does not rely on cache memory, instead he utilizes a huge
register set file. It will be very interesting to quantitatively compare the SAM with the
above mentioned architectures.

6 Conclusion

The SAM architecture has put a strong demand on its memory organization in terms
of low latency and high throughput. requirements. In this paper, we have presented the
organization of the register-cache as a high-speed buffer memory to meet such a demand.
It ensures a low and fixed latency to support the highly pipelined instruction processing
capability in the execution unit. Architectural support for overlapping the super-actor
execution and main memory operations are introduced to provide high memory band
width. An adaptive "check-in" process which dynamically registers and binds the keys to
access register-cache lines helps to avoid some of the difficulties of register allocation at
compile-time, in particular, for subscript variables oflarge arrays containing floating-point
numbers. The preliminary simulation results have provided evidence of the effectiveness
of the register-cache in hiding local memory latencies and the latencies associated with
supporting fine-grain synchronization.

7 Acknowledgment

We would like to thank the Nat ural Sciences and Engineering Research Council for their
support. We are very grateful to the members of the ACAPS group for their interesting
discussions on this subject, in particular, Erik Altman, Russ Olsen, Philip Wong, and
Kevin Theobald. Finally, we would like to thank Dr. J.B. Dennis for his comments on an
earlier draft of this paper.

References

[1] A. Agarwal, B. H. Lim, D. Kranz, and J. Kubiatowicz. APRIL: A processor archi
tecture for multiprocessing. In Proceedings of the 17th International Symposium on
Computer Architecture, pages 104-114, 1990.

[2] R. Alverson et al. The Tera computer system. In Proc. of the 1990 Int'l. Conf. on
Supercomputing, 1990.

[3] Arvind. Personal communication, 1990.

[4] Arvind and R. A. Iannucci. Two fundamental issues in multiprocessing. Computation
Structures Group Memo 226, Laboratory for Computer Science, MIT, 1987.

www.manaraa.com

51

[5] R. Bell. IBM RISC system/6000 preformance tuning for numerically intensive FOR
TRAN and C programs. Technical Report GG24-3611, IBM Int'l. Technical Support
Center, Aug. 1990.

[6] D. Callahan and A. Porterfield. Data cache performance of supercomputer applica
tions. In Proc. of the Supercomputing '90 Conference, pages 564-572, New York,
New York, 1990.

[7] David Callahan, Steve Carr, and Ken Kennedy. Improving register allocation for
subscripted variables. Proceedings of the SIGPLAN '90 Conference on Programming
Language Design and Implementation, June 1990. White Plains, NY.

[8] G. R. Gao, H. H. J. Hum, and Y. B. Wong. Towards efficient fine-grain software
pipelining. In Proceedings of the A CM International Conference on Supercomputing,
Amsterdam, Netherlands, June 1990.

[9] G. R. Gao, R. Tio, and H. J. Hum. Design of an efficient dataflow architecture
without dataflow. In Proceedings of the International Conference on Fifth-Generation
Computers, pages 861-868, Tokyo, Japan, December 1988.

(10] P.P. Gelsinger et al. Microprocessors circa 2000. IEEE Spectrum, pages 43-47, Oct.
1989.

[11] R .. H. Halstead Jr and T. Fujita. MASA: A multithreaded processor architecture
for parallel symbolic computing. In Proceedings of the 15th Annual International
Symposium on Computer Architecture, pages 443-451, 1988.

[12] J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative Approach.
Morgain Kaufman Publishers Inc., San Mateo, CA, 1990.

[13] R. A. Iannucci. Toward a dataflow/von Neumann hybrid architecture. In Proceedings
of the 15th Annual International Symposium on Computer Architecture, pages 131-
140, 1988.

[14] N.P. Jouppi and D.W. Wall. Available instruction-level parallelism for superscalar
and superpipelined machines. In Third Int 'l. Conf. on Arch. Support for Prog. Lang.
and Operating Sys., pages 272-282, 1988.

[15] R. Nikhil and Arvind. Can dataflow subsume von Neumann computing? In Proceed
ings of the 16th International Symposium on Computer Architecture, pages 262-272,
Israel, 1989.

[16] R: S. Nikhil and Arvind. Id: A language with implicit parallelism. Computation
Structures Group Memo 305, Laboratory for Computer Science, MIT, 1990.

[17] M.R. Thistle and B.J. Smith. A processor architecture for Horizon. In Proc. of the
Supercomputing Conference '88, Florida, 1988.

[18] K. R. Traub. Sequential implementation oflenient programming languages. Technical
Report MIT /LCS /TR-417, Laboratory for Computer Science, MIT, 1988.

www.manaraa.com

Evaluation of Futurebus hierarchical caching

K.G. Langendoen H.L. Muller
L.O. Hertzberger

University of Amsterdam,

Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

koenQfwi.uva.nl

Abstract

This paper presents a simulation model for hierarchically structured multipro
cessors based on the Futurebus+. The model simulates the behaviour of the buses
and caches at the level of individual memory references. These memory references
are generated by a set of "stochastical processes" which are based on measured
statistics of actual programs. The model is validated with published trace driven
simulations of single and two level cache systems.

We have used the model in some experiments to study the performance effects
of cache parameters in various multilevel cache hierarchies. We conclude that a
two level hierarchy of caches is attractive for those applications that cause a lot of
bus traffic. The parallel application of our benchmark, which heavily uses shared
data, showed a performance increase of 44% when a flat bus was replaced by a
two-level hierarchy. Finally we observed that 99% of the total of bus transactions
in all simulations used only 5% of the Futurebus+ cache-coherency protocol. We
conclude that many of the optimizations in the protocol only increase complexity
without a clear performance benefit.

1 Introduction
The current generation of bus based shared-memory multiprocessors is equipped with
caches for two reasons. First the performance of modern processors critically depends on
the usage of caches, and secondly caches reduce bus traffic and therefore bus contention
in a multiprocessor system. The caches run a cache-coherency protocol to keep the data
values consistent. Many of these protocols require the caches to snoop (monitor) all traffic
on the memory bus and take appropriate action when they have the requested data, they
depend on the broadcast capability of the memory bus. Since this severely limits the
number of processors in a machine coherency protocols have been designed to operate
in systems. with a hierarchy of buses. Caches located between two levels snoop traffic at
both sides and pass requests and responses on to the other level when necessary.

The Futurebus+1 [Futurebus89] is an industry standard bus definition for scalable

1Note, in the sequel we omit the'+' for readability.

www.manaraa.com

53

shared memory multiprocessors. It is the definition of a high performance multiprocessor
system bus and includes a hierarchical cache coherency protocol. Because the Futurebus
is targeted as a general industry standard for several generations of computer systems, it
is defined in architecture, processor, and technology independent terms. For example the
cache protocol is described in terms of lines and sets. As a consequence the Futurebus
specification has many degrees of freedom (transfer rate, cache size, etc) which have to be
fixed for an actual implementation. In general it is quite difficult to find the "optimal" set
of parameter values because many of the relations between the parameters are unclear.
Since experimenting with real hardware is expensive we need a performance model to
evaluate various design alternatives.

Despite the great interest in caches, hence the volume of literature, we were not able
to find a suitable multiprocessor model which includes both hierarchical and snooping
caches. Many different snooping protocols for single bus systems have been described and
compared, see for example [Archibald86] and [Eggers89]. Hierarchical cache memories
have been studied in the context offast single processor system; [Bugge90] is an interesting
example because it uses the Future bus. Some analytical models of hierarchical snooping
cache systems do exist, but either these models are too restrictive or the parameters are
too high level. For example, in [Vernon89] one has to specify the probability that a cache
miss at some level can be satisfied by a neighboring cache at the same level. We do not
want to specify such a parameter, but rather derive it from results obtained with the
model.

The simulation model presented in this paper is based on the Futurebus specification
and can model a wide range of hierarchically structured multiprocessors. The model is
heavily parameterized so it can be used as an experimentation tool to gain insight in the
behaviour and capacities of the Futurebus protocol. To capture the effects of some low
level parameters the simulator operates at the level of individual bus cycles and records
the complete status information of cached data. Although this requires large amounts
of memory and computation the model is still capable of simulating an eight 20 MIPS
processor system; a simulation run representing 50 millisecond takes 1 hour on a SUN-4.

The remainder of the paper starts with a detailed description of the simulation model
in section 2. Next, some experiments to validate the model with published measurements
are described in section 3. In section 4, we discuss some experiments. We determine
the optimal line sizes of caches in a simple hierarchical system, and study the effects of
various degrees of associativity. Then we fix the line size and associativity, and determine
the performance effects of different multiprocessor topologies. The bus hierarchy varies
from a flat bus up to a three level bus system. The conclusions about these experiments
are summarized in section 5.

2 Model

The multiprocessor model covers the complete trajectory from application down to bus
cycles and consists of two parts as depicted in figure 1. The upper layer models appli
cations running on multiple processors and generates a sequence of memory read/write
requests (an address trace), which is serviced by the lower layer. This memory layer
models a hierarchy of caches and Futurebuses.

We have imposed some restrictions on the application-memory interface to keep the

www.manaraa.com

54

Figure 1: Simulation layering.

simulation model feasible:

• Only the addresses of memory locations are considered, ncit their values. This ex
cludes the interpretation of the applications at assembly level, but the amount of
memory required to store the contents of all simulated memory and caches of a
multiprocessor would simply exceed the capacity of our computer systems. Besides,
interpretation of assembly code is also unfeasible in this case because of computa
tional demands.

• The interface is limited to simple read/write requests, no I/0 instructions or read
modify-write cycles are considered.

• We do not consider the mapping of virtual to physical addresses. Instead we assume
that processors directly generate·physical addresses and that all applications fit into
main memory: there are no page faults.

These limitations make it feasible to exactly simulate the Futurebus cache coherency
protocol in the memory layer. The simulator only has to record the status information
of each cache line. The applications, on the contrary, do have to be modeled as simple
processes generating memory references and may not depend on the result values. This
is elaborated in the following sections.

2.1 Application layer

The application layer is responsible for generating memory references to drive the mem
ory layer and models both applications and processors. Since the memory layer only
handles memory addresses, the application layer just has to generate an address trace.
Although appealing, the usage of real multiprocessor traces of existing programs has a
few drawbacks. First the traces will be huge because of the number of processors and
the amount of references needed to avoid the long-term cold start effects of second level
caches. The measurement and handling of such large traces is a research topic in its own
right. Secondly a multiprocessor address trace lacks flexibility because it is only valid for
one specific multiprocessor configuration.

To avoid the drawbacks of real multiprocessor traces we use the alternative of stochas
tical simulation. Applications are modeled as simple processes that generate 'random'
addresses. To capture the locality in access patterns of real world programs, a model is
used which distinguishes instruction, stack, and data access, each with their typical local
ity, see section 2.1.1. By tuning a few parameters, like grainsize and data access rate, a

www.manaraa.com

55

diversity of applications can be specified. The major drawback of stochastical simulation
is its inaccuracy. Therefor we have validated the model with the experiments described
in section 3.

Figure 2: Structure of application layer.

The application layer of figure 1 is detailed in figure 2. Each application process
generates an address trace based on measurements of a specific real world application.
The trace is fed to a processor filter, which tailors it to a certain type of processor. This
enables us to model processor speed, instruction density, register banks (by masking off
some of the stack accesses), memory pipelines, etcetera. The scheduler maintains a FIFO
queue of ready applications and allocates them to processors on context switches. Note
that during a single simulation run, a program can be scheduled in on a different processor
from where it was scheduled out last time. Like in a real machine, more than one instance
of an application can run at the same time.

2.1.1 Application model

An application is modeled as a simple loop process. Each iteration generates an instruc
tion fetch and possibly some stack and data references. We distinguish three types of
instructions to take care of locality in the instruction stream:

1. Jump instructions. The next instruction is an instruction in the neighborhood ofthis
instruction. The jump target is randomly selected from a normal distribution. Both
the average distance of jumps and the probability of forward jumps are parameters
of the application. It turns out that a normal distribution reasonably matches the
real world jump behaviour.

2. Call/return subroutine instructions. The program control transfers to one of the
subroutine entry points. The selection of an entry point is based on an exponential
distribution to model the typical runtime preference of a program. The subroutines
themselves are uniformly distributed over the text segment.

3. Arithmetic instructions. This category includes all other instructions and the pro-
gram simply continues with the next instruction.

The text segment is shared by all instances of the same application. Besides instruction
fetches, an application generates data references as well. An application contains three
different data segments with their own locality:

www.manaraa.com

56

Stack. The application maintains a stackpointer, accesses to the stack are in the neigh
borhood of this stackpointer. The stackpointer is updated when a. call- or return
subroutine instruction is simulated. The average size of the stack frame, and the
chance of doing a stack access are application specific parameters.

Each application has its own private stack segment.

Private data. When an instruction references this segment the memory address is se
lected from a normal distribution around the previous reference. This simple scheme
is not very realistic and we plan to improve upon it by using a. set of datapointers
analogous to the subroutine entry points in the text segment. That would be a
simplified version of the model described in [Archibald86], who uses an exponential
distribution over a. LRU-chain of data references.

Each application has its own private data. segment.

Shared data. The address selection is the same as for the private data segment, but this
segment is shared with all instances of that application. Different types of shared
applications can be modeled by varying the access rate and load/store ratio of this
segment.

For each of the segments a pair of parameters specifies the access rate and load/store
ratio of the data references. After a sequence of instructions an application process will
do a. context switch to make a system call. The scheduler puts the application at the
end of the ready list, runs a. kernel job for a. short time, and allocates a new application
to the idle processor. The context switch interval is a model parameter and controls the
grainsize of the application.

2.1.2 Processor model

The task of the processor model is to adapt the traces coming from the application to
a specific processor. ruse and eiSe architectures show their own particularities in the
address trace. RISes tend to do more instruction accesses at a higher clock frequency
and have larger code sizes, while eiSes do more data accesses, because of less register
usage. The following parameters are used to transform the universal application trace
into a processor trace:

Speed. The instruction fetches of the application trace are fed to the memory layer at
the MIPS rate of the specific processor. Note that the MIPS rate influences the
stack and data references as well.

Instruction size, Instruction power. A eiSe uses fewer instructions than a ruse to
perform the same application and instructions are coded more dense as well. Hence,
the average jump distance and text size of an application have to be scaled accord
ingly. Therefore the processor model includes two scaling parameters: instruction
po.wer and instruction density. These can not be merged into one parameter because
they scale differently: The density operates on all instructions, whereas the instruc
tion power only affects the arithmetic instructions because the absolute number of
jump instructions doesn't vary between ruses and eiSes.

www.manaraa.com

57

Register usage. The usage of register windows, large register banks, and compiler opti
mizations leads to reduced data traffic. Especially the accesses to the stack segment
are greatly reduced. The processor model accounts for this effect by masking off
some of the stack references from the application trace, they are simply discarded.
The register-usage parameter specifies the percentage of masked references.

Context size. The size of the data that should be saved and restored on context switches.
This is related to the number of registers.

2.2 Memory layer

The memory layer of figure 1 simulates buses, caches, and shared memory at bus cycle
level. To exactly simulate the behaviour of the Futurebus cache coherency protocol, the
simulator maintains the tags and states of all cache lines. The simulator is written in
Pearl [Muller90], an object oriented language for architectural simulation and evaluation.
By modeling the buses, caches, and memory as individual objects it is easy to specify
arbitrary multiprocessor configurations.

Some examples of multiprocessor cache hierarchies are shown in figure 3. The top
level caches are connected to the address generators found in the application layer. In the
remainder of the paper we often name caches by their level number. We start counting
at the processor, which is connected to a :first-level or primary cache. When referring to
other caches in the hierarchy relative to a specific cache, we use downwards to denote
caches closer to memory, and upwards for the ones closer to the processors. Likewise we
refer to buses.

Figure 3: Two example memory hierarchies.

To simplify the simulator all caches in the memory hierarchy have to use the same line
size. Furthermore all data transport in the memory layer occurs as line transfers. The
performance deviation in case of a write back of a single word will be quite small because
of the large setup time compared to the data transmission speed.

2.2.1 Bus model

In general bus specifications define the electrical behaviour of the bus, and the protocol
how to drive the bus wires to perform basic actions like read and write. The Futurebus
specification, however, also includes a cache coherency protocol, and even a complete

www.manaraa.com

58

message protocol. In this article, we ignore the message protocol and the electrical layer.
We concentrate on the transaction layer and the cache coherency protocol. The bus model
implements the transaction layer, it handles bus requests from caches in FIFO order and
broadcasts the transactions to all other devices connected to the bus. The speed of the
bus transactions is specified with two parameters: the setup (arbitration) time and the
transmission speed. The cache coherency protocol is implemented by the cache model.

2.2.2 Cache model

The Futurebus specifies a MOESI-like[Sweazy86] cache coherency protocol for hierarchi
cal caches. Only three states are used in the Futurebus protocol: Exclusive (modified),
Shared (unmodified), and Invalid. The protocol is described with four basic bus transac
tions: read_shared, read..modify, write, and invalidate. These actions are for reading
(shared) data, for reading/writing exclusive data, for writing modified data back and for
invalidating a cache line. In normal operation, when there are no cache coherency con
flicts, reads and writes of a bus are handled by the cache or memory downwards in the
hierarchy. However, when a cache monitors on the downwards bus that a neighbouring
cache wants to access data it owns exclusively then it intervenes in the bus transaction
and passes the data to the requesting cache. An example of the cache protocol is shown
in figure 4: cache A tries to read data that is exclusively owned by B. Cache B intervenes
in the bus transaction and supplies the data, thereby preventing the memory to answer
the read request (with outdated data).

Figure 4: An example of an intervening cache.

In a multi-level hierarchical system, it frequently happens that a cache has to intervene
a bus request, but cannot immediately answer the request because it has to get the data.
from another bus segment. To prevent the first bus from being blocked for a. long time,
the Future bus introduces the concept of a split. The split of a bus transaction causes the
requester of the bus action to suspend itself and release the bus for other transactions. The
splitting cache issues a response transfer as soon as the answer is available. The originator
of the request catches this response, and continues with the original transaction. In the
meantime, both the cache and the bus are free to be used for requests of other cache lines.

Figure 5 shows two example cases of a split transaction. In the first simple case, cache
B issues a split because it does not have the data. requested by A and repeats the read
on the lower bus. In the second case, cache C tries to read a. value. Cache D intervenes
this read because it registered that some cache up in the hierarchy has the actual data.
It splits the read and issues a. read transfer on the upper bus where cache E will respond
because it has the data.. The data is then propagated downwards by cache D which issues
a. response transfer on the bus connected with cache C. Cache C catches the response and
finishes its pending read request by supplying the data. to the upper bus.

www.manaraa.com

59

(1) read (2) split, (5) response

Figure 5: Two examples of splits.

The Futurebus protocol does not specify which cache line to replace when a set is
full, nor what actions to take during the replacement. Things get really hairy when
neighboring caches start referencing either the line selected for replacement, or the line
that caused the replacement. Our cache model randomly selects a line for replacement
and carefully records the status of both lines.

The cache simulator is implemented as a state machine that reacts to bus transfers.
A cache snoops all bus cycles on both buses and has to be capable of handling two
transactions in parallel, so the transition table becomes quite large. In practice, however,
only a small fraction of the table is used; specifying 252 entries out of the 8620 suffices
to run all simulations described in the following sections. The transition-table usage is
discussed further in section 4.4.

2.2.3 Memory model

The task of the memory model is easy: Just listen to the bus and service read/write
requests unless one of the caches on the bus intervenes. The memory is characterized by
its service time. Since we do not store data values, the size of the memory is not relevant.

3 Validation
As noted, the stochastical application model, described in section 2.1.1, introduces inac
curacies. Especially the locality in data and text references is a potentially weak point.
To verify the stochastical application model we made simulation-runs to compare the
model results with experiments described in literature. The published results have been
derived from real world address traces, and cover important aspects of our hierarchical
multiprocessor model:

• [Hennessy90, Hill87): A uniprocessor system with one single level cache. The trace
is derived from a UNIX environment.

• [Bugge90): A uniprocessor system with a two-level cache hierarchy. The trace is
derived from some data manipulation programs running under SINTRAN ill.

Running the same experiments with our simulation model required the specification of
the model parameters of section 2. The articles provide values for many of the memory
layer parameters, but none for the application parameters since these are hidden in the
address traces. The next section discusses the application benchmark we have used as

www.manaraa.com

60

workload in various experiments. The two sections thereafter present the validation re
sults.

3.1 Benchmark

To get realistic application parameters we have taken values from [Hennessy90], which
lists some program specific parameters like instruction usage distribution and percentage
of data references. We did additional measurements of UNIX programs to obtain the
remaining parameters. This included parameters like size of text/data segment, number
of procedures, and size of stackframe. To better quantify the effect of sharing on system
performance, we have defined two job mixes:

UNIX mix: A set of jobs consisting of multiple editors (vi), TeX formatters and C
compilers together with a UNIX kernel. All instances (jobs) of one application
program share one text segment, but have their private stack and data segments.
The UNIX kernel is a small process duplicated on each processor, which shares both
text and data segments.

Fine grained parallel program: A set of identical jobs that generate many read/write
references to a small shared data segment. The grainsize is controlled by setting the
context-switch rate (which is typically much higher than for the UNIX jobs) and by
setting the access rate to the shared data. Since locality and access rate of shared
data is essential to performance, we took parameters (lOKbyte segment, one access
per 10 instructions) which give comparable write~broadcast ratios as reported in
[Eggers89]. In this way, our parameters are in the right order of magnitude, but we
emphasize that real parallel programs may behave quite different.

In the future we would like to include the concept of locking in our simulator, to
model synchronization phases in a fine grain application. At this moment the memory
layer can not support locks because it handles only addresses of memory locations, not
their contents. We foresee to include a special lock manager which keeps the lock value.
A lock operation in an application will first issue a read/write to the memory layer to get
access to the lock, and then get/set the lock by consulting the lock manager.

3.2 Single processor, one-level cache validation.

This experiment is described in [Hennessy90, Hill87]. It is a trace driven simulation of a
.VAX processor with a single cache, running a multi programming workload. The cache
size and associativity are variable. The study of [Hill87] has decomposed the cache miss
rate into three fractions, but we will only use the reported total miss rates. We have run
the same experiments on our simulator with the UNIX-mix benchmark as workload.

The data in figure 6 shows that our simulation model compares well to the measure
ments of [Hill87]. The miss rates for small caches are a bit too high, and the miss rates
for larger caches are a bit too low. For caches with increased associativity the miss rates
show similar results with a slightly higher deviation for large cache sizes.

www.manaraa.com

61

miss rate miss rate
i 20% 0 i 20%

0 0

10% 0 10%
0

0 0

0 0

5% <? 5% 0

0 0

Q
0

2% 2% 0

1% 1%
1 2 4 8 16 32 64128 1 2 4 8 16 32 64128

-+Size (Kb) -+Size (Kb)

Figure 6: Miss rates measured by [Hill] (circles) and simulated miss rates (dots). A direct
mapped cache (left) and a 2-way associative cache.

3.3 Single processor, two-level cache validation.
This experiment considers a uniprocessor with a small fast primary cache, followed by
a large secondary. cache. [Bugge90] reports the miss rates of the secondary cache with
various parameter settings of line size, associativity, and total cache size. The primary
cache is :fixed as a 128Kb direct-mapped cache with 16 byte lines. To deal with the effects
of cold start misses in the address trace, that paper contains three miss rates: a worst,
best, and estimate case. The worst case assumes that cold start misses are indeed real
misses, whereas the best case counts those misses as hits. The estimated miss rate simply
ignores cold start misses (nor miss, nor hit).

We did the same experiment using our stochastical address-trace synthesizer. Since
our model is limited to equal line sizes in all levels of the hierarchy, and [Bugge90] uses
a 16 byte line for the primary cache, we only report miss rates for the cases with a 16
byte line size {this is different from the Futurebus standard of 64 bytes). To reduce the
effects of cold start misses we report the miss rate over the last 30% of the synthesized
address trace. The trace stems from a mix of UNIX jobs (see section 3.1) and contains
46M references to the primary cache, which has a miss rate of 3%.

The results in table 1 show that the miss rates of our simulation model are close to the
figures reported in [Bugge90]. The simulated figures of the 8 Mbyte secondary cache are
inaccurate because the cache did not reach a steady state before the end of the simulation
run2• The 8 Mbyte figures of Bugge are also distorted by cold start effects, as can be seen
from the relatively large difference between the worst and best miss rates. Our optimistic
1 Mbyte results are presumably caused by the usage of shared text segments in the UNIX
mix. We observed that the miss rates, especially those for large caches, are quite sensitive
to the exact configuration of the workload (number of applications, context switch rate).
The simulated miss rates of the caches up to 4 Mbyte however, show the same trend
as the miss rates of Bugge: the influence of the cache size is larger than the effects of
the associativity. This indicates that our stochastical application model has the same
long-term locality behaviour.

2Longer simulation runs are underway to improve the 8 Mbyte figures.

www.manaraa.com

62

[Bugge90) Simulation
Size Associativity Worst Est Best model
1M 2-way 22.6 22.2 22.1 20.9

4-way 18.6 18.2 18.1 17.9
8-way 16.4 16.0 15.9 15.5

2M 2-way 11.6 10.7 10.6 12.0
4-way 9.0 8.1 8.0 9.4
8-way 8.0 7.1 7.0 9.4

4M 2-way 7.3 5.6 5.5 7.3
4-way 6.0 4.2 4.2 6.2
8-way 5.9 4.0 4.0 5.8

8M 2-way 5.0 2.0 1.9 5.9
4-way 4.6 1.3 1.3 5.4
8-way 4.4 1.0 1.0 5.3

Table 1: Miss rate of secondary cache (in%); [Bugge90) and model values

4 Simulation results
We have used our simulation model to study the performance effects of different multi
processor topologies. The experiments include a flat, a two-level, and a a three level deep
bus hierarchy with a constant number of processors. Before running the experiments we
had to determine some reasonable parameter values for the associativity and line size of
the caches. Reasonable values for these parameters are determined in the experiments
reported in the next two subsections. First we determine the optimal associativity of the
caches with a fixed linesize of 64 bytes. Given this associativity we determine the best
linesize.

Throughout the remainder of the paper we use the instruction execution rate, ex
pressed in MIPS, as measure of system performance. All the experiments have used
the two benchmarks from section 3.1 that consists of a mix of UNIX jobs and a fine
grained parallel program. The simulated processors are single-cycle processors running
at 20 MIPS. The parameters of the Future buses are set to 110 ns arbitration time and a
transfer rate of 700 Mb/s. All experiments run for 500 (simulated) milliseconds.

4.1 Associativity
The associativity in a first-level cache has a known important effect on the miss rate, see
for example [Hennessy90). What associativity should we pick for lower level caches in a
hierarchical multiprocessor? A common line of reasoning is that low-level caches should
be at least large enough to hold all lines of the caches upward in the hierarchy (inclusion
property, [Baer88]). Otherwise the high level caches will have to compete with neighboring
caches for space in the low-level cache, which causes the low-level caches to frequently
invalidate upward copies to service requests that hit a full set. The performance of high
level caches will decrease because they have to invalidate useful lines, which results in a low
hit-rate. In [Baer88) it is proved that to enforce the inclusion property, the associativity

www.manaraa.com

63

of a low-level cache memory should be at least the sum of the associativity of its upward
connected caches. Then one set in the low-level cache can hold all lines in the primary
caches which fall into that set. Since the paper does not quantify the performance effects
of obeying the inclusion property, we performed an experiment with various associativities
around the inclusion value.

Figure 7: The memory hierarchy used in the associativity and line size experiments

The experiment uses the architecture depicted in figure 7. The first-level caches have
a size of 64 Kbyte, and are 2 or 4-way associative. The line size is 64 bytes according to
the Futurebus specification. The size of caches A and B is fixed at 2 Mbytes, while the
associativity ranges from 4 to 64. The inclusion property requires at least an associativity
of 8. respectively 16 for the second-level caches.

second-level 2-way 4-way
associativity MIPS missrate bus-util MIPS missrate bus-uti!

4 13.4 3.2% 65% 13.6 3.0% 64%
8 13.3 3.3% 66% 13.8 3.0% 63%

16 13.5 3.2% 65% 13.7 3.0% 64%
32 13.5 3.2% 65% 13.7 3.0% 63%
64 13.5 3.1% 65% 13.7 3.0% 64%

Table 2: The MIPS and miss rates of 2-way and 4-way first-level caches for varying
associativity of the second-level cache.

The results of the UNIX mix in table 2 show that the performance is hardly influenced
by the associativity of the second level cache. This unexpected result is probably caused
by the size of the second-level cache. The large number of sets compared to the primary
caches effectively increases the associativity of the second-level cache. Possibly colliding
lines between different primary caches usually fall into different second-level sets because
of the spatial locality in the applications. Higher associativity does decrease the miss
rate of the second-level cache (as observed in section 3.3), but the overall performance
is dictated by the miss rates of the first-level caches. Only architectures with saturated
busses will benefit from high associative second-level caches. In the remaining experiments
we use the lowest possible associativity that satisfies the inclusion property.

www.manaraa.com

64

4.2 Line size

In this experiment, the line size is varied to find an "optimal" value. We have used the
same architecture as in the previous experiment, drawn in figure 7. The associativity of
the first level caches is set to 2, and the second level caches have a fixed associativity of
8. The second- and first-level caches use the same line size, which is varied between 32
and 1024. The results of the two benchmark applications are shown in figure 8.

MIPS miss rate MIPS miss rate
18 • 4% 9 • 0%

• • • • • • 16 3% 7 + 9%

14 + 2% • 5 8%
+ +

12 i 1% 3 • 7% + + + +
+ •

10 0% 1 + + 6%

32 64 128 256 512 1024 32 64 128 256 512 1024
--+ Size (bytes) --+ Size (bytes)

Figure 8: Processing power (dots) and miss rates (+) of various line sizes in the case of a
UNIX application (left figure) and a parallel application (right figure).

The data in figure 8 shows that the line size has different effects on the system perfor
mance and the second-level cache miss rate. For a UNIX mix of programs, the optimal
performance is reached with a 128 bytes line, whereas a 512 bytes line yields the low
est miss rate. Apparently, the decreased miss rate does not outweigh the increased miss
penalty. The parallel application results are similar to the UNIX mix, only the optimal
performance is reached with a smaller line size of 64 bytes. This optimum depends on
the way the shared data is used. As stated in [Eggers89] applications can be specifically
coded for a certain line size. The 64 bytes line size of the Futurebus seems a reasonable
choice, and we used it in the rest of the experiments.

4.3 Different architectures

This experiment studies the performance differences of comparable multiprocessor systems
with different cache hierarchies. We have defined several architectures consisting of 8
processors and a comparable amount of cache memory. These are the architectures labeled
a through d in figure 9. The architectures e and f have been added to the experiment
when we observed a low bus utilization for the UNIX-workload. The line size is 64 bytes
in all architectures. The first-level caches are 2-way associative, while the other caches
have the associativity enforced by the inclusion property. For example, the third-level
caches in figure 9-d are 8-way associative.

The performance of the multiprocessors is listed in table 3 and shows a large difference
between the two benchmark programs. The UNIX-mix performs best on an architecture
with a single bus, whereas the parallel application prefers a two-level hierarchy.

www.manaraa.com

65

2-way, 2M

a: llevel

2-way, 256K

4-way, 2M

c: 2levels

r'r'r'r'rYrY.-'r'TY.-'r'T't-'1 2-way, 1M
jcccctcccJccc ccJcc

2-way, 2M

I Memory

e: llevel

b: 2levels

d: 3levels

f: 2 levels

2-way, 256K

8-way, 4M

2-way, 128K
2-way, 256K

4-way, 1M

8-way, 4M

8-way, 4M

Figure 9: Hierarchical architectures, a-f. The associativity and size of the caches are
denoted at the right hand side of the caches. Architectures d and e are evaluated with
two different sizes.

The performance of the UNIX-mix largely depends on the effectiveness of the first level
cache since jobs are independent and do not share writable data. A cached line of one job
will never be invalidated by a job running on another processor; the cache line is replaced
when the job itself causes a cache miss in a full set. The big caches of architecture-a are
well suited for the UNIX-mix and only cause a moderate load on the main-memory bus,
therefore the UNIX-mix does not benefit from a hierarchy which potentially decreases
the effects of bus contention. In fact the performance degrades because of the smaller
primary caches {increased miss rate) combined with a higher miss penalty. The results of
doubling the number of processors to 16 are shown in table 4. This number of processors
saturates the bus and favors a two-level hierarchy. The memory bus is still the performance
bottleneck, larger second-level caches may pay off.

The bus utilization figures show that the parallel application generates more bus traffic
than the UNIX-mix to handle the updates of shared data. All hierarchical architectures
succeed in diminishing bus contention and substantially increase the overall performance,

www.manaraa.com

66

total UNIX mix parallel application
cache miss- bus util ~'7o), miss- bus util ('7o)

size MIPS rate pt 2"d 3"d MIPS rate l•t 2"d 3"d
a 16Mb 16.4 1.6% 69 - - 5.0 7.0% 99 - -
b lOMb 15.0 2.2% 59 60 - 7.2 7.2% 93 87 -
c lOMb 14.7 2.2% 32 70 - 6.4 7.2% 52 99 -
d 13Mb 13.5 2.7% 34 50 59 6.6 7.5% 55 83 83

14Mb 13.8 2.3% 33 50 57 6.7 7.2% 54 83 82

Table 3: Performance of the 8 processor architectures (a-d).

architecture total miss bus utilization
architecture cache size MIPS rate 1 st 2""'

e 16Mb 8.8 1.9% 99% -
32Mb 9.5 1.8% 99% -

f 20Mb 11.9 2.3% 56% 98%

Table 4: Performance of the 16 processor e and f architectures for the UNIX work-load.

up to 44%. Note the remarkable difference between the two-level hierarchies band c. The
configuration with two large second-level caches has a clear advantage over four smaller
caches, even the three level deep architecture d outperforms architecture c. This is a
consequence of the saturation of the memory bus (99%) in architecture c, which is most
likely due to sharing in the low level caches.

4.4 The usage of the transition table

During the simulation runs we did not only measure performance parameters like miss
rates and bus utilization, but also the usage of the Future bus cache coherency protocol.
The protocol has been implemented as a state machine, and the measurements show that
90% of the transitions are executed in just 17 states. As to be expected, these states
correspond to cache hits on reads/writes and snooping hits. Only 38 states cover 99%,
while the remaining 1% requires another 214 states. These 252 states out of a total of
8620 sufficed to run all simulation experiments described in this paper, which issued a
total of 3.109 instructions. Unfortunately we had already specified over 300 states before
trying to run the simulator.

5 Discussion and Conclusions

This paper has reported on the evaluation of hierarchical multiprocessor architectures
based on the Futurebus. In section 2 a simulation model was presented to study the
performance effects of various system parameters. The experiments include various line
sizes, associativities, and hierarchical cache configurations.

www.manaraa.com

67

The model does not use multiprocessor address traces as a workload, but contains a
set of stochastical processes instead. These processes generate memory references based
on measured statistics of actual programs. Throughout the experiments we have used
a benchmark of two different synthesized workloads: a multiprogrammed set of UNIX
applications, and a fine grained parallel program which uses shared data. We have run
some simulations to validate the model with published trace-driven results.

The first experiments with the model studied the effects of line size and associativity
of caches in a hierarchical multiprocessor architecture. The simulation results show that
a line size of 64 bytes, as chosen by the Futurebus, will give good performance for both
the UNIX and parallel applications. Higher associativity of (large) caches down in the
hierarchy (close to memory) will decrease the low-level cache miss rates which only has
an effect on the overall performance when the lower busses are saturated. In general the
size of the low-level caches is more important than the associativity.

The benchmark was run on various multiprocessor architectures, see figure 9, to study
the performance effects of various hierarchical topologies. It shows that a hierarchy of
caches decreases the bus utilization, but raises the miss penalty. The performance of the
architecture critically depends on the type of program. For the UNIX applications, which
do not share writable data, a flat hierarchy is optimal up to at least 8 processors. A
multilevel cache hierarchy is beneficial for a large number of processors, the break-even
point lies between 8 and 16. Our fine-grained parallel program benefits from a hierarchy
even with a small number of processors. With 8 processors we noted a performance
difference between a flat and a two-level hierarchy of 44%. It is difficult to generalize this
result because the performance benefits of a cache hierarchy for parallel programs heavily
depends on the locality in the application. A hierarchical cache system only succeeds in
diminishing bus contention if most data sharing is between adjacent processors in the tree.
To better quantify the effects of data sharing on system performance we will improve our
synthesized application model to include synchronization patterns, see section 2.1.1.

The usage of the future bus transition table is quite remarkable: 38 states covered
99% of the transactions, 252 covered all transactions. The definition of the bus contains
a lot of small optimizations to save some bus cycles. Many of these optimizations were
rarely executed, or never at all. We expect that only systems with much rapidly changing
shared data will exercise these optimizations. Therefore we question the value of these
optimizations since they do increase the complexity without a clear performance benefit.

The simulation tool has shown to be useful in evaluating the performance of hier
archical multiprocessors. Additional work will have t? be performed to obtain better
understanding about the performance effects of locality in fine grained parallelism pro
grams, and its impact on the stochastical application model.

6 Acknowledgements

We like to thank E. Odijk for his stimulation to start work on the design of the Pearl/Oyster
simulation system, which has been developed in the PRlSMA project. Marins Schoorel of
ACE provided us with the Future-bus problem. Furthermore we thank Rutger Hofman,
Pieter Hartel and Wim Vree for reading and commenting on a draft version of this paper.

www.manaraa.com

68

References

[Archibald86] J. Archibald and J. Baer, "Cache Coherence Protocols: Evaluation Using
a Multiprocessor Simulation Modef', ACM Transactions on Computer Systems, Vol
4, No. 4, November 1986, pp 273-298.

[Baer88] J. Baer and W. Wang, "On the inclusion properties for multi-level·cache hi
erarchies", Proceedings of the 15th Annual International Symposium on Computer
Architecture, 1988, pp 73-80.

[Bugge90] H.O. Bugge, E.H. Kristiansen and B.O. Bakka., "Trace-driven simulations for
a two-level cache design in open bus system8', Proceedings of the 17th Annual Int.
Symposium on Computer Architecture, 1990, pp 250-259.

[Eggers89] S.J. Eggers and R.H. Katz, "Evaluating the performance of four snooping cache
coherency protocol8', Proceedings of the 16th Annual International Symposium on
Computer Architecture, 1989, pp 2-15.

[Futurebus89] Futurebus+, Logical Layer Specifications, Draft 8.1, P896.1 Working
Group of the IEEE Computer Society, December 1989.

[Hennessy90] J.L. Hennessy and D.A. Patterson, "Computer architecture: a quantitative
approach?', Morgan Kaufmann Publishers, Palo Alto, California, 1990.

[Hill87] M.D. Hill, "Aspects of Cache Memory and Instruction Buffer Performance',
Ph.D. Thesis, Univ. of California at Berkeley Computer Science Division, Tech. Rep.
UCB/CSD 87/381, November 1987.

[Muller90] H.L. Muller, "Evaluation of a communication architecture by means of sim
ulation", Proceedings of the PRISMA workshop on Parallel Database Systems, No
ordwijk, The Netherlands, September 24-26, 1990.

[Sweazy86] P. Sweazy and A.J. Smith, "A class of compatible cache consistency protocols
and their support by the IEEE Futurebut', Proceedings of the 13th Annual Interna
tional Symposium on Computer Architecture, 1986, pp 414-423.

[Vernon89] M.K. Vernon, R. Jog and G.S. Sohi, "Performance Analysis of Hierarchical
Cache-Consistent Multiprocessort', Performance evaluation 9, 1989, pp 287-302.

www.manaraa.com

Efficient Global Computations on a
Processor Network with Programmable

Logic*

Jean Marie Filloque
LIBr-ENST Bretagne, Kernevent-Plouzane, 29285 Brest, FRANCE

Eric Gautrin
IRISA-INRIA, Campus de Beaulieu, 35042 Rennes Cedex, FRANCE

Bernard Pottier
LIBr-UBO, UFR Sciences, av. Le Gorgeu, 29287 Brest, FRANCE

Abstract

A new parallel MIMD architecture is described each node of which is tightly
coupled to a global programmable logic layer. This layer gives local acceleration
to the node processors by massive micro-grain parallelism. It also provides fast
computation services to distributed algorithms by synthesis of global dedicated units
operating directly on node operands. As a result, fine approximations of global
states become transparently visible in each node, in contrast with usual difficulties
and delays in sharing and computing control data.

This point is emphasized by the description of two parallel virtual time mecha
nisms. The first study involves increasing virtual clocks, and the second one takes
into account time counter overflows in a time warp environment. Implementations
are based on global systolic networks, fed by the array of local operands and con
trolled by a small automaton. Thus, global states are handled for each cycle of the
mechanism, and results become visible after one pipeline delay with no cost for the
accelerated parallel machine.

To summarize general characteristics of this architecture are: general purpose,
reconfigurability, cheapness, extensibility.

Introduction

Conventional MIMD architectures are usually built using Von Neumann processors, com
munication links, or external addressing facilities. Machines belong to the shared memory
class or the distributed memory class, depending on the way the nodes communicate. Al
gorithms must take care of global computation states for various purposes: termination
or deadlock detections, calculation convergences, minimum of local stamps, ...

*This work is supported by Region Bretagne and Municipaliti de Brest. The Armen machine imple
mentation is supported by ANVAR.

www.manaraa.com

70

Shared memory multiprocessors can use shared variables to compute these conditions.
Distributed memory computers must implement periodic visits of the whole network to
calculate global flags or values. In each case, control operations are merged with compu
tation operations. Periodic accesses to shared variables from the whole network, processor
and communication links preemption and network delays raise barriers to the repetition
of such operations.

Thus, it appears that MIMD machines cannot execute simultaneously control and
computation operations. Moreover, it is evident that the computation bandwidth is de
pendent on the frequency of control: MIMD machines cannot provide adequate global
state visibility.

As an example in the distributed simulation field, the Time Warp algorithm requires
that the minimum of local Time Stamps will be available to garbage memories. Bellenot[2]
has reported that such an operation takes about 150ms on a 32 nodes hypercube with the
application being stopped.

Beside the strong interest for fast and flexible interconnection networks, a very at
tractive hardware support in an MIMD machine could be some global unit receiving data
from node interfaces and sending computation results back to these nodes. To cover large
fields of applications, it is necessary to define such a unit with a technology allowing deep
modifications of its behavior. Recent advances in reconfigurable logic technology have
given the opportunity to investigate all kinds of global hardware supports to accelerate
control and computation in parallel architectures.

This paper presents the architectural concept of global reconfigurable coprocessors for
MIMD machines. For this purpose, local reconfigurable logic sockets are added to each
node and connected together to build a linear logic layer. The topology of the parallel
machine does not need to be specified, but there is a requirement for some stable primary
communication services. To get additional hardware support, the operating system must
synthesize services into the logic layer. This task is achieved by sending first configuration
specifications to each node, and then writing them into the configuration memory of the
local socket. Delays for this last task are currently from O,ls to ls, and this process can
be repeated and interleaved with execution.

The addition of a reconfigurable logic layer to an MIMD machine has two strong
advantages with respect to technology and architecture. First, reconfigurable logic is an
integration technology and allows very efficient circuits to be synthesized and used. Sec
ond, the coprocessor has a strategic position in the MIMD machine. It is strongly tied to
each node of the machine, but conserves properties of a dedicated centralized functional
unit. It can improve intensive computations as a local accelerator, or distributed compu
tations as a global coprocessor.

The objectives of this paper are twofold:

1. the configurable layer use is illustrated and demonstrated by a description of two
Global Virtual Time coprocessors for distributed algorithm support. It is shown by
these simple examples that inefficient software tasks can be improved in a smart
way by the reconfigurable layer.

2. an original algorithm is proposed where a global controller is synthesized to syn
chronize the nodes periodically. The period is an application dependent tunable
constant.

The paper is organized as follows :

www.manaraa.com

71

- The first part is a short description of architecture principles. The general copro
cessor status is emphasized by the notion of dedicated synthesized architecture.

- In the second part we introduce some notions from the distributed simulation field,
and describe an implementation of global virtual time computation on the config
urable layer.

• A minimum approach is first investigated without any attempt to manage the
time counter overflow. The synthesized service can be used to prevent mutual
drift between the logical local clocks.

• A second approach is virtual time management processes on user-specified time
slice boundaries.

Information relative to a practical implementation and the whole project is given, and
we conclude by general considerations and fields of application.

1 Accelerated parallel architecture

1.1 Node architecture

The proposed architecture principle involves a general purpose parallel machine with
a shared or distributed memory, and a complementary global synthesized coprocessor.
Figure 1 shows a node with a processor, local memory and a configurable socket. The
socket interconnection has a ring topology.

The socket can be implemented with a large commercial reconfigurable logic array
providing at least three data ports to the loca.I system bus and the two adjacent sockets.
The local interface of the socket is connected to the processor interrupt and arbitration
signals, as well as to local memory control lines. Access to the configuration memory
of the socket is mapped into the processor address space, and normal memory processor
transactions are passed to the socket logic to be internally interpreted. Therefore the
socket can be seen as a second processor rather than a slave unit.

1.2 Synthesized coprocessors properties

Coprocessors can operate on control information, instructions and data[15]. They can be
synthesized to yield three distinct classes of computation:

- local coprocessing, examples of which are : instruction set emulations, data intensive
algorithms, support for heavily used functions.

- massive parallel computations on the reconfigurable layer which may be used as a
large operator controlled and fed by the parallel machine. Two fields of application
are systolic signal processing and cellular automata.

- architectural support for global control of the parallel machine. Expected appli
cations are load balancing, fast termination detection, global synchronization and
virtual clock support.

The two following paragraphs describe the architecture's design and properties of the
reconfigurable logic technology respectively.

Sockets are tightly coupled to node processors and embedded into the reconfigurable
layer, thus providing local interfaces to global synthesized operators. Data are directly

www.manaraa.com

72

Processor Links

System Bus
Processor

~

EJ ry

' io'

Control Signals

Socket Links Socket -
Figure 1: Node Architecture

used as operands for calculations, avoiding the very heavy control process of an MIMD ma
chine, where objects must be carried from node to node to be processed on Von Neumann
processors. Therefore there is no longer a bottleneck from bus or network contentions,
and there are no prohibitive delays from transport layers. Global intensive computations
can be achieved on networks of self-synchronized operators, possibly controlled by a small
automaton on a special node. This property applies either to highly regular algorithms or
to the control support of irregular applications. This last point has a predecessor in the
Fetch-And-Op primitive operation of the Ultracomputer [4), where a dedicated network
provides a global service with implicit mutual exclusion. Another accurate comparison
is the systolic architecture, which is known to minimize regular application control by
allowing fast communication between interconnected processors. In a similar way, recon
figurable coprocessors provide tight coupling between nodes and global services, thereby
greatly improving control and synchronization for irregular distributed applications.

Von Neumann processors use fixed size general operative units, sequence test and
execution, reject constants into data or program space. Accessing data involves the use
of memory tables or register files. In contrast to these processors, a synthesized operative
unit matches the operand size, implements test and execution in parallel and integrates
temporarily stable data into the operators. Memory tables can be mapped into inter
nal trees with very fast access time. As a result, synthesized logic efficiently implements
massive micro-grain parallelism. Previous work from various authors has taken advan
tage of these properties to allow considerable speedups for many applications like image
processing, encryption, data compression, long integer arithmetics [1, 8, 14, 18). The
proposed architecture will obviously benefit from the technology, enlarging node fields of
application.

The following section shows the need for development activities to build synthesized
dedicated architectures on very general purpose hardware.

www.manaraa.com

73

1.3 Coprocessor development model

Considering a conventional working application we can distinguish three logical compo
nents:

3 ApplicatiOn software
2 System support
1 Machine hardware

Each layer in the machine brings services and constraints to the upper layers. As a
result application software must deal with the characteristics of underlying components.
A common alternative to general purpose machines are specialized ones with the follow
ing problems: (i) small market segments involve higher costs, (ii) hardware and software
investments are more difficult to preserve. The programmable logic layer architecture
introduces an additional flexible component into the usual decomposition, allowing tem
porarily specialized machines to be synthesized on general hardware :

4 Application software
3 System support
2 Programmable logic layer
1 Machine hardware

Such a machine inherits .properties of the conventional initial hardware, because of
the transparency of layer 2. The behavior of a specialization is similar to the addition of
optional arithmetic or dedicated1 coprocessors to existent machines. It becomes possible
to obtain efficient dedicated services by rejecting some difficult points of software imple
mentation into programmable logic. Another point of interest is that new applications are
more independent of technology : a specific configuration is defined to match the problem
exactly, and the influence of processor integration advance is minimized.

Layer 2 definitions come from creations of configuration files. This is currently a
CAD activity, similar to peripheral driver writing at operating system level, but there
is room to design more dynamic schemes. The next section will show two virtual time
services for distributed algorithms. It is envisioned that such services can be part of
independent resource libraries to be released for application developments. Speed-ups and
additional supports are two benefits from the proposed architecture on the quantitative
and qualitative sides.

2 A first example of a global virtual time service

Introduction

Distributed systems with pure message passing communication usually use logical clocks to
timestamp events and messages used to bring them from one process to another. Lamport
has shown in [12] that it is possible to construct a total order over their occurrences by
using strictly increasing counters, incremented on each emission and updated at reception.
So, throughout the system, reception always occurs after emission.

In the distributed simulation domain, the problem of virtual clocks (another name
for logical clocks) is a little bit more complicated because these clocks are not completely
unrelated. Jefferson (6] has proposed the paradigm of virtual time that coordinates execu
tion with an imaginary virtual clock. Virtual time represents global information and each

1 An example is the coprocessor board for parallel simulation proposed in [3]

www.manaraa.com

74

site can have only an approximation of it. Virtual time can be implemented with either
a pessimistic or an optimistic approach. With the first, a process on a site can safely
increase its local clock only if it is sure that it will receive no message in its past. The
respect of this causality constraint may lead to deadlock. This approach is presented in
[13]. It consists in avoiding or resolving deadlocks. Local virtual clocks, as well as virtual
time never decrease. The second approach assures only the growth of virtual time but not
of local clocks. So it allows rollbacks in the past to occur on a site. This is described in
[5, 6].

It is, a priori, impossible to have a consistent view of global state and time in such
an environment without a shared memory and a common clock. So, processes must
content themselves with a best possible approximation of this global information. The
construction of a global time approximation is proposed by several authors. It consists
in a steady evaluation of a lower bound of all the local clocks in the network. This
approximation is used to prevent mutual drift between logical clocks like in [16], to update
queues and to avoid memory saturation in time warp systems like in [5, 17], to estimate
load ratio of processors for load balancing... This type Of computation is suitable for
implementation in the programmable layer of the machine, and the following sections
describe two applications used to support this assertion.

2.1 A global computation for increasing virtual time

The goal of this section is to emphasize the use of basic mechanisms to build coprocessors.
This presentation is driven by the example of a global computation for increasing virtual
time. A coprocessor is synthesized to swiftly calculate a lower bound of all Local Virtual
Time with a circulating token and so, to deliver either this bound (a fine approximation of
the global virtual time) or an upper limit for message emission timestamps to each node .
This limit may also be evaluated in the programmable layer. It is a simple addition with
a constant.

For the sake of simplicity, this first proposal does not manage time counter overflows.
The coprocessor must compute a Global Virtual Time as the minimum of each node Local
Virtual Time. For the following, let us define GVT to be an evaluated Global Virtual
Time, and L VT to be a node Local Virtual Time.

2.1.1 Coprocessor Architecture

To achieve global evaluation, the coprocessor will receive local data, like node LVTs,
and send back results, like a GVT. Transparency of coprocessor parallel services is given
by asynchronous channels with nodes. These channels are implemented with double
register directional mechanisms connecting the coprocessor to a node. The coprocessor
periodically reads or writes channels while node processors execute less intensive write or
read operations respectively.

An asynchronous channel from coprocessor to node works as follows. The coprocessor
is always allowed to write its own register, and the node to read its own register. Data are
transferred from a coprocessor register to a node register when the node does not execute
a read operation. In our example (see figure 2), the interface consists of two asynchronous
channels:

LVT: from the node to the coprocessor;

GVT: from the coprocessor to the node.

To obtain fast computation cycles, the coprocessor has a pipeline topology in which
one stage is associated to one socket. Partial results between stages are embodied in

www.manaraa.com

75

r····· · CGVT

!, ... ~

II --~· -· -· "·i··········.·· .. ·······••·••········•·•• .. --------··""'"
L ... ~~~-~~-~~~---··

Figure 2: Socket Internal Configuration

so-called tokens. Token communications are asynchronous. After completion of its task,
a socket writes a modified token to its righthand neighbor.

The coprocessor pipeline architecture is composed of two parts:

- A large operative unit distributed across every socket. This unit executes a systolic
computation on an array of values from asynchronous channels. Results are fed
back to the pipeline head.

- A control unit implemented at the pipeline head. This controller is in charge of
the initialization of the operative unit, and the token generation. It also receives
computation results from the operative part.

In practical implementation, the control unit and the first operative unit stage can be
merged on the same socket. Furthermore, the control unit automaton can drive several
operative units .

. 2.1.2 Coprocessor Service

The coprocessor service is defined by two successive global operations :

NewGVT
GVT;

:= min;=1 .. ,.(LVT;), where LVT; is defined to be LVT of node i.
:= NewGVT fori= l..n where GVT; is defined to be GVT of node i.

Each operation is implemented by an operative unit. The first one completes the
systolic computation of the minimum by passing the N ewGVT result to the control unit.
The second operative unit broadcasts the N ewGVT value to every node.
Partial results of the two operative units are embodied in a single token:

Computed Global Virtual Time (CGVT)
New Global Virtual Time (NGVT)

: partial N ewqVT value.
: broadcasted N ewGVT value.

The control unit and the first operative unit stages are merged, as shown in socket 0
of figure 2. It can be seen that the first operative unit is initialized with the LVT value
of its socket asynchronous channel at each pipeline cycle. The control unit also feeds the
input of the broadcast unit with the output of the minimum computation.

This figure also shows, in the block at socket i , the parallelism between the local
minimum and broadcast operations which overlap with one pipeline latency.

www.manaraa.com

76

3 A hardware service for Time Warp Simulation

This section gives a brief description of Time Warp principles as defined in (5] and shows
the interest of knowing Global Virtual Time.

In the Time Warp, all processes are independent and there is no constraint on their
asynchronous evolution. Each message is timestamped with the addressed simulation
time, t •. If the LVT of the receiver is already higher than tr when reception occurs, then
the process must roll back to timet., and must undo actions between t. and LVT. All
the messages it has sent must be unsent using anti-messages. The roll-back mechanism
imposes that processes retain the history of states and lists of all messages sent and
received. Maintaining all previous information obviously requires an unbounded amount
of memory. It has been proved that there is a lower bound on virtual time which the
system will never roll-back to (17]. Knowing this lower bound, it is possible to forget
older. information. This time is called Global Virtual Time and is defined as GVT =
min(LVT;, t.;), where tr; is the timestamp of message not yet received. GVT must be
computed regularly and generally freezes the simulation progress for one network diffusion
time at least[17]. Notice that LVT has not the same signification as in the previous section:
here, LVT is the minimum of all timestamps of one node.

3.1 Algorithm presentation

To implement the Time Warp Simulation, the nodes need to know the Global Virtual
Time. Our previous example presents two restrictions: first, there is no provision for a
roll back mechanism; secondly, it does not consider time counter overflows. In this section
we present a practical solution taking into account these restrictions.

·Instead of computing the GVT, this approach tracks a condition where all nodes have
overtaken an LVT bound. When this condition is verified, an approximation of GVT
has oc~urred, and then memory garbage collection is possible. To minimize simulation
process· freezing on memory saturation, the application must tune the GVT progress
intervals to deal with node memory capacities and application characteristics. For the
sake of simplicity, the intervals between bounds are equal and the same for all processors.

The configurable coprocessor will compute this condition of a global bound overtake.

3.2 Node Message Passing

On message reception, an advanced process can roll back its LVT to a time less than the
next bound to overtake. The computation of the condition must take care of unreceived
messages. This problem is solved by message acknowledgment.

Each node is supposed to have its current simulation time, and two queues for input
and output messages. The current LVT is deduced from the minimum of all time stamps
on the node including messages in the input and output queues [5]. Message deletion
from an output queue requires an acknowledgment from the communication service to
ensure the visibility of the minimum LVT on the coprocessor.Thus, if the bound is not
overtaken, it guarantees that there is at least one node which discards this state.

Message passing from node A to B must respect the following protocol :

www.manaraa.com

77

Node A sends a message from its output queue;
Node B receives this message then places it in its input queue;
Node B computes its new LVT;
Node B sends an acknowledgment to Node A;
Node A receives the acknowledgment;
Node A deletes the message from its output queue;
Node A computes its new LVT.

3.3 Global Condition Computation

A global computation is an operation on an array of values distributed on every socket.
This operation can not be instantaneous because of propagation delays. In the previous
proposition, local virtual clocks are strictly increasing. So, GVT is evaluated in a systolic
way.

In Time Warp Simulation, the condition of a global bound overtake can be expressed
as follows. Let us define GO as the Global Overtake condition, and NB the next bound
to overtake.

GO= min(LVT; ;=> .. N) > NB

This expression could be calculated in a systolic way by a distributed operative unit,
where PO is defined as a Partial Overtake :

POo = true;
PO; = P0,_1 and (LVT; > NB);
GO=PON;

Note that the comparison (LVT; > NB) can be carried out by the node. Only the
boolean result is discarded to the socket through a flag 0 (Overtake). So, the operative
unit computes the boolean product of the flags 0 in a systolic way.

With the roll back effect, local virtual clocks are not strictly increasing. A simple
systolic computation can provide an erroneous result. The following sequence on message
passing from node i to node j illustrates this problem :

Initial conditions : i > j; LVTi > N B; LVT; < N B;

1. Computation of POj;

2. Node j receives a message from node i producing a roll back, and decreases LVTj
such LVTi < NB;

3. Node i, receiving the acknowledgment from node j, updates LVT; such LVT; >
NB;

4. Computation of PO;.

In this example, the operative unit delivers a true GO value to the control unit, but
LVT; < NB. Note that at least one of theN following GO will discard a false value.

Property: If N consecutive true GO values are received, the condition of a global bound
overtake is true.

www.manaraa.com

78

Proof: A proof by contradiction can be given. Suppose W(c) is true and 3 O;(c) false
with i in l..N.

Note O;(c) the boolean value of flag 0 of node i at pipeline cycle c.
Then:

N

GO(c) = 1\ O;(c- N + i- 1)
i=l

And W(c) which is equal to
N

1\ GO(c- ;)
"Y=l

can be rewritten as :

N N

W(c.) = 1\ 1\ O;(c-;- N + i -1)
"Y=li=l

so
•O;(c)::::} 3•0;(c6) I C6 E]c- N, c]

which is in contradiction with W(c).
To detect this condition two implementations are proposed: when detecting a first

true GO, the control unit can either push a marker CO (Confirm Overtake) into the
pipeline through an operative unit and wait for its return, or count the pipeline cycles to
ensure a total dump. The first solution is chosen for the sake of simplicity.

Systolic arrays cannot exactly implement a computation over the array of operands
because of the technological depth limitation of reconfigurable sockets. Each token does
not operate on simultaneous sample when circulating in the operator. Therefore it is
necessary to observe full pipeline results to get accurate conclusions about what has
occurred one pipeline delay before.

3.4 Coprocessor Behavior

The general behavior of the coprocessor can be described in three stages:

1. Tracking N consecutive true GO values;
2. Broadcasting the condition of the bound overtake to every node;
3. Waiting for a global acknowledgment from every node.

To implement the second stage, the control unit can push a marker W (Wave) through
an operative unit and wait for it to come back.

Assuming that each node acknowledges the coprocessor through a flag A, the third
stage can be implemented with an operative unit which calculates the boolean product
of all the flags in a systolic way. Note that this computation is carried out in a single
systolic pass.

In conclusion, the coprocessor consists of four operative units :

PO : computes the boolean product of flags 0 in a systolic way.
CO : pushes the marker CO through the pipeline.
W : broadcasts the condition of the global bound overtake.
PA : computes the boolean product of flags A in a systolic way.

and a control unit feeding the pipeline with tokens. Figure 3 illustrates the control unit
automaton. The transition conditions are flag values from input tokens.

www.manaraa.com

79

Figure 3: Node 0 Automaton

The token structure is :

PO : the partial boolean product of previous node flags 0.
CO : a boolean marker to indicate the Confirm condition.
W : a boolean marker to indicate the Wave condition.
PA : the partial boolean product of previous node flags A.

The control unit can be implemented in the socket 0. The values for the output token
of the control unit are deduced from the automata state:

Detection
Confirm
Wait Conf
Abort
Wave
Wait W
Wait Ack

: (PO= node.O, CO= false, W =false,
: (PO= node.O, CO= true, W =false,
: (PO= node.O, co·= false, W =false,
: (PO = node.O, CO =false, W = false,
: (PO = node.O, CO =false, W = true,
: (PO= node.O, CO= false, W =false,
: (PO = node.O, CO = false, W = false,

PA = node.A)
PA = node.A)
PA = node.A)
PA = node.A)
PA = node.A)
PA = node.A)
PA = node.A)

The operative units are distributed on each socket executing the following operations
on the tokens :

tokenOut.PO = tokenln.PO and flag 0
tokenOut.CO = tokenln.CO
tokenOut.W = tokenln.W
tokenOut.PA = tokenln.PA and flag A
iftokenln.W then reset flag A

This second example illustrates the use of the coprocessor to compute global conditions
in a systolic way by a simple pass, or a pipeline dump. Moreover, the coprocessor controls
and sequences actions over the whole network, like broadcasting a condition to every
node. Implementation obviously requires very few logic resources, giving way to additive
functionalities.

www.manaraa.com

80

4 Further work : the Armen project

An implementation of the reconfigurable logic layer parallel architecture is currently being
built by the LIBr2• An MIMD experimental machine called ArMen has been designed
to investigate most of the capabilities of the architecture. An !NMOS TSOO has been
chosen as the processor node and a Xilinx 3090 LCA (19] as the reconfigurable socket.
This leads to small and affordable modules where the socket can operate on addresses,
instructions and data from the 32-bit processor multiplexed bus. This is not the most
powerful design one could create today, but it is sufficient as a test vehicle. On the other
hand, no commercial processor exactly matches our requirements, and there remains a
real problem in that we cannot experiment on processor to processor exchanges with the
first machine.

Another goal of the ArMen project is to build a software environment for the archi
tecture. Applications can be either specific or general. In the first class, signal processing
with use of generic tools, fixed global services like virtual clock support and cellular au
tomaton are considered. Support for these applications can be currently designed as
parallel programs and configuration file libraries. The second class of applications is a
challenge involving the production of High Level Language development tools for coproces
sor synthesis. Given a coprocessor model involving a node 0 automaton, regular pipelined
operative parts and standard interfaces into the node, it is expected that coprocessor
generations could be considerably facilitated.

We have shown that the proposed architecture with its accelerated network layer is
able to compute global information all over the system with low time cost3• It is of obvious
interest for the efficient implementation of many applications requiring multiprocessor
computation like large logic simulations, signal or image processing, etc ...

More generally, one can take advantage of the active communication layer to imple
ment every algorithm requiring global knowledge computation. This can be done very
simply on the hypothesis of always empty communication channels (of the application
layer). Another use of the active layer can be found in the out-of-band communication
between sites. Urgent messages can be routed via this layer by a token containing data
and destination. The token can be used either for point-to-point communication, partial
diffusion (with an associated list) or complete diffusion.

These points are currently being studied in the framework of distributed discrete event
simulators.

5 Conclusion

The proposed architecture complements s;urrent parallel designs on many levels.
A first important property of configurable logic is its ability to synthesize small data

flow sequenced operators, and thus to increase the level of parallelism within the nodes.
The connection of adjacent logic arrays provides a global programmable logic resource,

on which very large operative parts with arrays of input/output ports are implemented.
These ports.handle the whole state of the machine repeatedly by feeding systolic arrays
with it. We have shown some internal points of the coprocessors, with global opera
tors which are small automata controlling systolic linear parts, as well as asynchronous
channels and interrupt waves to interfere with node behavior. These tools are useful in
computing global resources, or controlling the whole network behavior.

2Laboratoire d'lnformatique de Brest is a common structure to Uniuersitc! de Bretagne Occidentale and
Ecole Nationale Superieure des TeUcommunications de Bretagne

3pipeline delays are in the order of 50ns

www.manaraa.com

81

Accessing global conditions over a distributed system has often been considered to
require heavy local computation and communication or synchronization tasks. Pure dis
tributed implementations can fail[7) because of the inefficiency of these mechanisms:
communications and local computations are involved in calculating results which must
be dispatched back to the nodes. It is expected that the logic layer architecture will en
courage the use of efficient global services within MIMD machines for distributed systems,
languages or algorithms.

References

[1] P.Bertin, D.Roncin, J.Vuillemin, "Introduction to programmable active memories", in
Systolic AITOy Processors, Prentice Hall, pp. 301, 1989.

[2] S. Bellenot, "Global Virtual Time Algorithms", in Proc. of the SCS multiconference on
Distributed Simulation, San Diego, Californie, pp. 122, 19 January 1990.

[3] C.Buzzell, M.J.Robb, R.Fujimoto, "Modular VME rollback approach for Time Warp",
in Proc. of the SCS multiconference on Distributed Simulation, San Diego, Californie,
pp. 153, 19 January 1990.

[4] A. Gottlieb and al., "The NYU Ultracomputer- Designing an MIMD shared memory
parallel computer", in Proc. International Conference on Computer Architecture, ACM,
pp. 175. 1982.

[5] D.Jefferson, H.Sowizral, "Fast concurrent simulation using the time warp mechanism",
in Proc. of the SCS Conference on Distributed Simulation, San Diego, pp. 63-69, Jan.
1985.

[6] D.Jefferson, "Virtual Time", Transactions on Programming, Languages and Systems,
ACM, vol. 7, no. 3, pp. 404, 1985.

[7] R.Fujimoto, J-J.Tsai, G.Gopalakrishnan, "Design and performance of special purpose
hardware for Time Warp", in Proc. of International Symposium on Computer Archi
tecture, IEEE, pp. 401, 1988.

[8] T .Kean, J .Gray, "Configurable hardware: two case studies of micro-grain calculation",
in Systolic AITOy Processors, Prentice Hall, pp. 310, 1989.

[9] B.W. Lampson, K.A.Pier, "A Processor for a High-Performance Personal Computer",
in Proc. of Computer Architecture Symposium, IEEE-ACM, pp. 146, 1980.

[10] H.T.Kung, "Why systolic architectures?", IEEE Computer, vol. 15, no. 1, pp. 37,1982.

[11] H.T.Kung, "Network-based multicomputers : redefining high performance computing
in the 1990s", in Proc. of the Decennial Caltech Conference on VLSI, The MIT Press,
pp. 49, 1989.

[12] L.Lamport, "Time, Clocks, and the Ordering of Events in a Distributed System",
Communications of the ACM, vol. 21, no. 7, pp.558, 1978.

[13] J.Misra, "Distributed Discrete Event Simulation", Computing Surveys, vol. 18, no. 1,
pp. 39, March 1986.

[14] B.Pottier, D.Lavenier, "High rate sigma filtering, feasibility studies on processor net
works", in Proc. of IFIP Workshop "Parallel architectures on Silicon", INP Grenoble,
pp. 182, 1989.

www.manaraa.com

82

(15] B.Pottier, "Machines parallhles a accelerateurs reconfigurables", These de l'Universite
de Rennes 1, Dec. 1990.

[16] M. Raynal, A distributed algorithm to prevent mutual drift between N logical clocks,
Information Processing Letters, vol. 24, no. 3, pp. 199-202, Feb 1987.

(17] B. Samadi, "Distributed Simulation, Algorithms and Performance Analysis", PhD.
Num 8513157, University of California, Los Angeles, pp. 35-64, 1985.

(18] J.Viitanen, T.Kean, "Image pattern recognition using configurable Logic Cell Arrays",
in Proc. of Computer Graphic International '89, Springer-Verlag, pp. 355, 1989.

(19] Xilinx, The Programmable Gate Array Data Book, Xilinz, San Jose, 1990.

www.manaraa.com

POMP* or How to design a massively parallel
machine with small developments

Philippe Hoogvorst Ronan Keryell
Nicolas Paris

Philippe Matherat

Laboratoire d'Informatique de l'Ecole Normale Superieure
URA 1327 CNRS

45 rue d'Ulm, 75005 PARlS

Tel: (+ 33 1) 43.26.58.85, fax: (+ 33 1) 46.34.05.31.
E.mail: ... @dmi.ens.fr

... @frulm63.bitnet

Abstract

The design of a SIMD machine is usually complex because it leads to developping
an efficient Processing Element and to writing all the softwares required by the chip
and the control of the machine. We propose a different approach by using an efficient
32-bit off-the-shelf processor with its software environment (compiler and assembler)
and a programmable gate array for the network. It limits the development to the
minimum and leads to a. rather general SIMD cluster built with off-the-shelf chips
which can be considered as a SIMD transputer.

1 Motivation

In this article we propose a methodology for the development of a SIMD machine. The
philosophy of the development consists in minimizing the development effort. The exces
sive complexity of parallel machines is probably the major cause of failure in academic
projects. The first quality of a machine is its existence at the end of a project. In this
article, we show that it is possible to develop a coarse-grain SIMD machine that offers
good performance with very little effort on both hardware and software aspects.

Even if the specificity of this article is to show development reduction, it is important
to explain why we have decided to develop this kind of machine. Our main field of
interest is image synthesis.

•un Petii Ordinateur Massivement Paraltele: a small massively parallel computer. Project supported
by the French Ministry of Research and Technology, in collaboration with Thomson Digital Image.

www.manaraa.com

84

2 Why choose SIMD for image synthesis?

Commercial machines for image synthesis are often very specialized with dedicated
hardware to speed up the computation of a single algorithm (JHH80,AJ88]. This spe
cialization is the major drawback of this approach. Machines become rapidly obsolete
because new rendering algorithms require ever hardware. Only large companies are able
to invest large amounts of money and man-power to develop custom machines that will
be obsolete in a few months' time. We propose POMP as a non-specialized architecture
(with no hardware dedicated to any special algorithm), which is a step beyond the other
alternatives (partially non-specialized) proposed in [KV90,FPE*89].

We have to balance the loss of power due to this non-specialization by a mas
sively parallel approach (up to 256 32-bit processors, in fact 8,192 bits of data-paths).
This massively parallel organization prohibits the organization in a multiprocessor with
shared memory. Each processor has its own local memory and an interconnection net
work enables data interchange.

This class of architecture contains 2 major subclasses:

• The MIMD machines. Each processor runs its own program on its own data.

• The SIMD machines. Each processor executes the same instruction at the same
time on its own data. We do not need a program memory for each processor.

In the graphic pipeline, the last stage is rasterization, which requires most of the
computation. A SIMD structure offers the best performance on these computation.
[FP81] introduces the concept of smart memory which are a set of SIMD memory-PE1

clusters.
The POMP project tries to generalize this smart memory concept to all the algo

rithms of the whole pipeline. We need for each cluster a general purpose PE, which is
able to handle 32-bit integer numbers, floating point numbers, pointer data types, etc.

We also prefer the SIMD structure because a lot of synchronization problems are
avoided [BCJ89] and a high MFlop/dm3 ratio can be reached [BDW85]. Furthermore
we can build a very simple programming model which enables to develop debugging
environments.

3 The basis of the machine: the programming model

The efficiency and the programmability are the final targets of computer designing. The
relationship between hardware and software is the main problem. Most of our choices
for the architecture of POMP are consequences of the programming model.

3.1 The programming model

Variables belong to two classes:

• scalar variables (for standard calculation and flow control),

1 Processing Element.

www.manaraa.com

85

• parallel variables (also called vectors).

An n-PE SIMD machine is able to simultaneously perform the same operation on a
vector of size n. Some SIMD programming environments try to hide the number of
processors behind the concept of virtual processors (for instance the Connection Ma
chine). The size of massively parallel variables is assumed to be larger than the number
of PEs. Each physical processor emulates one or more virtuaJ. processors (vp). Vectors
are not broken into individual elements but into smaller arrays equally distributed over
the PEs.

In a typical massively parallel application, vectors of different sizes are required and
need to interact. The vectors must be partitioned into classes called vp-~et for the CM
and collection for POMP C. Each collection corresponds to one set of virtual processors.

The size is the first attribute shared by the vectors of a same collection. The other
attributes of the collection are:

• the activity. This vector of boolean elements (also called contezt) is the mask
which indicates which elements of the vectors of the collection are active.

• the topologic organization. These information describes the topologic relative
organization of the virtual processors and the mapping of these virtual processors
on the PEs.

3.2 The POMPC language

A detailed description of this language can be found in [Par90]. This model has led
to designing of a programming language which is called POMPC. POMPC must be
considered as a symbolic macroassembler for SIMD machine as is C for general com
puters. This language is the direct translation of a programming model and emphasizes
the SIMD aspect of the machine: we do not provide an autovectorizing language which
hides the structure of the machine from the programmer. This kind of higher level
languages can be implemented over POMPC.

Most of the SIMD machines provide this kind of basic language and a taxonomy
of many SIMD languages and machines can be found in [Tuc90]. POMPC has been
inspired by the previous version of C* [Tmc87, pages 35-41] and is rather similar to the
new version of this language. MPL [Chr90] and MultiC [Mlc90] are also alike (without
the collection mechanism).

To implement this model, we must define at any time what the different processors
(the scalar one and the different virtual SIMD machines) are doing. As only the scalar
processor has the control over the program flow and as the PEs are slaves, the best way
to express this dependency is to include the instruction for the PE into the sequential
program of the scalar processor (it leads to the definition of a very simple and very
convenient controller explained in the next section).

As we expect to write the addition of 2 vectors like the addition of 2 scalars, the
major problem is to determine from the source file the location of each calculation.
Typechecking on expressions and statements provides these informations.

www.manaraa.com

i

A[.k.] <- i;

scalar send

i

A

broadcast

D[.A.] op<- S;
send

86

i

i <-
scalar get

associative scalar concentration

get

Figure 1: The communications used by POMPC.

POMPC is an extension of the Kernighan & Ritchie C [KR78]. The extensions are
as follows:

• It is possible to define collections.

• Each variable can be either a scalar (like in C), a vector of the particular processor
collection (one datum per PE) or a vector belonging to another collection. Each
vector is declared as a member of a collection. Thus it is possible to associate a
collection with each vectorial statement or each vectorial expression.

• The where/elsewhere operators allow to change the activity of a collection, dur
ing the execution of a block. This activity is modified according to the value of
a boolean vector of the collection. The where statement is the equivalent of the
i:f statement except that the block is always executed (it mays contains scalar
statements or statements concerning other collections). Every other flow-control
statements (even break, continue and return but not goto) has been translated
for a parallel usage.

• Communications are required to perform non-local interactions. Most of the com
munications are expressed in the syntax of the language because they require only

www.manaraa.com

87

I***
Mapping a picture on a scrambled surface :

The view of an underwater chessboard under a dripping tap

***I
#include "pompc.h" I* pompc standard include file *I
#include "pc_math.h" I* pompc math include file *I
collection [256,256] pixel; I* pixel is a 2D 256 x 256 collection *I

pixel chessboard() I* returns a chessboard picture *I
{

pixel x,y; I* x,y : the local coordinates *I
x = pc_coord(O);y = pc_coord(1);
where((x & 16) • (y & 16)) return 255;
elsewhere return 0;

}

main()
{

pixel char color,picture;
pixel int xO,yO;
pixel int u,v;
int time,screen;

I* two pictures *I
I* local coordinates *I
I* mapping coordinates *I
I* current time and screen number *I

10

20

screen = gr_open_graphic();
gr_set_cmap(screen,0,0,0,-1);
color = chessboard();

I* gets a window where to display the movie *I

}

xO = pc_coord(O) - 128;
yO = pc_coord(1) - 128;
for(time=O;;time++) {
{

}

pixel double X,Y,d,d1,phi;
X= xO;Y =yO;
d = pc_sqrt(X*X+Y*Y);
phi = time - dl16.0;
where(phi < 0) phi = 0;
d1 = 1 + 8*pc_sin(phi)ld;
u = X * d1 + 128;
v = y * d1 + 128;

picture <- [u,v]color;
gr_:flash(screen,&picture,0,0,1 ,1);
}

I* sets a standard color map table... *I
I* gets the picture of a chessboard *I
I* xO,yO : coordinate system from *I
I* the center of the chessboard *I
I* and let's go forever ... *I

I* d : distance from the origin *I
I* phi : phase delay *I
I* drop touches the surface at phi=O *I
I* dl : new distance from center *I
1 * coordinates where to get the * 1
I* color of the local pixel *I

I* global indirection *I
I* displays the result *I

Table 1: Example of a POMPC program.

30

40

standard network specificities, the rest being carried out by library functions.

www.manaraa.com

88

Figure 1 summarizes the different syntactical constructions for POMPC commu
nications. The first 4 types of communications are interactions between scalar
variables and vectorials ones. The 2 last types are interactions between collec
tions. The [. •] operator specifies transformations on the rank of the elements.
When a communication may send more than one datum on a given element, a
accumulative operator can be specified to accumulate different data in the result
ing element. Accumulative operators are addition, subtraction, multiplication,
bit-wise and, bit-wise or, exclusive-or, minimum and maximum.

Table 1 shows an example of the POMPC language.
This program computes a chessboard picture (the chessboard function) and distorts

it (as the deformation of a water surface under a water drip) according to a mapping
achieved by a get.

4 Architecture of POMP

4.1 Processor designing: a necessary evil?

The first choice during the design of a SIMD machine is the size of the PEs. In fact,
this is the first choice because everyone considers that PEs are necessarily custom-made
and that we can freely choose the width of the datapath of the PEs.

For some very special applications (mostly image processing), it is interesting to
choose 1-bit PE because of the size of the data (from 1 to 8 bits). In order to be efficient
these machines require full-custom processors [Gap84]: classical sequential processors
are not adapted for this computation, because of the inadequation of the width of the
32-bit processors to 1-bit and 8-bit data.

In the other fields of application for the SIMD (like ours), the required data sizes
are more conventional (int, float, double) [Hor82,AB86] and it seems easier and more
efficient to use a powerfull processor than to interface a floating-point coprocessor with
1-bit processor, as in the Connection Machine 2. In this last case, 1-bit PEs are no
longer used for scientifical computations ...

Unfortunately, no commercial32-bit SIMD PE exists such as the GAPP [Gap84] for
1-bit SIMD machines or the Transputer (an MIMD PE [Inm89]).

We consider that PEs for non dedicated SIMD machines must have the same qualities
as classical processors. An intermediate choice could be to design a rather small PE
with all the necessary hardware required to micro-code efficiently the floating-point
operations (like the MasPar machine [Bla90a]).

The consequences of this coarse-grain choice are important because this seems to
suppose the development of a very complex PE. We need very broad competences to be
able to design competitive 32-bit PE with floating-point and only large semiconductors
companies can cope with such developments. The problem is not limited to chip design
but also to the development of all the software environment. Developing the PE is not
the good solution.

Let us summarize the requirements for the PE:

• a lot of MIPS: an efficient integer ALU,

www.manaraa.com

89

• a lot of MFLOPS: an efficient floating-point ALU,

• indirect access to local memory: a data address generator,

• local flow control: a local enable mechanism,

• communications: an efficient network and a routing mechanism.

In fact it is very similar to a classical processor.

4.2 Why not use an off-the-shelf processor ?

Such an approach had already be done for the PASM computer [SSIK84). The advan
tages of using a commercial processor are clear:

• we need not develop a PE, it is cheaper and less time-consuming,

• a C compiler is available for our PE,

• we can benefit from every improvement of the processor (this is very important
since the speed of RISC processors is regularly doubled inside a common archi
tecture).

• if we remain rather independent of the processor (particularly in the software
domain), it is possible to change processors when it appears that a more suitable
architecture has been introduced on the market.

We can drastically limit our developments and provide an easy evolution for our ma
chine. The general concept is to choose the best processor at any given time.

Four sensitive points have to be coped with:

• We have to broadcast an instruction to every processor. This is easier if the chosen
PE has a Harvard architecture2 •

• We have to keep every PE synchronous. Each instruction must take the same time
independently of the data processed. This is mostly the case in RISC processors
(as opposed to microcoded processors), provided that all accesses to the memory
last the same time. This prohibits the use of PEs with caches.

• We have to independently freeze every PE to process the where statement. It is
possible if an "instruction not ready" mechanism is implemented on the code bus.
This is the case every RISC processor with off-chip cache.

• We have to provide each PE with an access to the network and some facilities to
communicate with the scalar processor. It requires special hardware and which
will be discussed in the section 5.

In 1991, there exists one processor presenting the required characteristics: the Mo
torola 88100 [Mot88). We chose it as the PE of POMP.

2 a special input bus for the instructions.

www.manaraa.com

90

I D cluster
instructio
40 bits

n 88100 --o@D!
512 KB

;--- SRAM

Ctrll
@I

HyperCom r---

Global Or& Access to the network Video
sc9:lar get
4 bitS

Figure 2: The basic cluster.

4.3 The Processing Element

We can now present the basic cluster for the PE (figure 2). It contains mainly:

• the 88100 at 20MHz (17 MIPS and 7 MFLOPS);

• 128K x 32-bit static RAM with a 35ns access time in 4 chips;

• Hypercom, a chip to customize the CPU to its SIMD environment.

The SIMD approach permits us to use only 9 integrated circuits per PE.
A 40-bit instruction bus broadcasts the instructions and the control of the Hypercom

chip to the cluster. The Hypercom provides the following mechanisms:

• the activity management. Depending on the current activity loaded in the Hyper
com, The control bus defines for each instruction if it is executed. The eventuality
of n nested vhere seems to require an n-depth stack to save the current activity.
In fact, it can be implemented with a counter [Ker89,Lev90] which is convenient to
cope with the complicated activity handling required when using break, continue,
return, case and default.

• the network access. It consists in limited routing capabilities and shift registers.
The section 5 is dedicated to the network and will give some indications on the
hardware required in each Hypercom chip for the access to the network.

• tne hardware required for the communications between the PEs and the scalar
processor: a 4-bit open-collector bus to get the global or of a distributed variable.
This also allows to send a vector element to the scalar processor (useful for the

www.manaraa.com

·· ..

91

Parallel Processor

Con/rot
Scalar broadcast

Scalar processor

Figure 3: The global architecture of POMP.

scalar get and for the final stage of the associative scalar concentration) by nibbles
of 4 bits as in [Bla90a], which is a good compromise.

• the hardware required to correctly recover from an exception or an interruption.

www.manaraa.com

92

4.4 The controller and the scalar processor

Some SIMD machines use an independent sequencer to run scalar code or to expand
microinstructions generated by an host computer (Tmc87]. The use of the host computer
as scalar processor facilitates the software development but requires high input/output
bandwidth for the broadcast of the code from the host to the PEs. It is possible only if an
intermediate sequencer expands some high-level instructions into microcode (typically
32-bit instructions expanded into 1-bit microinstructions, when 1-bit PEs are used). We
cannot use such a structure because we need a 20 MHz 40-bit instruction rate. The
scalar processor must be directly located in the SIMD machine. This choice has been
made in (Bla90a,AB86].

As we use a commercial processor for the PE, it is natural to use the same processor
as scalar processor for code orthogonality and for easier synchronization between PEs
and the scalar processor. It simultaneously fetches its own 32-bit instruction and the
40-bit instruction broadcasted to the clusters. The whole machine is driven by a 72-bit
Long Instruction Word (LIW). The figure 3 presents the global architecture of POMP.

An history of the cluster instructions is saved in a FIFO: when an exception occurs,
the PEs can correctly resume execution. The scalar processor can access a register to
override some fields of vectorial instructions, enabling scalar broadcasts of values.

Since the most important argument claimed by the SIMD defenders is the removal
of synchronization issues, we think that the implicit LIW is a way to go further in
the synchronization of scalar code with the parallel code, allowing a more global code
optimization.

5 The interconnection network

Choosing a network consists in choosing the best trade-off between performance and
cost for a given class of applications.

5.1 Measuring the performance

Applications may require different communication types:

• random access,

• 1-neighbour access,

• all neighbours according to a multidimensional mesh,

and different object granularities for the network:

• size of the packets (1 bit to 1 Kbit),

• number of physical processors,

• number of virtual processors per physical processor (vp-ratio).

To measure the needs of a target application, we have to evaluate the occurrence of
every combination above. A unit system is required for such measurements to compare

www.manaraa.com

93

the performance of the network with the performance of the PEs. We have decided to
speak in terms of:

time required for the communication of 32 bits for each virtual processor
time required for the addition of 32 bits for each virtual processor

5.2 Measuring the cost

The global cost of the machine depends on the cost of the PEs and the cost of the
network. The latter is not easy to evaluate because it is not a linear function of the
performance. This cost grows by step when the implementation must move from one
technology to another at different hierarchical levels [FWT82]:

• the number of transistors required for the network by each PE,

• the number of pins required by each PE,

• the density on each motherboard (the number of routing levels on motherboards),

• the number of connections between motherboards.

5.3 Choosing the Network

Many network designs have been described in the literature and can be classified ac
cording to some criteria such as operation mode, control strategy, switching method
and network topology [Fen91,Gil86,Kot87].

In our case, the network is synchronous (SIMD machine) and the control is dis
tributed (for scalability and simplicity). The choice of the switching method is not
obvious:

• packet switching requires local storage and more complex hardware,

• circuit switching needs to establish a connection through several physical links.

The network topology is probably the major issue in parallel computer designing
because it depends on the applications and on almost all the machine parameters.

5.4 Implementation of a hybrid interconnection network

We propose a network for applications which require mostly random accesses (required
for image synthesis with distributed data-base) but also simultaneous accesses to all
neighbours on a multidimensional mesh.

These aspects seem incompatible and would require respectively a dynamic (switched)
and a static network. Existing machines demonstrate it:

static network CM-2 [Tmc87], ILLIAC IV [Hor82], MPP [Bat80],

dynamic network PASM [SSIK84], OPSILA [AB86],

static network and dynamic network MasPar [Bla90b].

www.manaraa.com

:g
.s::.

i
E e u.

94

Figure 4: The network for n = 4 and p = 2.

Ul w a.
0
1-

A candidate for the static network is the hypercube network and a candidate for the
dynamic network is the indirect binary cube MIN (multistage interconnection network)
[Sch91].

But since a dynamic network is a. spatial unfolding of a. static network, it must be
possible to use the physical wires between switches as a static network instead of using
two separated networks like in MasPar.

Each stage of our hybrid MIN can be seen as a dimension of the hypercube. If such
a. MIN is built with nlogP n switches instead of i logP n for a cube MIN with n PEs
and p x p-crossbars3 (ie n lines of logP n crossbars instead of i lines), it is possible to
partition the MIN into n similar subsets mapped on a. hypercube, as seen on figure 4
for n = 4 and p = 2.

The classical design approach leads to the development of an ASIC (Application
Specific Integrated Circuit) for the Hypercom. This is not convenient because we are
quite obliged to redesign the ASIC if the number of processors or the network change.

In order to follow our minimalist philosophy, the Hypercom circuit can be imple
mented with some reprogrammable LCA (Logic Cell Arrays) such as the new 4000
family of Xilinx [Xil90], which offers the required performance, complexity and pin
count. Each switch is reversible, offers broadcast capabilities a.nd uses a destination tag
algorithm to establish a connection.

For communications on a mesh, a control bit enable changing from the dynamic to
the static network. Thus routing overheads are avoided.

5.5 Performance and cost

This study is illustrated for the case of 256 + 1 processors packaged as:

3We consider a generalized hypercube pattern with p PEs totally interconnected on each dimension.
p = 2 for the standard hypercube.

www.manaraa.com

95

4

3

"' CD "' "' "' 1ii "' E 2 3 1ii c 2

~ 0
2 "iii
lL c

CD
E
iS

1 2 1

0 1

Indirect cube MIN Hypercube static network

Figure 5: The two configurations of the network with n = 256 processors and p = 4.

Network Average Average #cycle& per 92 bit&
type efficiency int

8 stages, 2 x 2 0.30 66.8
4 stages, 4 x 4 0.37 41.5

2 stages, 16 X 16 0.48 21.4
1 stages, 256 x 256 0.63 15.8

4 For regular routing, like matrix multiplication.
6The throughput is limited by the PE data bus.

double 256 bits 00

63.4 60.8 60
38.5 36.2 35.4
15 10.2 8.6

11.1 7.5 6.3

Table 2: Performance of some hybrid networks.

• 1 controller board,

• 16 motherboards of 16 PEs

in a 19" Triple Europe rack.

Peak I
throughput"

1.3 GB/s
2.6 GB/s
10 GB/s
10 GB/s"

The performance evaluation of the network for random routing is complex, contrary
to neighbourhood communications. We have simulated the random routing for a high
vp_ratio, as shown in table 2, with 1-bit datapaths. Related costs are represented in
table 3.

www.manaraa.com

96

Network #Link~ #Communication #switches #Wire~ between
type /PE pinJ/PE /PE motherboard&

8 stages, 2 x 2 2 18 32 158
4 stages, 4 x 4 4 30 64 282

2 stages, 16 x 16 16 90 512 960
1 stages, 256 x 256 256 960 65536 15360

Table 3: Costs of some hybrid networks.

8-stage and 4-stage (figure 5) networks present a correct trade-off between perfor
mance for random routing and cost. They are both small enough to be implemented in
the Hypercom with a reprogrammable LCA, even with 4-bit datapath, for the 8-stage
MIN, which is then very performant.

6 The code generation for POMP

Figure 6 illustrates the code generation process for POMP. The final instruction is
72-bit wide and consists in the following fields:

• a 32-bit instruction for the scalar processor;

• a 32-bit instruction broadcasted to the PEs;

• an 8-bit instruction to control the Hypercom&.

The global idea of our code generation consists in using commercial compiler and as
sembler, which is coherent with our philosophy to develop as little software as possible.

The most complex part for this generation is the splitting of the POMPC source
file into two C files. This is the first phase of a compiler. It is necessary to develop a
parser for POMPC. A typechecker identifies the collection of each expression and each
statement. An instruction breaker cuts the different parts of expressions to separate in
structions with scalar side effects (scalar assignment, scalar increments and decrements,
function calls, ...) from purely vectorial instructions which depend on an activity and
are repeated as many times as necessary to handle the virtual processing management4•

Consecutive instructions depending on the same collection are then associated to share
the same virtual management loop. Vectorial local variables declared in block handled
in a single virtual management loop are relegated to the proceuor collection: local
arrays are transformed into single elements which are commonly compiled in registers
(this confirms the usefulness of a RlSC processor for the PEs). The final step of the
program is the code generation. This part is simple because the generated code is C
which is a symbolic language. Three kinds of generators are used:

4This is the virtual management loop.

www.manaraa.com

simulation on the
Connection Machine

97

Figure 6: The code generation diagram

• the generation of the code for POMP. The different files are generated with syn
chronization points declared in the C codes by dummy function calls to pseudo
functions (synchro_i (), synchro_2 () , ...)

• the generation of a C file for one or more processes simulation: it is in fact the same
generation of code but in a single file. Each PE is simulated by a Unix process
which also runs the scalar code. A shared memory segment allows to synchronize
the processes and to simulate the communication. Thus it is possible to develop
in POMPC the communication routines for POMP and for the simulation. It
allows to measure the performance of the network. The number of processes is
defined by an environment variable. The monoprocess simulation is a multiprocess

www.manaraa.com

98

simulation with only one PE.

• the generation of a CPaRIS code (the C Parallel Instruction Set of the Connection
Machine [Tmc87]) which allows to perform real-time simulations on the Connec
tion Machine5 •

• other code generators can be thought of; for instance it could be interesting to
write some for the Intel Hypercube or for the Sequent Machine and to study the
interest of a SPMD language to program MIMD machines.

The second program to be developed is the synchronizer. It takes as inputs the
three files for each field and resynchronizes them. This program must understand the
assembly code of the target processor (here the MC88100) in order to identify the
synchronization pseudo-function calls. Synchronization is achieved by inserting nops in
the code to be delayed. This program must also take into account the pipeline structure
of the controller and the internal pipeline of the MC88100. The internal scoreboarding
of the chip must be managed at compile time to avoid the desynchronization of the
whole machine at run time.

The third program is a simple loader with a parallel symbolic debugger.
Only the last two programs depend on the type of the choosen processor and must be

rewritten if we choose another processor. This limits the complexity of the development
for today and for tomorrow.

7 Conclusion

Choosing to limit the developments does not lead to poor performances.
As concerns the hardware, we have only to develop the controller board, which is

easy thanks to the use of a commercial processor, the replicated module of the cluster
(a very small board with 9 circuits) and the interconnections of the 16 mother boards.

Software developments are limited to the development of a POMPC preprocessor
(20,000 lines of C) and the synchronizer (5,000 lines of C).

It is possible for programs requiring little networking (at most one global indirection
every 50 instructions) to reach the full efficiency of the machine: 4000 MIPS and 1700
MFLOPS with a small machine(~ 1 kW).

8 Current Work

A 3-processor machine is now under development. It will demonstrate the feasibility of
the controller and of the programming concepts. As soon as credits can be found (we
need 1 MFF in commercial chips) a prototype with 257 processors will be built.

The POMPC compiler is written. Simulations on the Connection Machine 2 (lo
cated .at the ETCA) and on Unix work. Small applications like a One-Step-Relaxation

5This language is used by people programming on the Connection Machine

www.manaraa.com

99

electrical simulator have been developed in POMPC and run on the Connection Ma
chine and on the Unix simulators. Some aspects of the semantic of POMPC have been
studied by Luc Bouge and Jean Luc Levaire [Bou90,Lev90]. A ray-tracer is under devel
opment using the spatial coherence of the rays with beam tracing techniques developed
in [Thi90].

References
[AB86] M. Auguin and F. Boeri. The OPSILA Computer. In INRIA, editor, Parallel Algo

rithms & Architectures, pages 143-153, North-Holland, 1986.

[AJ88] Kurt Akeley and Tom Jermoluk. High-Performance Polygon Rendering. In Computer
Graphics (SIGGRAPH '88), ACM, August 1988. Volume 22, Number 4, pp 239-246.

[Bat80] Kenneth E. Batcher. Architecture of a Massively Parallel Processor. In SIGARCH
80, pages 168-173, IEEE, 1980.

[BCJ89] Edward C. Bronson, Thoms L. Casavant, and Leah H. Jamieson. Experimental
application-driven architecture analysis of an SIMD /MIMD parallel processing sys
tem. In International Conference on Parallel Processing, pages 59-67, IEEE, Aca
demic Press, 1989.

[BDW85] John Beetem, Monty Denneau, and Don Weingarten. The GFll Supercomputer. In
SIGARCH 85, pages 108-115, IEEE, 1985.

[Bla90a] Tom Blank. The Design of the MasPar MP-1, A Cost-Effective Massively Parallel
Computer. In IEEE, editor, IEEE Compcon Spring 1990, February 1990.

[Bla90b] Tom Blank. The MasPar MP-1 Architecture. In IEEE, editor, IEEE Compcon Spring
1990, February 1990.

[Bou90] Luc Bouge. On the Semantics of Languages for Massively Parallel SIMD Architec
ture. Technical Report LIENS-90-13, Laboratoire d'Informatique de l'Ecole Normale
Superieure, June 1990.

[Chr90] Peter Christy. Software to Support Massively Parallel Computing on the MasPar
MP-1. In IEEE, editor, IEEE Compcon Spring 1990, February 1990.

[Fen91] Tse Yun Feng. A Survey of Interconnection Networks. Computer, 14(12):12-27,
December 1991. IEEE.

[FP81] Henry Fuchs and John Poulton. Pixel-Plane: a VLSI-oriented design for a raster
graphics engine. VLSI Design, 2(3), 1981.

[FPE*89] Henry Fuchs, John Poulton, John Eyle, Trey Greer, Jack Goldfeather, David
Ellsworth, Steve Molnar, Greg Turk, Brice Tebbs, and Laura Israel. Pixel-Plane 5:
A Heterogeneous Multiprocessor Graphics System Using Processor-Enhanced Memo
ries. In Computer Graphics (SIGGRAPH '89}, ACM, July 1989. Volume 23, Number
4, pp 79-88.

[FWT82] Mark A. Franklin, Donald F. Wann, and William J. Thomas. Pin Limitation and
Partitionning ofVLSI Interconnection Networks. IEEE Transactions on Computers,
C-31(11):1109-1116, November 1982.

www.manaraa.com

100

[Gap84) Geometric arithmetic parallel processor NCR,j5CG72. NCR, 1984.

[Gil86) Wolfgang K. Giloi. Interconnection networks for massively parallel computer systems.
In Future Parallel Computers, pages 321-348, Springer-Verlag, 1986.

[Hor82) R. Michael Hord. The ILLIAC IV, The First Supercomputer. Computer Science
Press, 1982.

[Inm89) The Transputer Databook. !NMOS, 1989.

[JHH80) James-H.Clark and Mark-R. Hannah. Distributed processing in a high performance
smart image memory. Lambda, 1{4), 1980.

[Ker89)

[Kot87)

[KR78)

[KV90)

[Lev90)

[Mlc90)

[Mot88)

[Par90)

[Sch91)

Ronan Keryell. POMP2: D'un Petit Ordinateur Massivement Parallele. Rapport de
Magistere, LIENS- Ecole Normale Superieure, octobre 1989.

S. C. Kothari. Multistage Interconnection Networks fo Multiprocessor Systems,
pages 155-199. Volume 26, Academic Press, 1987.

Brian W. Kernighan and Dennis M. Ritchie. The C programming language. Prentice
Hall, 1978.

David Kirk and Douglas Voorhies. The Rendering Architecture of the DN10000VS.
In Computer Graphics {SIGGRAPH 'YO), ACM, August 1990. Volume 24, Number
4, pp 299-307.

Jean-Luc Levaire. Deux semantiques operationnelles pour POMPC. Diplome d'Etude
Approfondie, LIENS, Paris, September 1990.

The multiC Programming Language: Extending C to Accomodate Data Parallel Pro
cessing. Technical Report, Wavetracer Inc., 1990.

MC88100 RISC processor user's manual. MOTOROLA, 1988.

Nicolas Paris. Definition de POMPC (Version 1.5). Technical Report, LIENS, fevrier
1990.

Isaac D. Scherson. Orthogonal Graphs for the Construction of a Class of Interconnec
tion Networks. IEEE Transactions on Parallel and Distributed Systems, 2{1):3-19,
January 1991.

[SSIK84) Howard Jay Siegel, Thomas Schwederski, Nathaniel J. Davis IV, and James T. Kuehn.
PASM: A Reconfigurable Parallel System For Image Processing. ACM SIGARCH
Newsletter, 12{4):7-19, September 1984.

[Thi90) Jean-Philippe Thirion. Interval Arithmetic for High Resolution Ray Tracing. Tech
nical Report LIENS-90-4, Laboratoire d'Informatique de l'Ecole Normale Superieure,
February 1990.

[Tmc87) Connection Machine Model CM-2 Technical Summary. Technical Report HA87-4,
Thinking Machine Corporation, April1987.

[Tuc9P) Russ Tuck. Porta-SIMD: An Optimaly Portable SIMD Programming Language. PhD
thesis, University of North Carolina at Chapel Hill, May 1990.

[Xil90) XC 4000 Logic Cell™ Array Family. XILINX, 1990. Technical Data.

www.manaraa.com

The Function Processor:
An Architecture for Efficient Execution of

Recursive Functions

Jonas V asell J esper V asell
Department of Computer Engineering

Chalmers University of Technology
S-412 96 Goteborg

Sweden

Abstract

The Function Processor is a wavefront array architecture, i.e., a regular structure
of locally interconnected processing elements called Function Cells, which operate
according to the data flow execution principle. By means of a compilation method
developed for this architecture, data :flow graphs for functional programs can be
created and mapped onto the processor array, so that each Function Cell is assigned
the execution of one graph node. The main result presented in this paper is a
Function Cell architecture which has been designed to support the functionality
required by these data :flow graphs. Some implementation results are also presented.

1 Introduction

Due to the rapid development of VLSI technology in recent years, array architectures
have become an increasingly interesting alternative for very fast algorithm implemen
tations. An array processor consists of a large number of simple processing elements.
Each processing element is directly connected only to a few neighbour cells, and repeat
edly performs a single operation on data arriving from these neighbours. Systolic ar
rays [Kun82, MMU87] is a well known example of these architectures. Another example
is wavefront arrays [KAGER82, KLJH87, Kun88, KMPS88]. These architectures differ
in the way the processing elements are synchronized. In wavefront arrays, a processing
element works in a way similar to the data flow principle [Arv80, DenBO, Vee86, McG89],
i.e., it performs its operation as soon as all necessary operands have arrived from its
neighbours.

Traditionally, array architectures have mostly been used for highly regular computa
tions in signal processing and image analysis. A regular computation is always performed
in the same way, independently of the actual input data. This limits the computations
that may be performed, but it makes it possible to exploit data parallelism to a large
extent. An example of a regular computation is multiplication of fixed-size matrices. Our

www.manaraa.com

102

Communication Port

Array Control
Unit

'
Function Cell

I
I
I

Figure 1: Function Processor Architecture

aim has instead been to try to use array architectures to support irregular computations.
It is then more difficult to exploit data parallelism, but much is still to be gained from
pipelining parallelism and a very low interpretation and communication overhead. We
have also wanted to find support for fast execution of symbolic computations expressed in
functional programming languages [Bac78, Hug89, Rea89]. Simulations have shown that
typically a speed-up of between five and fifty times can be achieved with wavefront arrays
compared to sequential execution on state-of-the-art workstations (see section 5).

We will here present an architecture for a wavefront array processing element suitable
for these purposes. These processing elements are called Function Cells. The Function
Processor (see figure 1) is an architecture consisting of an array of Function Cells and an
Array Control Unit. Several different types of systems can be built around the Function
Processor architecture. For instance, a system can consist of several Function Processors
and a conventional processor which performs administrative tasks. Another possibility is
to use the Function Processor as an accelerator for a host processor running a conven
tional implementation of a functional programming language. In this case the Function
Processor should execute one or several critical functions in the program, while the rest
of the program is executed on the host processor. The Function Processor could also be
used in a specialized system, for instance a signal processing system, where it executes a
limited number of different algorithms.

It is important that a new architecture is developed together with efficient program
ming methods. We have therefore developed a method to create data flow graphs, DFG:s,
for functional programs, which can be mapped onto the Function Processor. By mapping
a graph onto an array architecture, we mean assigning one processing element to each
graph node in a way that allows intermediate results to be transferred between nodes via
the ptocessing element communication links.

www.manaraa.com

103

(d)

Figure 2: Programming Example

In figure 2, an overview of the whole programming process is shown for a simple
example, the factorial function:

fac n = if n==O then 1
else n*fac (n-1)

The programming method takes a functional program, i.e., a set of (possibly mutually)
recursive function definitions, as input. From these function definitions a DFG is created.
The DFG for the factorial function is shown in figure 2(a).

In general, such a DFG can not be directly mapped onto the processor array. This
can be for many reasons, but the most important is that the DFG has to be static, i.e.,
it must not contain any nodes which represent an expansion of the graph. The reason
for this is naturally that the graph can not be allowed to expand during execution since

www.manaraa.com

104

the hardware configuration is fixed and finite. We have defined four requirements that a
DFG have to fulfill before it can be mapped onto the Function Processor. We say that a
DFG that meet these requirements is on hardware implementable form. Thus, the next
step in the programming or compilation process is to transform the original DFG to this
form (figure 2(b)).

Usually the execution order imposed by the hardware implementable DFG is not
the most efficient, and a number of optimizations are therefore applied on the graph.
For the factorial function, one important optimization takes advantage of the fact that
multiplication is a commutative and associative operation. Therefore, the order of the
successive multiplications can be reversed. This results in a graph which corresponds to
a tail-recursive version of the function in which the calculation starts immediately, rather
than after all recursive calls have been made and operands have been pushed on a stack
(figure 2(c)).

Finally, the optimized DFG is mapped onto the array (figure 2(d)). This sometimes
requires that some Function Cells are used only to route data between other cells.

The use of array architectures for irregular functional computations has also been pro
posed by I. Koren, G. Silberman et al (see [KMPS88]). They do, however, not especially
address the problems in supporting functional languages and symbolic computations. In
stead, they have concentrated on the problem of mapping DFG:s onto wavefront arrays.

M. Sheeran presents a method for synthesis of algorithm-specific array processors from
functional specifications in [She85]. This method has a set of predefined higher order
operators as its starting point.

2 Hardware lmplementable Data Flow Graphs

Traditionally, array architectures have been used for highly regular computations, i.e.,
computations which proceed in exactly the same way independently of input data. The
DFG:s of these computations have a very regular structure and lend themselves very well
to execution on an array architecture since they use each processing element in exactly
the same way all the time. But if we limit ourselves to such regular computations, we
also limit the usefulness of array processors.

If we compile a functional program to a DFG we are, however, not guaranteed to get
a DFG which can be used directly as a program for an array processor, since usually the
computations are irregular.

We say that a DFG which can be used as a program for an array architecture is hard
ware implementable. The intuitive meaning of this is that it can be seen as a description
of a machine performing a specific computation. We have defined the following criteria
for a Hardware lmplementable DFG (HIDFG):

• Finiteness: The number of nodes in the DFG must be finite and statically deter
mined, and must not exceed the number of available processing elements.

• Realizability: Each node in the graph must be executable in the resources available
in one processing element.

• Repeatability: The time from the start of one terminating computation in the DFG
until the next computation can be started must be finite. This means that no unnec-

www.manaraa.com

105

essary subcomputations must be started, unless they are known to be terminating,
and do not interfere with any other computation.

• Representability: The DFG must only handle data objects which can be represented
in a way that the processing elements can interpret.

As can be seen, these criteria are defined relative to properties of a target architecture.
The DFG of the factorial function shown in figure 2(a) contains a node representing

a function application. This node causes a problem since we want to statically assign
each node, or rather the operation of each node, to a processor. But the application
represents a dynamic expansion of the graph, which in this case is further complicated by
the fact that it is a recursive application, and there is no possibility to decide how many
expansions of the graph are necessary unless we know the value of the argument. This
means that the DFG is not finite, since the number of expansions, and thus the number
of nodes, can not be statically determined. The only possible solution to this problem
is to let all applications of a function be executed in the same instance of the function
graph. We could, of course, try to execute the application node in one processing element.
This would, however, not be realizable in most architectures, since it would require that
a processing element is capable of changing the operations of other processing elements
during execution.

Another problem with the DFG in figure 2(a) is the if-node which requires a boolean
value, and then chooses to output either the value of the then-branch or the else-branch.
Regardless of which branch the if-node eventually will choose, both branches are com
puted. This means that computations are performed which might not be needed. The
problem is that if an unnecessary computation is performed it might give rise to an in
correct result, e.g., if it contains a recursive application, or it might turn out to be a
non-terminating computation which blocks any further computations in the graph. It
can be seen from this discussion that the presence of an if-operation may give rise to a
DFG which is not repeatable, since it requires unnecessary subcomputations to be started,
which may lead to non-termination or even an incorrect result. In fact, handling condi
tionals is a major issue in the design and use of array architectures, since they are the
reason why a computation becomes irregular.

The DFG in figure 2(b) solves the problems described above, and is thus hardware
implementable. The problem with the recursive function application is solved by allowing
all applications of the function to execute in the same graph. In order to make this possible
we introduce nodes which keep track of where the results of different applications should be
sent. To make this as simple as possible, the order in which different recursive applications
are executed is statically determined. Executing multiple function applications in the
same graph also creates a need for saving the state of a function application. This is
accomplished by introducing stacks in the nodes that contain part of the state when a
function application is performed. In the figure, stacks are indicated by a dot at the input
of a node.

The solution described above is used for recursive applications, while non-recursive ap
plications are handled by substituting the graph of the applied function for the application
node.

Another possible approach to solve the problem with recursive applications would
have been a scheme where all data is tagged with instance numbers. This is a method

www.manaraa.com

106

which has been used in other data flow architectures, such as TTDA [Arv80, AN87] and
ETS (Monsoon) [CP90]. However, though this is a very flexible solution which makes
synchronization simpler, it requires much more complex hardware to be implemented in
the processing elements. This would make it more difficult to build sufficiently large
arrays. It would also increase the amount of data communicated between cells. Thus, we
have chosen a different approach which we believe is better suited for array processors.

We have developed a method to compile functional programs into HIDFG:s. This
method has been implemented in a compiler. Although it is intended to be as general as
possible, the method currently places the following restrictions on the source code:

• The method assumes that the source code has been lambda-lifted [Joh85], so that
it consists of a set of global recursive function definitions and a result expressions,
which contain no local function definitions or lambda abstractions.

• It is also assumed that all pattern matching and case expressions, have been trans
formed into case-expressions using only simple patterns, i.e., patterns which are
variables or constructors applied to variables. A method to do this transformation
has been described by Augustsson [Aug85].

• Only a set of predefined types is available, and therefore can no new type declarations
be made. The compilation method does not restrict the use of other data types, but
the set is restricted by the data type support provided by the target architecture.
For the Function Processor this means integers, booleans, pairs, character strings,
and lists of these types.

• The methods to handle higher order functions, i.e., functions taking other functions
as arguments or producing functions as results, are not yet fully developed. A set
of frequently used higher order functions has been made available as predefined
functions. These functions include the well-known map, filter, and reduce functions,
and the set could easily be extended with many other functions.

Since there exist methods for lamda-lifting and compilation of pattern matching, it is
only the restrictions on data types and higher order functions which can be considered
to be real restrictions on the source code. The programming method has been described
in [Vas90, VV91].

3 Architectural Requirements
The requirements on the Function Cell architecture are to a large extent determined by
the types of nodes that may appear in a HIDFG since it must be able to perform the
function of any such node.

In general, the nodes have one or two inputs and one or two outputs. They operate
according to the data flow execution principle, i.e., as soon as they have received all
necessary operands they perform their operation. The following are the node types that
are .used in mapped HIDFG:s.

Merge. This node has two inputs (left and right), and two outputs (data and selection).
When a data object is available at either input it is copied to the data output of

www.manaraa.com

107

the node. IT the object came from the left input, a boolean "true" value is sent out
at the selection output, and if it came from the right a boolean "false" is sent out.
The selection output is not always used. In those cases, it will be omitted in the
figures.

Switch. This node has two inputs (data and select), and two outputs (left and right).
A data type constructor is also always specified. The node requires data to be
available at both inputs. H the object available at the selection input is built with
the specified constructor, the object at the data input is copied to the left output,
otherwise it is copied to the right output. Sometimes only one output will be used
in the figures. It is then always the left output, i.e., the output used when the
selection object matches the specified constructor.

Match. This node has two inputs (match and select) and one output. A data type con
structor is also specified. If the object at the select input matches the specified
constructor, a boolean "true" is sent out as the result. Otherwise, the object at the
match input is copied to the output.

Split. This node has one input, two outputs (first and second), and a specified construc
tor. All objects arriving at the input must match the specified constructor. The
constructors should have two elements. The first element of the input object is
copied to the first output, and the second element is copied to the second output.

Wait. This node has two inputs (data and control) and one output. When objects are
available at both inputs, the object at the data input is copied to the output. In the
graphs, it is always the input in line with the output that is the data input. This
node type is special in that it can be specified to be in an initial state where one
object already is available at the control input. These nodes are used to synchronize
the flow of data at places where the order of computations is significant.

Route. This node can have a variable number of input-output pairs. A data object re
ceived at one -input is copied to the corresponding output. These nodes appear in
the physical mapping of a DFG when two nodes which are connected in the graph
are assigned processing elements which are not neighbours in the array, and thus do
not have any direct connection.

Constructors and operators. The rest of the nodes belong to this class. These nodes
perform some specific operation or constructor function on its inputs, or simply
produce a constant object.

Some of these node types may operate on different data types. Therefore the Function
Cell must be able to recognize and distinguish the types of the data objects which are
communicated in a DFG. More specifically it must be able to recognize the type of a
data object received on an input as well as whether all parts of it has been received. As
many data types as possible should be supported, but there are some which are especially
well suited for support in an array architecture. These are data types which easily can
be represented as sequences of bit-groups with a very small overhead for coding and
decoding. We wish to support four such data types which will be described in detail later.

www.manaraa.com

108

They are scalars, pairs, strings and lists. Scalars are single word objects such as integers
and characters. A pair is constructed from two scalar values. Both strings and lists are
sequences of other data objects.

Furthermore, some of the nodes in a DFG may have a LIFO buffer (a stack) at one
of its inputs. Also, the data types which are represented by variable length sequences of
data objects sometimes cause a need for FIFO buffering of some node operands.

When creating a physical mapping of a DFG, i.e., assigning a processor to each node
and finding a communication path corresponding to each arc, it is necessary to introduce
route-nodes in order to make it possible to connect nodes which are not neighbours in the
array. This can be simplified if it is possible to have a Function Cell perform not only the
operation of a specific node type, but at the same time route a data object between two
physical ports. This can be achieved since each Function Cell has six physical ports but
the node types use at most four of them. Thus, the remaining two ports could be used
for routing.

Since each Function Cell within an array must be able to handle any of the node types
and data types it must be reconfigurable, i.e., it must be possible to load and store a
configuration within a cell.

To make it possible to adapt the array size to a given application, it is important to
make the architecture truly scalable. It should be possible to enlarge an existing array
simply by adding more Function Cells. The main problem that prevents scalability is that
it is difficult to provide all cells with a common clock. This problem can be solved by
making the communication between cells asynchronous. This implies that each Function
Cell should have its own clock.

The ma.in part of the Function Processor architecture is the array of Function Cells.
The size of this array imposes a limit on the size of programs that may be executed on it,
i.e., the number of nodes in a physical mapping of a HIDFG must not exceed the number
of Function Cells in the array. In order to make this restriction less severe, it must also be
possible to store multiple configurations within one array, and to change quickly between
them.

In the following sections we will discuss the architecture of the Function Cell in more
detail.

The second part of the Function Processor architecture is the Array Control Unit
(ACU). The ACU makes it possible for a Function Processor to communicate with other
parts of a system, e.g., a host processor, a memory or other Function Processors. The ACU
is responsible for loading configuration data into the array, and for handling input and
output of data during execution. It consists of a number of independently programmable
communication channels, which are connected to the array.

4 Function Cell Architecture
The Function Cell architecture we are going to describe here can be divided into five sep
arate parts, each of which is separately described below. An overview of the architecture
i"s shown in figure 3.

www.manaraa.com

109

I

Buffermd -----~· Courol ·· • Buffer,ALU&Dd
llmlllliU« IWUI llmlllliU« COIIIJ'Oi

tale

Figure 3: Function Cell Architecture

4.1 Ports

The Function Cell can be divided into two major parts; a functional unit and an inter
connection network. The functional unit has three inputs called logical input ports A, B
and C, and three outputs called logical output ports A, B and C. The logical input and
output ports A and B are used to implement the inputs a.nd outputs of the different DFG
node types. The C ports are used for configuration and routing. At the logical ports are
receivers and transmitters (RA, RB, RC, and TA, TB, TC, respectively) placed. These
are responsible for the asynchronous communication between logical ports on different
cells via. interconnection buses.

The interconnection network is a flexible reconfigurable switch capable of connecting
each of the logical ports to any one of six physiool ports. Any physical port can act either
as an input port or as a.n output port. In the Function Processor, every physical port
on one cell is connected to exactly one physical port on another cell, or to one of the
external communication ports (see figure 1). Despite this very rigid physical structure,
the flexible interconnection network in the cells makes the task of mapping DFG:s onto
the array much easier. The interconnection network configuration is programmed a.t the
same time as the functionality of the cell is programmed.

Data. are communicated between cells in units of words. A word is also the amount
of data. that the ALU can process in one operation. The number of bits in a. word, the
wordwidth, will not be fixed in this architecture description. It can vary between different
implementations and applications, but a. pra.ctica.llower limit is probably 16 bits.

www.manaraa.com

110

4.2 Configuration

The Function Cell is programmable, or rather, reconfigura.ble. Each configuration specifies
the DFG node operation performed by the cell, as well a.s through which physica.l ports
the cell communicates with its neighbours. The configuration is stored a.s a set of control
words in a number of configuration registers. Several configurations ca.n be stored in the
cell, but only one configuration ca.n be active during the execution of one function, i.e.,
the configurations should not be seen &s instructions in a sequential program. By storing
several configurations in the cells, the Function Processor ca.n quickly switch between
different ta.sks by means of a global signal telling the cells which configuration to use. The
exact number of configurations and control words that the cell ca.n store is implementation
dependent, but the total number of bits required for one configuration ca.n be estimated to
48 plus the width of one word. One of the words in the configuration is always a constant
value used by the input buffers, either to recognize data objects, or as a. constant input.

The Function Cell can be either in execution mode or in configuration mode. The
mode is selected by means of an external signal. In configuration mode, the cell shifts
configuration data. from the logica.l C input into the currently selected configuration regis
ters, whose earlier contents simultaneously are shifted out via. the logica.l C output. This
operation is independent of the current configuration, and the logica.l C ports are routed
to predetermined physical ports. This means that, by putting all cells in an array in con
figuration mode, their C input and output ports form a. chain through which configuration
data. can be shifted to all cells. After a. new configuration has been stored or selected, the
input buffers and the control unit are emptied and reset. The cell can then start its new
operation in execution mode. In this mode, the C input is directly connected to the C
output, bypassing the configuration registers. This direct link can be used to route data
through the cell independently of its other functions. Thus, mapping of DFG:s onto a. cell
array is made easier.

4.3 Input Buffers
The input buffers are the parts that contribute the most to the special characteristics
of the Function Cell. Their main purpose is to asynchronously receive operands to the
node function implemented by the cell, and to inform the control unit when operands
are available. In accordance with the architectural requirements, one of the buffers can
be configured a.s a multi-word FIFO or LIFO (stack) buffer. Simulations of benchmark
functions indicate that the buffer size should be a.t lea.st 256 words. An overview of the
input buffer can be seen in figure 4.

We have, however, also chosen to let the input buffers provide support for a. number
of different data. types. The idea. is to let the input buffers be responsible for recognizing
objects of any specified data. type, thereby making the control algorithms for different node
types independent of the operand types. The merge node, for instance, is implemented
by an algorithm that only has to specify that as soon as one data. object is available a.t
any input it should be copied to one of the outputs. It does not have to be concerned
about whether the object is a. list that consists of several words, or a. simple sca.la.r value
represented by a. single word. These functions are performed by a. special part of the
input buffer ca.lled object detector. The object types to be expected a.t the input buffers

www.manaraa.com

111

Availobk EqCCNt MilCh Complete

~~· ~------------------~
v~ ------------------~

0

Figure 4: Input Buffer

ToALU

are specified as a part of the cell configuration. This information is taken from an analysis
of the DFG that has been mapped onto the Function Processor.

The object detectors can be configured to recognize one of four different data types.
Objects of all types are represented by sequences of elements, sometimes terminated by a
word with a special value. The elements can be either objects of another type less complex
than the type of the object they are part of, or single words. The objects of a type can be
built up in different ways, with different constructors. One of the constructors for each
type is designated the primary constructor of that type. The object detector is capable
of recognizing objects built with the primary constructor.

The least complex data type supported is the scalar type. A scalar object always
consists of a single word. H this word is equal to the configuration constant, the object
is recognized as the primary constructor. The next more complex data type is the pair
type. A pair is built up either by two scalar values, in which case it is formed with the
primary pair constructor, or a single word equal to the configuration constant.

The third data type is the string type which can have elements of scalar or pair type.
A string object consists of zero or more elements followed by the configuration constant
(note that no element must contain the configuration constant as this will be interpreted
as the string terminator). Typically a string can be a null-terminated character string,
i.e., a sequence of character codes followed by character code zero. A string containing
at least one element is built up with the primary string constructor. In a way, the string
type is many different types, each with a different termination word. Therefore, a string
can also contain elements of any other string type as long as no string element contains
the termination word of the string it is an element of. The most complex type is the
list type. A list is very similar to a string, except that it can contain elements of any
of the other types, and that the termination word for lists has a predefined value called
nil-token, which is equal to the smallest two-complement value a word can contain, i.e.,
-2wordwidth-t. A non-empty Jist is built with the primary Jist constructor (often called
cons) . The list has the advantage over other types that the object detector does not
depend on the configuration constant which therefore can be used for other purposes.

The object detectors output four status signals used by the control unit to determine
its actions. The first signal, available, indicates if any word (any part of an object) is
available in the buffer. The second signal, eqconst, indicates if the word available at the

www.manaraa.com

112

buffer output (if any) is equal to the constant specified in the configuration. The third
signal, complete, indicates when all the words in a complete data object of the specified
type have been received. The fourth signal, match, indicates if a complete object was
constructed with the primary constructor of the specified type.

The input buffers are so autonomous that the control algorithms only have to control
a single operation on them. This operation is to remove the word currently available at
the buffer output, called the topmost element, and replace it with the next word in the
buffer if there is one. This is controlled by the remove signal. When, for instance, an
addition node has added two scalar operands, these are removed from the input buffer,
and the cell starts to wait for two new operands to become available.

Usually, an input buffer receives data asynchronously from a receiver with which it
communicates via a handshaking protocol (valid, aclmowledge). It can, however, also
be configured to continuously receive a constant value; zero, one or the configuration
constant. Zero and one are frequently used constants, and are therefore made available
even in configurations where the configuration constant is used for other purposes.

4.4 ALU
The Arithmetic and Logic Unit (ALU) is responsible for all data processing in the Function
Cell. It takes the two operands coming from input buffers A and B as input, and it
produces two results on separate, independent outputs. Each result can be equal to
either of the two operands, or be the result of an arithmetic or logic operation on the two
operands. The results are selected by the control unit. The operation performed by the
ALU is determined directly by the contents of the configuration registers.

In this way, the control algorithms become independent of the ALU operation and the
number of different node types supported by the Function Cell is kept down. The set of
operations that the ALU can perform can vary between different implementations, but
traditional arithmetic operators (add, subtract, multiply), comparison operators (which
produce boolean results), and the boolean constants true (-1) and false (0) should be
supported. There should be no need to support unary operators since either operand can
be set to a constant value in the input buffers.

The ALU outputs are connected to the transmitters at the logical outputs A and B.
The transmitters are controlled directly by the control unit which informs them when
valid data are available at the ALU outputs. The transmitters also produce status signals
informing the control unit when the last valid data have been sent out. Data are not
sent by a transmitter before all the receivers it is connected to have informed it via the
interconnection buses that they have passed on the last transmitted word to their input
buffers. This information is exchanged between the transmitters and the control unit by
means of valid and ready signals.

4.5 Control Unit
The control unit is a finite state machine that implements control algorithms for all

node types supported by the Function Cell. After a cell has been configured, it is reset.
This means that the control unit enters a special start state in which it inspects the
configuration registers to determine what node type has been selected. It then enters

www.manaraa.com

113

The nlitc:A node reads an object from input A. If this object Ia a primary constructor object of
the input A type, one data object ia read from Input B and sent to output A, otherwise I& is
sent to output B. State 1 ia the initial state.
State 1. Read a complete object from input A:

If any word of input A object ia available
If input A object Ia complete so to state 2
Elle remove one word of Input A object and so to state 1

Ella &0 to state 1
State 2. Send a complete object from input B to the aelec&ecl output

If any word of Input B object ia available
If input B object ia complete

If Input A object matches primary constructor
If transmitter A ia ready

Remove one word from inputs A and B
Output &he word to transmitter A
Go to state 1

Else so to state 2
Else

If transmitter B ia ready
Remove one word from inputs A and B
Output the word to transmitter B
Go to state 1

Ella so to state 2

If Input A object matches primary constructor
If transmitter A ia ready

Remove one word from input B
Output the word to transmitter A
Go to state 2

Else &0 to state 2
Else

If transmitter B ia ready
Remove one word from input B
Output the word to transmitter B
Go to state 2

Eiae &0 to state 2
Else &0 to state 2

Figure 5: Control Algortihm for the 81Ditch Node

www.manaraa.com

114

the initial state in the control algorithm for this node type. A control algorithm usually
consists of a few states which typically correspond to how much of the necessary operands
that has arrived. In figure 5, the control algorithm for a switch node is given as an
example.

The control unit chooses its actions according to the status signals it receives from the
input buffers and the transmitters. These status signals are sampled by the control unit
at regular intervals. As mentioned above, the status signals from each of the input buffers
are available, eqconst, complete and match, and from each of the transmitters ready. In
each state, the control unit also outputs a set of control signals which have been described
above. These signals are the input buffer remove signals, the ALU output select signals,
and the valid signals to the output transmitters.

5 Implementation Results

A single chip VLSI implementation of the Function Cell architecture presented here, has
been made using a standard cell silicon compiler. The technology used is a double metal
layer l.5JLm CMOS process. The implementation uses 16-bit words and contains a 512-
word buffer. The largest parts in terms of chip area is the buffer and the interconnection
network including the transmitters and receivers. The interconnection buses are only 6
bits wide (4 bits data, 2 bits handshaking) in order to reduce the size of the interconnection
network and the chip pin-count. This means that a 16 bit word is communicated as four
4-bit groups. A whole 16-bit word can, however, be communicated in parallel with the
completion of one operation cycle which takes approximately lOOns.

The configuration data for this cell consist of 61 bits, so the whole configuration is
divided into four words. Thus, it takes at least 400ns to configure each cell in an array.
The number of cells in a practical implementation of the Function Processor should be
at least 100-200, which would result in a total configuration time of at least 40 - 80Jts,
assuming that cells are configured sequentially. This implementation allows only one
configuration to be stored in a Function Cell. However, it can easily be extended to allow
multiple configurations to be stored in each function cell. That would make it possible
to quickly switch between different configurations by means of a global signal which tells
the cells which configuration to use. The number of configurations stored in a cell could
probably be in the range 8-16 without making the hardware significantly more complex.

The Function Processor has been simulated, executing automatically compiled and
optimized HIDFG:s for a number of different functions. The simulated functions are:

fac: computes factorial number 20 (20!).

numbers: generates a list of integers from 1 to 200.

fib: computes the 15:th Fibonacci number.

sum: computes the sum of the list of integers from 1 to 20.

sort: builds the descending list of numbers from 20 to 1, and sorts that list in ascending
order using the insertion sort algorithm.

www.manaraa.com

115

Function Nodes Cells Execution Time (1-'s) Speedup over
Function Processor SPARC RT/PC SPARC RT/PC

fac 10 13 12.9 280 700 21.7 54.3
numbers 10 18 140.7 2320 6300 16.5 44.8
fib 15 17 1813.5 14085 37300 7.8 20.6
sum 21 32 64.2 437 1900 6.8 29.6
sort 36 57 873.6 3090 9300 3.5 10.6
primes 42 83 179.1 990 2400 5.5 13.4
queens 114 - 450.3 9770 24000 21.7 53.3
substitute 141 - 36.6 870 - 23.8 -

Table 1: Results from Simulated Performance Measurements.

primes: produces a list of all prime numbers smaller than 20, using the Sieve of Erathostenes
method.

queens: generates a solution to the problem of placing 7 queens in safe positions on a 7
by 7 chess board.

substitute: finds and replaces the first occurrence of a search string in a text.

The main results of these simulations are summarized in table 1. The first column
cont"ains the number of nodes in the HIDFG for the function. The effect of mapping the
HIDFG onto the Function Processor is shown in the second column, which contains the
number of Function Cells that are needed for the mapping, i.e., the number of HIDFG
nodes plus the number of cells used only for routing. These mappings, except for the map
ping sort, have been made by hand. The mapping of sort has been made automatically
using an experimental version of a program currently being developed especially for map
ping HIDFG:s onto the Function Processor. We have not yet been able to produce any
satisfactory mappings for the queens and substitute functions. More information about
the problem of mapping irregular graphs onto this type of architecture can for example
be found in [KMPS88, WSS89].

The next three columns show execution times for the functions on three different
machines. The first execution time is for the Function Processor executing the mapped
HIDFG (except for the last two functions which have been simulated without routing
delays). This has been taken from a simulator and assumes a lOOns cycle time. To
compare this with state-of-the-art single processor performance, the next two columns
show execution times for two conventional workstations; the SUN Sparcstation 1 and the
IBM RT/PC. On these machines, the functions were written in LML (Lazy ML) and
compiled with the LML compiler [Joh87, Aug87] which produces graph reduction code.
The last two columns show how much faster the Function Processor is compared to the
other two machines. ·

For the mapped functions, the execution times for the unmapped graphs have also
been measured: This shows that the routing delays caused by the mapping increases the
execution time by 7-75%. There does, however, not appear to be any correlation between
the execution time increase and the graph size for these examples.

www.manaraa.com

116

6 Conclusions

The Function Cell architecture presented here fulfills the requirements stated in section 3.
So far, the implementation results have shown that the architecture is realizable and in
accordance with the assumptions made in earlier stages of the project.

The most important restriction in the architecture presented here has to do with the
data types. There is no support for data structures which can not easily be represented as
a sequence. One solution to this problem is to use the Array Control Unit to access parts
of data structures to make it possible to handle them as pointers within the array. It is,
however, not yet clear how this solution would affect the Function Processor performance.

The compilation method does currently not support general higher order functions. It
does, however, support a set of predefined higher order functions, and it is also possible
to extend this to cover some user-defined functions as well.

Since the Function Processor is not a general-purpose architecture, its usefulness is
dependent on the type of system it is used in. We do, however, feel that the performance
results obtained so far, are encouraging and motivate investigations of different types of
systems using the Function Processor.

7 Acknowledgements

We would like to thank Tony Nordstrom for his contributions to this project. The project
has been financially supported by the Swedish Board for Technical Development, STU.

References

[AN87]

[Arv80]

[Aug85]

[Aug87]

[Bac78]

[CP90]

Arvind and R.ishiyur S. Nikhil. Executing a program on the MIT tagged
token dataflow architecture. In Proceedings of the PARLE Conference, June
1987.

Arvind. A data flow architecture with tagged tokens. Technical report, MIT,
Cambridge, Massachusetts, June 1980.

L. Augustsson. Compiling pattern matching. In Proceedings 1985 Conference
on Functional Programming Languages and Computer Architecture, Nancy,
France, 1985.

L. Augustsson. Compiling Lazy Functional Languages, Part II. PhD thesis,
Dept. of Computer Science, Chalmers University of Technology, Goteborg,
Sweden, November 1987.

J. Backus. Can programming be liberated from the von Neumann style? A
functional style and its algebra of programs. Communications of the A CM,
21:280-294, August 1978.

David E. Culler and Gregory M. Papadopoulos. The explicit token store.
Journal of Parallel and Distributed Computing, 10(4):289-308, December
1990.

www.manaraa.com

[Den80)

[Hug89)

[Joh85)

[Joh87)

117

Jack B. Dennis. Data flow supercomputers. IEEE Computer, pages 48-56,
November 1980.

J. Hughes. Why functional programming matters. The Computer Journal,
32(2):98-107, 1989.

T. Johnsson. Lambda lifting: Transforming programs to recursive equations.
In Proceedings 1985 Conference on Functional Programming Languages and
Computer Architecture, Nancy, France, 1985.

T. Johnsson. Compiling Lazy Functional Languages. PhD thesis, Dept. of
Computer Science, Chalmers University of Technology, Goteborg, Sweden,
February 1987.

[KAGER82) S-Y. Kung, K.S. Arun, Ron J. Gal-Ezer, and D.V. Bhaskar Rao. Wavefront
array processor: Language, architecture and applications. IEEE Transac
tions on Computers, C-31(11):1054-1066, November 1982.

[KLJH87) S-Y. Kung, S.C. Lo, S.N. Jean, and J.N. Hwang. Wavefront array processors
-concept to implementation. IEEE Computer, pages 18-33, July 1987.

[KMPS88) Israel Koren, Bilha Mendelson, Irit Pedel, and Gabriel M. Silberman. A
data-driven VLSI array for arbitrary algorithms. IEEE Computer, pages
30-43, October 1988.

[Kun82) H.T. Kung. Why systolic architectures? IEEE Computer, {1):37-46, Jan
uary 1982.

[Kun88) S-Y. Kung. VLSI Array Processors. Information and System Sciences Series.
Prentice Hall, Englewood Cliffs, New Jersey 07632, USA, 1988.

[McG89) J.R. McGraw. Data flow computing: System concepts and design strategies.
In S.P. Kartashev and S.I. Kartashev, editors, Designing and Programming
Modern Computer Systems, Vol.III, chapter 2, pages 73-189. Prentice Hall,
1989.

[MMU87) W. Moore, A. McCabe, and R. Urquhart, editors. Systolic Arrays. Adam
Hilger, 1987.

[Rea89] Chris Reade. Elements of Functional Programming. Addison-Wesley, 1989.

[She85) Mary Sheeran. Designing regular array architectures using higher order func
tions. In Proceedings 1985 Conference on Functional Programming Lan
guages and Computer Architecture, volume 201, pages 220-237. Springer
Verlag, 1985.

[Vas90) Jesper Vasell. Implementing functional programming languages on wave
front arrays. Licentiate thesis 84L, Department of Computer Engineering,
Chalmers University of Technology, 412 96 Goteborg, Sweden, April1990.

www.manaraa.com

(Vee86)

(VV91)

(WSS89)

118

Arthur H. Veen. Dataflow machine architecture. A CM Computing Surveys,
18(4), December 1986.

Jonas Vasell and Jesper Vasell. A functional programming technique for
programmable wavefront arrays. In E.F. Deprettere, editor, Algorithms and
Parallel VLSI Architectures. Elsevier, Amsterdam, The Netherlands, (to ap
pear in 1991).

Shlomit Weiss, llan Spillinger, and Gabriel M. Silberman. Architectural
improvements for data-driven VLSI processing arrays. In Proceedings of
the 1989 Conference on Functional Programming Languages and Computer
Architecture, pages 243-259, London, 1989.

www.manaraa.com

Abstract

THE G-LINE
A DISTRIBUTED PROCESSOR FOR GRAPH REDUCTION

R.Milikowski and W.G.Vree

Computer Systems Department, University of Amsterdam,
Kruislaan 409, 1098 SJ Amsterdam, the Netherlands,
milikows@fwi.uva.nl.

The G-line is a horizontally coded graph reducer. In lazy functional languages much
time is used to manage the graph. A method has been developed to perform construction
of a subgraph in a single parallel access to the graph memory. With a simulation, using
infinite hardware, we have shown that the architecture performs well. We argue that a
realistic implementation is possible.

1. Introduction

The distributed G-processor is specially designed to perform lazy graph reduction. It is a
hardware implementation of the abstract Goteborg machine [1]. In the distributed G
processor the price of laziness is small as managing the graph scarcely causes cost.

Laziness is a property in which computational work is postponed until it is really
necessary. Until that moment the representation of that work is stored in the graph.
Often evaluation is never called for. In the second place laziness avoids doing the same
work more than once. This is implemented in the graph by means of sharing. The core
of a machine which implements lazy graph reduction generally consists of a heap
containing the graph and a stack containing pointers into the graph. During the reduction
process data is moved between the program code, the graph and the pointerstack and
inside the pointerstack and the graph. Operations on the graph are mostly seen as a
burden. Constructing it, keeping it up to date, consulting it and collecting garbage in it
costs a lot of time [2]. Research is done to limit the work on the graph and gains have
been made in different ways. Compared to the 'standard combinators' of Turner the
'program derived combinators' as used in the G-machine are more efficient allowing
larger steps in the reduction process and accessing the memory substantially less [3].
Compiler directed approaches extract as much information as possible in advance from
the expression to be evaluated. By means of strictness analysis building of graphs can be
prevented, and by sharing analysis unnecessary updates can be avoided. However, in
programs of a realistic size only a part of graph construction can be avoided.

In recently developed abstract machines more efficient representations of expressions in
the heap are used. These are the 'TIM-machine' which uses closure like representations
and the 'spineless tagless machine', and the most recent version of the G-machine- the
<W,G> machine [4,5,6,7]. Implementations of these reducers run on existing processors

www.manaraa.com

120

by further compilation. However, there are also well known examples of special
processors designed for graph reduction. The first machines reduced SKI-combinators:
SKIM and NORMA [8,9]. To assess the performance of supercombinators simulators
have been built. Kieburtz designed a RISC architecture mainly based on the Goteborg
machine. It contains a special designed instruction-fetch-unit and uses caching [10,11]. It
makes efficient execution of sequential G-eode possible. At the moment by far most the
architectural work on reduction machines is directed towards building parallel reducers
and concentrates on the communication between the processors. Little attention is paid in
current research projects to the processor itself [12].

The distributed G-processor, designed by the first author, is based on parallel access of
the graph memory and the pointerstack. Constructing a subgraph only takes a single
access to the heap. This is realized by using horizontal microcode. This micro
parallelism has to be distinguished from parallel redex reduction. The latter means
reduction of different redexes of the graph on different machines. The micro parallelism
in the G-line is parallelism inside the reduction of a single redex. First we have
implemented a brute force version in which we do not bother about the amount of
hardware and in which the parallelism is unbounded. The main goal is to study the
validity of the architecture idea and to gather statistics about performance. The results
are presented in this paper. In a next phase of our research we apply this idea to develop
a realistic distributed design that could be realized in hardware.

2. Basic graph operations

The reduction process consists of various parts. Before a function is called, pointers to
the arguments are collected on the top of the pointerstack. Sometimes pointers to the
arguments are present elsewhere on the pointerstack. In that case these pointers are
copied to the top of the pointerstack. In other cases the pointers must be fetched from the
graph by an operation called 'unwinding'. Pointers to the arguments being on the top of
the pointerstack, the function is called to do its work. The called function terminates its
work by updating the root of the redex with the result. The result may be a value
(present in a node created recently) or the root of a constructed subgraph. It may be
necessary to evaluate the arguments of the function themselves before the function can
use them. In that case the evaluation mechanism is executed recursively. Many variations
of these operations are possible and indeed used but we will concentrate on the simplest
versions. In fig 2.1 - 2.3 reduction operations in a graph with binary nodes are shown.

~\q;'
hd ~=~

b nil
Fig 2.1 A subgraph representing the expression 'add (hd(cons b nil)) a' is constructed.
The left part of the figure shows the pointers tack before this operation. Afterwards the
top of the pointerstack points to the root of the sub graph just constructed.

The pointers a and b point to nodes somewhere in the graph. These nodes may
themselves be the root of subgraphs. The graph construction is done by moving data

www.manaraa.com

121

from the program and from the pointerstack to the heap. After constructing a new
subgraph a pointer to its root is at the top of the pointerstack.The most extensively used
graph operations (graph construction, unwind and update) are pictured in fig 2.1. In the
left of the figures the situation on the pointerstack before the operation is shown and in
the right the situation afterwards.

~~~00 
b 

Fig 2.2 Building argument stack. On the left part of the figure the top of the pointerstack 
points to the root of a redex .. On the right part pointers to the arguments of the function 
add have been pushed. 

Before unwinding starts the top of the pointerstack points to the root of a redex (fig 
3.2). A redex is a function f applied to a number of arguments. These arguments must be 
copied to the pointerstack and will then be used by the code of the function f which is 
called after unwinding. 

The arguments are found by inspecting the type field (tag field) of the left child node, 
starting at the root of the redex. If it is an apply node (@) then the right child is moved 
to the pointerstack and the left child is entered. This is repeated until the left child is a 
function node. 

Fig 2.3 Updating; on the left is the result of some computation pointed to by the top of 
the pointerstack. on the right this result has been copied in the root node of the redex. 

The update is done by reading both pointers of the pointerstack and then moving the 
contents from one node to another (fig 2.3). If not shared the source node will become 
garbage. 

The G-eode is a specially designed graph directed language to perform the graph 
operations [1]. Usually, this code is in a next step compiled to code for some existing 
machine. 

2.1. Memory memory bottle-neck 

Execution of the basic graph operations consumes much time of the reduction process. 
Different performance data have been published, using different ways to measure the 
performance giving an insight in the way work is spent during the reduction process. 



www.manaraa.com

122 

Results have been published by Kieburtz on his S-machine - an optimized version of the 
G-machine concerning real execution times [13]. The ALU operations generally consume 
a very limited portion of time, in this benchmark from 12% to 2 % of the execution 
time. Nearly all the rest are moves of data from heap to heap, from stack to stack, from 
stack to heap from, the program to the heap and vice versa.Hartel has run a realistically 
sized benchmark on a variant of the G-machine [14]. He counted memory accesses, 
resulting in similar conclusions. We will call this the memory memory bottle-neck. One 
may expect parallel operations on the memory will speed up the execution. 

3. Constructing a subgraph 

As a running example we will take append, which is is lazy in cons. 

append x y =if (null x) then y else (cons (hd x) (append (tl x) y)) 

Entering the else part of the expression causes construction of a suspension of append 
because cons is not strict in its arguments. The work stored in the else part is only done 
if the 'need to print' forces so. Until that moment a representation of this expression (a 
suspension) is stored in a graph, shown in fig 3.1. The suspensions of (hd x) and (tl x) 
are also constructed, though advanced compiler techniques could avoid this. Each node 
of the graph consists of three fields. The first field of a node - the tagfield - contains 
information about the node type and some additional information. Both other fields may 
be used to store values, e.g. floats. In function nodes the second field contains the address 
of the code. The second and third fields of an apply- and a cons node contain pointers. In 
the example the crossed fields are unused. More compact representations exist. However, 
we start our design from this conventional memory representation. 

Fig 3 .1. Representation of a suspension in the heap as written after execution of a G-eode 
sequence. 
The work to be done when writing this graph includes 21 accesses of the graph memory 
(all fields without a cross). The contents of the tag fields are known at compile time and 
are normally stored in the program code. The offsets inside the reduct can be computed 
by the compiler in advance. At the moment the address is known at which construction 
of this piece of graph starts all 'local pointers' (pointers inside the subgraph) can be 
computed. Only the pointers Ax and Ay are unknown at compile time and must be fetched 
from the pointerstack at runtime. Writing this subgraph in a conventional machine 
requires multiple accesses to the program code, the heap and the pointerstack. 



www.manaraa.com

123 

4. Micro parallel architecture 

A subgraph to be written will be considered as a vector of which the elements are the 
fields of the subgraph. The architecture of the G-line is organized in such a way the 
elements of this vector can be written in parallel. In contrast to vectors in numerical 
computing the fields of these vectors are not constructed uniformly. The contents of the 
various fields of a single sub graph may originate from the operand of the code, from the 
pointerstack or from an address computed at runtime. The mechanism to write a single 
field is rather complex, actually nearly as complex as a whole conventional G-machine. 

In the G-line the graph memory is divided in memory banks. All memory banks are 
managed by their own G-machine. The global buses that connect these G-machines are at 
the same time the address and data bus of the heap. These G-machines are equal and 
execute synchronous nearly the same code when a graph access has to be done. A write 
on the memory can be handled locally by the appropriate machine. No communication 
with the other G-machines is required. In that way it is possible that a number of writes 
can be done in parallel which is the case in graph construction. A read on the heap in the 
conventional architecture means the data is moved from the heap via the bus to the G
machine. In the G-line data is moved from one of the memory banks via the global buses 
to all replicas of the G-machine. That G-machine that manages the specific memory bank 
to be read performs locally the addressing of the memory bank and takes control of the 
global buses. All local machines are nearly complete copies of the whole G-machine in 
hardware and in software. They differ by the fact they manage different memory banks. 
Furthermore those sections of the program that deal with graph writing are distributed 
over the different machines, as the graph writing itself is distributed over the different 
machines. Local G-machines contain replicas of the valuestack, the pointerstack, the 
ALU , the program counter (PC) and the control store. Care has to be taken that the 
replicas of the stacks and the PC remain identical in the local G-machines. This invariant 
will be called' the shadow condition which has to hold always after execution of an 
instruction. There is no hierarchy between the machines and no scheduler. In the next 
paragraphs this architecture and the way a program runs on this distributed processor 
will be described. 

4.1. G-Iine 

Fig 4.1 G-line. Each of the machines is a replica of the G-machine containing a memory 
bank of the heap. 



www.manaraa.com

124 

The number of G-machines in the G-Iine architecture of fog 4.1 is equal to the 
maximum number of fields of a subgraph that will possibly be written in a specific 
program. 

As each node consists of three fields, three G-machines together forming a cluster, are 
needed to write those fields in parallel. 

First, we discuss the different units of the G-machines. The tag, left and right machines 
are not exactly equal. Fig 4.2 shows a left machine. 

The heap: The heap in fig 4.2 contains the graph and consists of 3n memory banks 
(sometimes called local memories), in which n is the number of clusters. In an 
alternating order these are memories containing tag fields, left fields and right fields. A 
heap cell consists of a word from all three local memories in a cluster on a single global 
address. The tagfield normally contains the tag and the number of arguments of a 
function, and some runtime information. According to the shadow condition the heap 
pointers are equal in all local machines. To guarantee that the heap pointers in all 
machines are equal after garbage collection, a compacting garbage collector will be used. 
The heap has bi-directional communication with the global buses. The tag memory with 
the tag bus etc. 

riuhthn~ 

lf'fthn~ 

IRuhns 

1- - --- -- - - --- ------- -.., 
~g test .r-,. 1 

I 
1 
I 

~- program value- I 
re stack I 

I 

WPf I 6eap n:gistt:r I I 
I 
I 

~ 
I memory 

bank (left) pointer I 
or stack I local heap 

I 

L---------------------1 
Fig 4.2 Left machine 

Program memories are identical in each machine. The start address of a specific function 
are the same everywhere. The code is equal, except for the MKGRAPH instruction, 
which is introduced in the next section. 



www.manaraa.com

125 

The microstore: Dividing the execution of instructions over a number of machines, 
makes the operation to be done in each G-machine very simple, especially after some 
minor optimizations, which we treat in the final paragraph. UNWIND remains the most 
complex instruction. 

The heap register: The heap register contains the local heap pointer which is equal in all 
G-machines. During graph construction it may be necessary to write locally a remote 
pointer (to a node constructed in parallel in a different cluster). It is computed locally 
from the heap pointer and the operand of the MKGRAPH instruction, in this case 
containing the number of the remote cluster. 

The pointerstack: Each machine contains a copy of the pointerstack. The pointerstacks 
are kept identical during execution of the program. The pointerstack has only input from 
the global right bus and only locally delivers output 

ALU and valuestack: The ALU only operates on data present on the valuestack. The 
valuestack does not communicate with the outside world. 

The buses: The distributed G-processor has three global buses. Each G-machine has 
access to the tag the left and the right bus. Each time only a single machine will do write 
operations to the buses. It is analogous to the way data in a memory consisting of 
different banks are put on the bus. An address on the address bus will cause only a single 
memory bank to become active. All three buses are data buses. Global addressing is only 
used in case of memory indirections. The address then originates from data, in casu a 
left field. So global addressing is only done by the left bus. Locally only the heap pointer 
addresses the heap. 

In the G-line only the contents of heap words are transported over the global buses. The 
state of the machine uniquely determines from which global heap address this word is 
fetched and so which local machine will access the buses. No contention is possible and 
no arbitration is required. The code produced by the compiler and the synchronous 
execution of the processes guarantee this. The tag bus is often used for testing as a part 
of the program control. 

The clock: Besides the buses the clock is the only global hardware. The clock 
synchronizes the G-machines. 

5. Programming the G-line 
To present the working of the machine we show the append program as it is compiled 
for the the conventional G-machine, using the compilation scheme of Johnsson [1]. 

Instructions 7 - 17 construct the subgraph of fig 3.1. As each G-machine in the G-line 
has to write only a single field of a specific subgraph, this sequence will be replaced in 
each G-machine by code to write only that field. 

0 
1 
2 
3 

FAPND PUSH 
EVAL 
NULL 
JFALSE 

0 II copy pntr to x to top of pointerstack 
llevaluatex 
II test if x = null 



www.manaraa.com

126 

4 PUSH II copy pntr to y to top of pointers tack 
5 EVAL II evaluate it 
6 JMP 2 

7 LABELl PUSHFUN FHD II else; construction of suspension 
8 PUSH 1 II copy pntr to y to top of pointers tack 
9 MKAP II make apply node 
10 PUSHFUN FAPND II push pointer to append node 
11 PUSHFUN FfL II push pointer to tail node 
12 PUSH 3 II copy pntr to y to top of pointers tack 
13 MKAP II make apply node 
14 MKAP II make apply node 
15 PUSH 3 II copy pntr to y to top of pointers tack 
16 MKAP II make apply node 
17 CONS II make cons node 

18 LABEL2 UPDA'IE 3 II update root of redex with result 
19 RET 2 II pop arguments and return to caller 

Fig 5.1 Sequential G-eode of the function append x y = if (null x) then y else (cons (hd 
x) append (tl y) ). 

This varying code will be the instruction 'MKGRAPH_Action Field'. Four different 
MKGRAPH_ opcodes exist, according to the the kind of action needed to write a field. 

MKGRAPH_heap n: construct global heap address by prefixing local heap 
pointer by and write this into new local heap field 

MKGRAPH_stack n: copy n-th element relative to top ofpointerstack in 
new heap field 

MKGRAPH copy n 
MKGRAPH=nop 

move n into new heap field 
machine performs nop on heap 

The nodes of a new subgraph are written in parallel as a vector on the same local 
addresses in the different clusters of the G-line. An offset between two nodes in a 
subgraph as in fig 3.1 is translated into an distance between clusters in the G-line. This 
distance, or the number of the remote processor, is stored in the operand of the 
MKGRAPH_addr instruction. As the local heappointers are equal a global pointer to the 
remote node can be constructed at runtime locally by concatenating the contents of the 
heap pointer register with the operand of the MKGRAPH_addr instruction. If a operand 
has to be stored in the graph, a 'MKGRAPH_copy n' instruction is used. This is the case 
for values in the left and the right fields. Tag fields are always constructed by a 
MKGRAPH-copy instruction. Four MKGRAPH_ instructions are defined. 

The transformed program is shown in fig 5.2. 

Fig 5.3 shows all local MKGRAPH instructions derived from the sequential program. 
The first column denotes the machine (number of the machine cluster and machine in the 
cluster). In the tag machines always the operand of the MKGRAPH instruction is written 
into the heap. One may consult fig 3.1 to see how each MKGRAPH instruction constructs 
a field of this subgraph. The only difference is that the arity of the function is added in 
the operand. 



www.manaraa.com

0 
1 
2 
3 

4 
5 
6 

FAPND 

7 LABEL 1 

8 LABEL 2 
9 

PUSH 
EVAL 
NULL 
JFALSE 

PUSH 
EVAL 
JMP 

MKGRAPH_Action 

UPDATE 
RET 

127 

0 

2 

Number 

3 
2 

Fig 5.2 Code of append in G-machines of the G-line. 

MACHINE 

0 tag machine 
1 tag machine 
2 tag machine 
3 tag machine 
4 tag machine 
5 tag machine 
6 tag machine 
7 tag machine 

OPCODE 

MKGRAPH_copy 
MKGRAPH_copy 
MKGRAPH_copy 
MKGRAPH_copy 
MKGRAPH_copy 
MKGRAPH_copy 
MKGRAPH_copy 
MKGRAPH_copy 

OPERAND 

cons 
app 
fun 
app 
app 
fun 2 
app 
fun 

1 II addr(l,hp) 
2 II addr(2,hp) 

II construct field subgraph 
operand differs per machine 

COMMENTS 

0 left machine 
1 left machine 
2 left machine 
3 left machine 
4 left machine 
5 left machine 
6 left machine 
7 left machine 

MKGRAPH_heap 
MKGRAPH_heap 
MKGRAPH_copy 
MKGRAPH_heap 
MKGRAPH_heap 
MKGRAPH_copy 
MKGRAPH_heap 
MKGRAPH_copy 

17 II code addr FHD 
4 II addr(4,hp) 
5 II addr(S,hp) 
0 II code addr F APND 
7 II addr(7 ,hp) 
10 II code·addr FfL 

0 rightmachine MKGRAPH_heap 3 address(3,hp) 
1 right machine MKGRAPH_stack 0 copy pntr to x from pstack 
2 right machine MKGRAPH_nop unused field 
3 right machine MKGRAPH_stack 1 copy pntr to y from pstack 
4 right machine MKGRAPH_heap 6 address(6,hp) 
5 right machine MKGRAPH_nop unused field 
6 right machine MKGRAPH_stack 0 copy pntr to x from pstack 
7 right machine MKGRAPH_nop unused field 

Fig 5.3 Instructions to construct the subgraph of FAPND in a distributed way. 

In the comment is denoted which field of the subgraph of fig 3.1 is written to the local 
memory. By address(3,hp) is meant the address that is constructed by adding 3 as most 
significant bits to the local heap pointer. The common code address of a function is the 
address where the code of this function starts. In this example, though not shown, the 
code of FI'L starts at 10 and of FHD at 17. 

5.1. Running the program 

All G-machines are started to run together. All execute, synchronized by the global 
clock, the same instruction. The way the G-instruction is executed in the different G-



www.manaraa.com

128 

machines depends on the type of the machine (tag left or right) and on the kind of 
instruction it concerns. The G-instructions can be split into three groups, according to 
their implementation in the G-machines of the G-line. 

no_heaps: ADD (and the other arithmetic and logical operations), JMP, JFALSE, 
LABEL, SLIDE n, PUSH n. These instructions do not access the heap, they only 
use pointerstack, valuestack and ALU and are executed identical in all G-machines. 

old_heaps: PRINT, GET, UPDATE, EVAL, UNWIND, NULL, HEAD, TAIL. 
Instructions access existing graph in the heap that is globally addressed. Depending 
from the fact if the addressed heap cell is in their own local memory the execution 
is partly different over the G-machines. 

new_ heaps: MKGRAPH_ Field. It creates new graph in the heap and accesses only 
the local memory. Is executed differently in different G-machines 

Only the old_heaps communicate with the other G-machines in the G-line. Some 
examples will show the way the execution of the code is implemented. 

ADD: All machines arrive at the same time at the instruction ADD and then their local 
ALU adds the top two elements of their valuestacks, which were the same in all 
machines, and replace these by the result of the addition. After execution of ADD all 
valuestacks are identical again and the shadow condition is fulfilled. 

f.illi.. The instruction GET in the conventional G-machine reads the value (integer or 
boolean) from the heap node pointed at by the top of the pointerstack. This value is 
pushed on the valuestack. In the distributed machine each G-machine now looks if the 
address on top of the pointerstack points in its own local memory. If this is actually the 
case it moves the value from this node to the global left bus else it waits. Next, the rest 
of the GET instruction again is executed identically by all G-machines. Each one pushes 
the contents of the global left bus on its own local valuestack. Again: the shadow 
condition remains fulfilled. 

EYAL AND UNWIND EV AL starts like GET, resulting in the root of the redex being 
on the buses. EVAL proceeds in all G-machines with a test on the tag bus. If the tag is a 
"cons" , a "number" etc, the contents of the node is available on left and right bus for 
processing by the next instruction. If it is an apply node each G-machine starts execution 
of UNWIND: 

The contents of the root of the redex is still on tl1e buses. Two actions are undertaken by 
each G-machine: 
- The contents of the right bus is pushed on the pointerstack (it is the pointer to an 

argument) 
- The contents of the left bus is inspected. It contains a pointer to a node one step 

deeper down in the spine. If it points in the local memory the contents of that 
memory location is moved to the appropriate bus. All G-machines repeat the 
UNWIND algorithm until a function-node appears on the buses. Then the contents 
of the left bus - the code address of this function - is moved to the PC in each G
machine. 

All pointerstacks always remain identical (shadow condition). 

M[(GRAPH Field We have already described to which micro operations the variable 
part of the instruction is decoded. Furthermore, the address of the root, computed from 



www.manaraa.com

129 

the local heap pointer, is pushed on the pointerstack in all machines. The local heap 
pointers are incremented all over the G-line. 

Graph construction instructions from the conventional G-machine (MKAP, MKCONS, 
PUSHINT i, PUSHNIL, PUSHFUN f) are superseded by MKGRAPH in the G-line. 

Special attention has to be paid to the UNWIND instruction in case the depth of the spine 
(d) is larger than the arity k of the function F at the bottom of the spine. In the 
conventional G-machine unwinding is done by first pushing pointers to the spine nodes 
on the pointerstack. In the next step those spine pointers belonging to the current redex 
are replaced by pointers to arguments. This is called restructuring of the pointerstack. In 
case d > k the top part of the spine will not be restructured. Restructuring is a costly 
operation. Our strategy is inverse restructuring or rewinding. Always pointers to the 
arguments are pushed on the pointerstack. In case d > k the arguments have to be 
replaced by the spine node pointers. Starting at the top node an inverse restructuring is 
performed. The argument pointer is replaced by the spine node pointer. This operation 
is repeated (d - k) times. An inverse restructuring operation certainly is not more costly 
than restructuring in the G-line. Moreover restructuring always is required in the 
conventional G-machine. As in our benchmark in less than 3 % of all UNWIND 
operations d > k, inverse restructuring is required in only few cases. 

6. Generating the code 

The G-eode for the G-line is derived from the sequential G-eode by a backend. This 
backend simulates the execution on the stacks and the heap. Those parts of the G-eode 
which construct a subgraph (instruction 7 - 17 in the example) will do this in the 
simulated heap resulting in a piece of memory like the append sub graph in fig 3.1. Next 
we assign each field of this graph to a G-machine and MKGRAPH instructions are 
generated to construct this field. 

7. Efficiency 

We have compared the number of memory accesses in the conventional architecture with 
those in the G-line. To count the number of memory accesses in the conventional 
reducer is, with some minor differences, similar to the way Hartel has counted [14]. To 
each G-instruction a number of accesses to the different stores (heap and stacks) is 
assigned. The representation of the a subgraph in fig 3.1 also contains function nodes 
(for Hd, Tl and Apnd). This is not necessary as these nodes are preloaded by the machine 
and the subgraph only contains a pointer to those function nodes. We have corrected our 
measurements to account for this optimization. The result of this way of counting in the 
sequential G-machine is in the first column of fig 7.1. We have used peep hole 
optimization concerning the accesses on the valuestack. If a boolean is stored on the 
valuestack (p.e. after a tag test) and in the next instruction is popped again (in executing 
JFALSE) a short cut is used. The second column contains the results of the G-line. To 
count the number of accesses in the G-line we proceeded as follows. If all G-machines 
perform an identical memory operation (e.g read on a stack) in parallel, it is counted as 
a single memory access. If a specific G-machine reads the memory and the other 
machines are idle counting is continued in an active machine. This is the case when 



www.manaraa.com

130 

executing the old-heaps. The maximum number of accesses by MKGRAPH in a single G
machine is one heap access, one access to the pointerstack if a data from this stack has to 
be moved to the heap and one access to the pointerstack to push a pointer to the root of 
the subgraph. To make sure the maximum work is measured, counting during execution 
of MKGRAPH is done in the the cluster that constructs the root of the sub graph. 

We have used a set of benchmark programs that are compiled from SASL, a run time 
typed functional language, to Johnsson's intermediate language and then to G-eode. 
'Schedule' calculates an optimum schedule of 7 parallel jobs with a branch and bound 
algorithm [15]. 'Hamming' prints in ascending order the first 50 natural numbers whose 
primes are 2,3 and 5 only. 'Paraffine' enumerates in order of increasing size the first six 
paraffine molecules. 

dump (context switch) 
valuestack 
pointers tack 
heap 
total 

dump 
values tack 
pointers tack 
heap 
total 

dump 
values tack 
pointers tack 
heap 

sequential micro parallel 

paraffine 
52 K 52 K 
77 77 

429 209 
377 132 
936 471 

hamming 
98 K 98 K 
78 78 
590 299 
519 192 
1284 668 

schedule 
58 K 58 K 
47 47 

539 301 
498 188 

optimized 

52K 
77 

143 
78 

351 

98K 
78 

198 
109 
484 

58 K 
47 

189 
97 

Fig 7.1 Memory accesses (in thousands) in a conventional G-machine and in the G-line 
In fig 7.1 we show the number of register saves, labeled "dump" due to a context switch 
(two register saves when a function is called and two more when returning from the 
function). The dump is not treated in the architecture because it is often implemented on 
the valuestack. 

7 .1. Optimizations 
Some optimizations fit nicely in the architecture of the G-line because they are 
implemented very simply in the hardware or because they make further use of the micro 
parallelism. Two examples show this. 



www.manaraa.com

131 

1) Care is taken that after returning from a function call the resulting value is on the 
buses. This is guarantied by the G-machine that does the update. As the result data is 
moved via a local bus to the local heap, the only thing to do is to enable the appropriate 
bus register. This means that after returning from EV AL no instruction needs to access 
the heap. This concerns instructions like GET, HEAD, TAIL which now become more 
simple. 

2) In most reducers of supercombinators updating is optimized. E.g the function f x y = 
x + y is compiled to the G-eode sequence PUSH 0, EV AL, GET, PUSH 2, EV AL, GET, 
ADD, MKINT, UPDATE 3, RET 2. MKINT reads the result of the addition from the 
valuestack, creates a new node with this value in the heap. This node is immediately used 
to update the root of the redex and made to garbage. The instructions MKINT, 
UPDATE 3 will be combined into something like UPDINT 3 [2]. This instruction 
directly does an update with the value at the top of the valuestack. In the G-line this can 
easily be implemented. The (left )machine containing the node to be updated fetches the 
value from its local value stack and moves it to its local heap. The tag-machine belonging 
to the same cluster moves the tag of type 'int' to the tag heap. 

The same can be done with MKGRAPH Field, UPDATE n. Then creating a new node 
for the root of the subgraph can be avoided. As the value with which to update is 
available in each G-machine it can immediately be written in the root of the redex which 
now has been reduced. The cost of the combined execution of tl1ese instructions varies 
between 2 heap access + 2 stack access and 1 heap access + 1 stack access. The results of 
these optimizations are recorded in the third column of fig 7 .1. These optimizations do 
not affect the compiler that generates the sequential G-eode. In the experiment described 
here we have not at all done any static compiler analysis. It would be fair to compare the 
optimized parallel simulation results with simulation results from an optimized 
sequential simulation. This depends however from the machine architecture one would 
choose. 

7.2. Arguments 

We have counted the number of arguments that are accessed in the heap when running 
the program. These include arguments that first have to be evaluated before they can be 
used for some ALU or list constructing operation. 

paraffine 
hamming 
schedule 

heap arguments used heap accesses (optimized) 

33954 
51418 
41326 

78.103 
109.103 
97.103 

Fig 7.2 Heap arguments used in relation to heap accesses. 

8. Conclusions about the G-Iine and future worlt 

The efficiency gain seems to be rather independent of the progran1. The number of 
accesses to the pointerstack have been reduced to about one third and to the heap to about 
one fifth. In average the cost of using an argument (including those that consist of 2 
fields as floats and cons nodes) in the heap is 2 - 3 accesses. Only slightly more than once 



www.manaraa.com

132 

storing a value in the heap and once loading it. The cost of laziness thus has disappeared. 
We conclude that our architecture performs well. 

The usc of the graph memory has become an advantage because it offers the possibility 
of a horizontally coded reducer. 

We used infinite hardware in this simulation of the G-line. When hardware is reduced to 
a feasible size some of the micro parallelism is lost. The following restrictions on 
hardware can be applied to obtain a realistic machine. 

- The number of G-machines is limited. If the size of the subgraph is larger than the 
number of G-machines, the subgraph is wrapped around the G-line. Some G-machines 
have to write more than one memory field. If the number of G-machines is N and the 
size of a subgraph S it now requires ( S DIY N) memory cycles to construct a subgraph. 
We have measured the size of the subgraphs constructed during execution of the 
programs. 

size schedule paraffine hamming 

0-4 16760 2384 12272 
5-8 2281 4508 4980 
9- 16 1488 741 0 
> 16 0 3 0 

Fig 8.1 Size of constructed subgraphs. 

Looking at these programs a size of 8 clusters will not cause much loss of parallelism. 

- A cluster of tag- left- and right machine can share a number of resources. Only a 
single valuestack and ALU and a single connection with each bus is needed per cluster. 
No speed will be lost in this way. Sharing of the pointerstack might cause some loss in 
parallelism. To construct a cons node or an apply node two different elements of the 
pointerstack need to be accessed. It costs one more memory cycle in the construction of 
some of the subgraphs. 

8.1. No more replicas 

A more radical change of this architecture is realized by splitting the G-line in a global 
machine and a distributed machine. Making of replicas is then avoided. ALU, valuestack 
and pointerstack only are present in the global machine. The shared part of the program 
code resides in the global machine and the MKGRAPH instruction is split in a distributed 
and a global part. The no-heap instructions only are executed in the global machine, 
UNWIND and UPDATE in cooperation between global and distributed machine. 
MKGRAPH is executed in the distributed machine with some support of the global 
machine. To execute UNWIND, UPDATE and MKGRAPH the local machines contain 
micro code. 

This architecture is subject of current research in which trade offs are made between the 
amount of micro parallelism and the amount of hardware used. We expect, however, 
that some loss in parallelism will be outweighed by typical hardware optimizations which 
generally are not yet included in the design of the G-line. 



www.manaraa.com

133 

8.2. To realistic software 

We used code generated from an untyped language. The compilation to G-eode was 
straight forward using Johnsson's compilation rules [1]. No compiler optimizations were 
applied. In our current low level simulations, we use G-eode derived from LML, a typed 
functional language [16]. The G-eode generated from typed languages is more efficient 
than the G-eode we used in the experiments described above and better suited to derive 
parallel microcode. 

9. Acknowledgements 

We wish to thank Pieter Hartel, Henk Muller and Rutger Hofman for the comments on 
the draft(s) of this paper. 

10. References 
[1] T.Johnsson; Efficient compilation of lazy evaluation; Sigplan Notices 19(6):58,69, 

June 1984. 
[2] Simon L.Peyton Jones; Implementation of graph reduction; Prentice Hall; London, 

1987. 

[3] D.A. Turner, "A new implementation technique for applicative languages"; Software 
Practice and Experience 9(1) pp 31-49 (A jan. 1979). 

[4] J.Fairbairn, S.Wray; TIM: A simple lazy abstract machine to execute 
supercombinators; Third conference on functional programming and 
computer architecture; Portland, Oregon, USA; Proceedings 34-35, 
September 1987. 

[5] Guy Argo; Improving the three instruction machine; Proceedings of the FPLCA, pp 
100-115, London 1989. 

[6] Simon L.Peyton Jones, Jon Salkild; The spineless tagless G-machine; Proceedings of 
the FPLCA, pp 184-201, London 1989. 

[7] L.Augustsson, T.Johnsson; Parallel graph reduction with the <nu,G>-machine; 
Proceedings of the FPLCA,pp 202-213, London 1989. 

[8] W.R.Stoye, T.J.W.Clarke, A.C.Norman; Some practical methods for rapid 
combinator reduction; Proc. of 1984 ACM Conf on Lisp and Functional Prog, 
pp 159-166, aug 1984. 

[9] M.Scheevel, NORMA, a normal-order combinator reduction machine, colloquium 
presented at Oregon Graduate Center, july 1984. 

[10] R.B.Kieburtz; The G-machine, a fast graph-reduction evaluator; Second Conference 
on functional Languages and Computer Architecture, LNCS 201, Nancy, 
1985; Springer Verlag. 

[11] R.B.Kieburtz; A Rise architecture for symbolic computation; Sigplan Notices 
22(10):146-155, October 1987. 

[12] Willem Vree, Design considerations for a parallel reduction machine; Ph. D. thesis, 
pp 27-50, Amsterdam, 1989 

[13] R.B.Kieburtz and B. Agapiev; Optimizing the evaluation of suspensions, pp 267 -
282 in Proceedings of the Workshop of functional languages, ed. T.Johnsson, 



www.manaraa.com

134 

S.L.Peyton Jones, K.Karlsson, Dept of Computer Science, Chalmers Univ. of 
Technology, Goteborg, Aspensas, 1988. 

[14] P.H.Hartel; Performance of lazy combinator graph reduction; To be published in 
"Software practice and experience". 

[15] W.G Vree, P.H.Hartel; Parallel graph reduction for divide-and conquer 
applications; Part II -program performance; Internal Report D-20, PRM
Project, December 1988. 

[16] T.Johnsson; Compiling Lazy Functional Languages, Ph.D. thesis, Goteborg, 1987. 

Awendix 
SPECIFICATION OF THE G-LINE 

M: local machine, o: output, c: codestack, s: pointerstack, v: valuestack, 
G: graph node, E: environment, D: dump, H: local heappointer. 

<Mm,o,EV AL.c,n.s, v ,Ga[n=int,i,-],B us,E,D,H> 
<Ma,o,EVAL.c,n.s,v,G,Bus[int,i,-],E,D,H> 
<Mm,o,c,s, v ,G,Bus[int,i,-],E,D,H> 

(similarly for booleans) 

<Mm,o,EV AL.c,n.s, v ,Ga[ n=app,n),nr] ,E,D,Bus,> 
<Ma,o,EV AL.c,n.s, v ,G ,Bus[app,n),nr],E,D,H> 
<Mm,o,UNWIND.(),nr.n.(),v,G,Bus[app,nl,nr].E,{c,s).D,H> 

<Mm,o,UNWIND.c,nj.nj-l.··nQ.(),v,G,Bus[app,nl,nr].E,(c,s).D,H> 
<Mm,o,UNWIND.(),nr.nj.nj-l ... nQ.(),v,G,Bus[app,nl,nr],E,(c,s).D,H> 
<Ma,o, UNWIND.(),nr.nj.Dj-l···nQ.(), v ,Ga[nl=tag,left,right],E,D,Bus[tag,left,right],H> 

<Mm,o,UNWIND.(),nj.nj-l···nQ.(),v,G,Bus[fun k, c'],E,(c,s).D,H> 
<Mm,o,c',s',v,G,Bus[fun k, c'],E,D,H> k=j+l 

<Mm,o, UNWIND.{},nj.nj-l···nQ.s, v,G,Bus[fun k, c'),E,(c,s).D,H> 
<Mm,o,EVAL.c,s,v,G,Bus[fun,c',k),E,D,H> k>j+l 

-> 
-> 

-> 
-> 

-> 
-> 

-> 

-> 

<Mm,o,UNWIND.{},nj.nj-l ... nQ.(),v,G,Bus[fun k, c'],E[fun c',k),(c,s).D,H> -> 
<Mm,o,REWIND.c',nj.nj-l··nQ.(),v,Ga[no=app,pJ,pr].Bus[app,pl,pr],E[fun c',k],(c,s).D,H> 

k<j+l 

<Mm,o,REWIND.c,nj. .. Dj-k··ni.nQ.s,v,G,Bus[app,pJe,pri),E[fun c',k],D> ·> 
<Mm,o,REWIND.c',nj..nj-k··Dle-DQ.s,v,G,Bus,E[fun c',k],D> . 
<Ma,o,REWIND.c' ,nj.Dj-l···nle.nQ.s, v ,Ga[nie=app,pJ,pr],Bus[app,pJ,prl,E[fun c',k],D,H> -> 

k>j+l 

<Mm,o,REWIND.c' ,nj. .. Dj-k .. nQ.s, v ,G,Bus[app,pl,pr],E[fun c' ,k],D> 
<Mm,o,c' ,nj.Dj-l···nQ.s, v ,G,Bus[app,pJ,pr],E[fun c' ,k],D,H> 

k=j+l 

<Mm,o,PRINT.c,n.s,v,Ga[n=int,i,-],Bus,E,D,H> 
<Ma,o.i,c.PRINT,n.s, v ,G ,Bus [int,i,-] ,E,D,H> 
<Mm,o.i,c,s, v ,G,B us[int,i,-],E,D,H> 

(similarly for booleans) 

-> 

-> 
-> 



www.manaraa.com

135 

<Mm ,o,PRINT.c,n.s, v ,Ga[n=cons,pJ,prl,B us,E,D,H> 
<Ma,o.i,c.PRINT,n.s,v,G,Bus[cons,pi,pr],E,D,H> 
<Mm,o,PRINT.EV AL.PRINT.EV AL.c,pJ.pr.s. v ,G,Bus[ cons,pJ,pr ],E,D,H> 

<Mm,o,UPDATE k.c, nQ ... nk.s,Ga[no=tag,left,right],Bus,E,D,H> 
<Ma,o,UPDATE k.c, nQ ... nk.s,G,Bus[tag,left,right],E,D,H> 
<Mm,o,c, n1 ... nk.s,G,Bus[tag,Ieft,right],E,D,H> 
<Ma• ,o,c, n t ••. nk.s,Ga•[ nk=tag,left,right],Bus [tag,lcft,right],E,D ,H> 

<Mm,o,RET n.c,n1 ... nn.nQ.s,G,Bus[tag,left,right],E,D,H> 
<Mm,o,RET n.c,no.s,Ga[no=tag,left,right],Bus[tag,left,right],E,D,H> 
<Mm,o,c,no.s,G,Bus[tag,left,right],E,D,H> tag "'appfun 

<Mm,o,RET n.c,n1 ... nn.no.s,G,Bus[tag,left,right],E,D,H> 
<Mk,o,RET n.c,no.s,Go[no=tag,left,right],Bus[tag,Ieft,right],E,D,H> 
<Mm.o,EVAL.c,no.s,G,Bus,E,D,H> tag= app,fun 

<Mm,o,PUSH k.c,nQ .... nk.s, v ,G ,Bus,E,D,H> 
<Mm,o,c,nk.nQ ... nk.d.s, v ,G,Bus,E,D,H> 

<Mm,o,MKINT.c,s,i. v ,G,E,D,Bus,H> 
<Mo,o,c,n.s,i. v ,Go[ n=int,i,-],B us [int,i,-],E,D,H[Ihp ]> 
<Mm,o,c,Ihp.s, v ,G,B us,E,D,H[lhp+ l]> 
(similarly for booleans) 

<Ma,o,MKGRAPH_copy n.c,s, v ,G,B us,E,D,H[lhp ]> 
<Ma,o,c,lhp.s, v ,G [ .. ,n, .. ],B us,E,D,H[lhp+ 1]> 

<Ma.o,MKGRAPH_heap n.c,s,v,G,Bus,E,D,H[Ihp]> 
<Ma,o,c,lhp.s, v ,G[ .. ,n.lhp, .. ],B us,E,D,H[lhp+ 1]> 

<Ma,o,MKGRAPH_stack n.c,p } .. ,pn.s, v ,G ,Bus,E,D,H [lhp ]> 
<Ma,o,c,Ihp.pJ .. ,pn.s,v,G[ .. ,pn •.. ],Bus,E,D,H[Ihp+1]> 

<Ma,o.MKGRAPH_nop .c,s,v,G,Bus,E,D,H[lhp]> 
<Ma,o,c,lhp.s, v ,G,Bus,E,D,[Ihp+ l]> 

<Mm,o,ALLOC.c,s, v ,G,Bus,E,D,H[lhp ]> 
<Mo,o,c,lhp.s,Go[hole,_,_],B us,E,D,H[lhp+ I]> 
<Mm,o,c,nk;.n1.S,G,Bus,E,D,H> m"' 0 

<Mm,o,PUSH k.c,nQ .... nk.S, v ,G,Bus,E,D,H> 
<Mm.o,c,nk.no ... nk.d.s,v,G,Bus,E,D,H> 

<Mm,o,c.GET.c,n.s, v ,Ga[n=int,i,-],E,D ,B us,E,D,H> 
<Ma,o,GET.c,na.s,v,G,Bus[int,i,-],E,D,H> 
<Mm,o,c,s,i. v,G,Bus[int,i,-],E,D,H> 

(similarly for booleans) 
<Mm,o,ADD.c,s,iz.i 1· v ,G,Bus,E,D,H> 

<Mm,o,c,s,iz+i 1· v ,G,Bus,E,D,H> 
(similarly for all arithmetic and logical operations) 

<Mm,o,JFALSE .c,s,true.v,G,Bus,E,D,H> 
<Mm,o,JMP.c,s,v,G,Bus,> 

<Mm,o)MP !, .... LABEL l.c,s,v,G,Bus,E,D,H> 
<Mm,o,LABEL.c,s, v ,G,Bus,E,D,H> 

<Mm,o,LABEL l.c,s,v,G,Bus,E,D,H> 
<Mm,o,c,s, v ,G,Bus,E,D,H> 

<Mm,o,HD.c,n.s,v,Ga[n=cons,pJ,p2],E,D,Bus,E,D,H> 
<Ma,o,HD.c,n,s,v,G,Bus[cons,pJ,p2],E,D,H> 
<Mm,o,c,pJ.s,v,G,Bus[cons,pJ,p2],E,D,H> 

-> 
-> 

-> 
-> 
-> 

-> 
-> 

-> 
-> 

-> 

-> 
-> 

-> 

-> 

-> 

-> 

-> 

-> 

-> 
-> 

-> 

-> 

-> 

-> 

-> 
-> 



www.manaraa.com

136 

<Mm,o,TAIL.c,n.s, v ,Ga[n=cons,p I.P2],E,D,Bus,E,D,H> 
<Ma,o,TAIL.c,n.s, v ,G,Bus[ cons,p r.p2],E,D,H> 
<Mm,o,c,p2.s,v,G,Bus[cons,pr,p2],E,D,H> 

<Mm,o,c.NULL,n.s, v ,Ga[n=cons,p J,p2],Bus,E,D,H> 
<Ma,o,NULL.c,n.s, v ,G,Bus[ cons,p I.P2],E,D,H> 
<Mm,o,c,s,false. v ,G,Bus[cons,p I.P2],E,D,H> 

<Mm,o,c.NULL,n.s,v,Ga[n=nil,-,-],Bus,E,D,H> 
<Ma,o,NULL.c,na.s, v ,G ,Bus[nil,-,-],E,D,H> 
<Mm,o.c,s,true.v,G,Bus[nil,-,-],E,D,H> 

Remarks 

-> 
-> 

-> 
-> 

-> 
-> 

l)'Bus' denotes the contents of all three buses. Mind that the contents of the buses on 
entrance or on exit of the rule sometimes is denoted. E.g on exit of EV AL this is the 
case, so after executing this instruction the next one can be sure the result of EV AL can 
be read from the buses. UNWIND makes use of this. 
2) In Ga[n=_,_,_) the subscript of Ga specifies the machine (and local graph) in which n 
is pointing. 

3) The transition rules contain no optimizations like contraction of MKINT and 
UPDATE 

4) We have separately defined MKINT etc and ALLOC. They could be special cases of 
the MKGRAPH instruction. 

5) An special instruction REWIND is introduced in this diagram to clarify the action in 
case of unwinding a spine with number of arguments smaller than the depth of the spine. 



www.manaraa.com

The Derivation of 
Distributed Termination Detection Algorithms 

from Garbage Collection Schemes 
(Extended Abstract) 

Gerard Tel* 
Department of Computer Science, Utrecht University, 
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands. 

(Email: gerard@cs.ruu.nl) 

Friedemann Mattern 
Department of Computer Science, Kaiserslautern University, 
P.O. Box 3049, D 6750 Kaiserslautern, Fed. Rep. Germany. 

(Email: mattern@informatik. uni-kl.de) 

Abstract. It is shown that the termination detection problem for distributed com
putations can be modeled as an instance of the garbage collection problem. Conse
quently, algorithms for the termination detection problem are obtained by applying 
transformations to garbage collection algorithms. The transformation can be ap
plied to collectors of the "mark-and-sweep" type as well as to reference counting 
garbage collectors. As an example, the scheme is used to transform the weighted 
reference counting protocol. 

1 Introduction 

A substantial amount of the research efforts in distributed algorithms design has been de
voted to the problem of detecting when a distributed computation has terminated. There 
are several reasons for the impressive number of publications on this subject. First, as 
the problem has shown up under varying model assumptions and there are several solu
tions for each model, a really large number of different algorithms has emerged. All these 

algorithms were published separately, because unifying approaches, treating a number of 
algorithms as a class, have been rare. Second, the problem of termination detection, being 
sufficiently easy to define and yet non-trivial to solve, has been seen as a good candidate 

*The work of this author was supported by the ESPRIT II Basic Research Actions Program of the 
EC under contract no. 3075 (project ALCOM). 



www.manaraa.com

138 

to illustrate the merits of design or proof methods for distributed algorithms. Third, it 
has been observed that the fundamental difficulties of the termination detection problem 

are the same as those of other problems in distributed computing. Termination detection 
algorithms are related to algorithms for computing distributed snapshots (CL85], and 

detecting deadlocks [CMH83]. Thus the problem is seen to be important both from a 

practical, algorithmical, and from a theoretical, methodological point of view. 

From both points of view we consider it useful to recognize general design paradigms 

for distributed termination detection algorithms. One such paradigm was described in 

[Te90]. A new paradigm is presented in this paper: it is shown that termination detection 

algorithms are obtained as suitable instantiations of garbage collection algorithms. A 
connection between the two problems was pointed out before. Tel, Tan, and Van Leeuwen 

[TTL88] have shown that garbage collection algorithms (of the so-called mark-and-sweep 
type, see section 1.2) can be derived from termination detection algorithms. Using a 

different transformation, garbage collection algorithms of the reference counting type can 

also be derived from termination detection algorithms, see section 4.1. The results in this 

paper further strengthen this connection by presenting a transformation in the reverse 

direction. 

Subsections 1.1 and 1.2 introduce the termination detection problem and the dis

tributed garbage collection problem. Section 2 describes how the termination detection 

problem can be formulated as garbage collecting one hypothetical object and derives 

the algorithmical transformation. Section 3 provides an example of the transformation. 

Section 4 contains some additional remarks and comments. 

1.1 The Termination Detection Problem 

The problem of termination detection is described formally as follows. A collection P of 

processes is considered, communicating by message passing. For the sake of simplicity it 

is assumed that P is a fixed collection, but the results in this paper are easily generalized 

to handle process creation and deletion as well. A process is either passive or active. 
Active processes can send messages, but passive processes cannot. An active process can 

spontaneously become passive, but a passive process can become active only on receipt of 

a message. Formally, the allowed actions of the processes are described as follows. (In all 

programs to follow, actions are atomic and braces ("{" and "}") enclose a guard for an 

action.) 

Sp: { statep = active } 

send a message (M) 



www.manaraa.com

139 

Rp: { A message has arrived } 

receive message (M) ; statep := active 

lp: { statep = active } 

stateP := passive 

Define the termination condition as: 

No process is active and no messages are in transit. 

When processes behave as described, this condition is stable: once true, it remains so. The 

problem of termination detection now is to superimpose on the described basic computa

tion a control computation which enables one or more of the processes to detect when the 

termination condition holds. To this end a new special state terminated is introduced for 

each process. The following two criteria specify the correctness of the control algorithm. 

Tl Safety. If some process is in the terminated state then the termination condition 

holds. 

T2 Liveness. If the termination condition holds, then eventually some process will be in 

the terminated state. 

A passive process may take part in this control computation, and receiving control mes

sages does not make a passive process active. 

Solutions to the termination detection problem are non-trivial, mainly due to the 

possibility that a process becomes active after being observed as passive by the control 

algorithm. Several classes of solutions are known. The most important ones are those 

based on probes and those based on acknowledgements. The best known example of the 

former class is [DFG83], and a general treatment is given in [Te90). Examples of the 

latter class are [DS80, SF86]. Solutions based on counting sent and received messages are 

proposed in [Ma87]. 

1.2 The Distributed Garbage Collection Problem 

As our approach for deriving termination detection algorithms is based on solutions to 

the garbage collection problem, we shall now describe this problem in a model which is 

close to the model of Lermen and Maurer [LM86]. The advantage of this model is that it 

abstracts from aspects which are not relevant to our purposes, such as processors, memory 

cells, and the difference between "local" and "remote" references. 



www.manaraa.com

140 

An (object-oriented) distributed system consists of a collection 0 of cooperating ob
jects. A subset of 0 is designated as root objects. Objects are able to hold references to 
other objects. These references can be transmitted in messages, see below. A reference 
to an object r will be called an r-reference. An object r is a descendant of q if q holds an 
r-reference or a message containing an r-reference is in transit to q. An object is reach
able if it is a root object or a descendant of a reachable object. An object p holding an 
r-reference may delete it, after which p no longer holds this reference. Also, a reachable 
object p holding an r-reference may copy the reference to another object q, by sending 
an r-reference in a message to q. Object q will hold an r-reference after receipt of this 
message. An object can have multiple references to the same target object. 

An object is called garbage if it is not reachable. As only reachable objects copy refer
ences, only references to reachable objects are copied, and thus a garbage object remains 
garbage forever. For reasons of memory management it is required that garbage objects 
are identified and collected. This task is taken care of by a garbage collecting algorithm. 
The following two criteria define the correctness of a garbage collecting algorithm. 

Gl Safety. If an object is collected, it is garbage. 

G2 Liveness. If an object is garbage, it will eventually be collected. 

Many solutions have been proposed to the distributed garbage collection problem, 
most of which fall into one of two categories: collectors of the reference counting type and 
collectors of the mark-and-sweep type. Both types of solutions have been known for over 
30 years for classical, non-distributed systems [Co60, McC60]. 

Collectors of .the first type [LM86, WW87, Be89] maintain for each non-root object 
a count of the number of references in existence to that object. References in other 
objects as well as references in messages are taken into account. The reference count 
is incremented when a corresponding reference is copied, and decremented when such a 
reference is deleted. When the count for an object drops to zero, it can be concluded that 
the object is garbage and consequently the object can be collected. Reference counting 
garbage collectors are unable to collect cyclic garbage (a collection of garbage objects 
pointing to each other). As will be seen at the end of section 2, this does not render our 
transformation invalid for reference counting garbage collectors. 

Collectors of the second type [Dij78] mark all reachable objects as such, starting from 
the roots and recursively marking all descendants of marked objects. In this way all 
reachable objects become marked eventually. The design of the marking algorithm is 
complicated by the possibility that references are copied and deleted during its operation. 
The objects must cooperate with the marking algorithm, e.g., by also marking objects 



www.manaraa.com

141 

when references are copied, cf. [Dij78]. When the marking phase is terminated a sweep 
through all objects is made, in which all unmarked objects are collected. These two phases 

are repeated as long as necessary. 

2 Termination Detection Using Garbage Collection 

In this section we describe how the termination detection problem in general can be 
modeled as an instance of the garbage collection problem. As a result, solutions to 
the termination detection problem can be derived from garbage collection algorithms, of 
which an example will be shown in section 3. First the collection 0 of objects used for 
this purpose is described, as well as the behavior of these objects. Next it is shown that 
the temunation condition is equivalent to one particular object becoming garbage, so 
termination can be detected by a garbage collection algorithm. 

Recall that P is the set of processes whose termination is to be detected. The collection 
0 of objects consists of one root object Ap for every process p in P, and a. single indicator 
object Z. Object Ap mimics the behavior of process p as far as the basic computation 
is concerned (it sends and receives p's basic messages, and has all the variables p has). 
Messages may contain a reference, in which case the message is a copy message for that 
reference. Object Ap is called passive (active) when the mimicked process pis passive 
(active). As Ap is a root object, it is always reachable. 

The indicator object Z is not a root object. Its only purpose is to indicate the termi
nation condition with its rea.chability status by the following equivalence, which will be 
maintained during execution. 

(IND) Z is garbage <:> the termination condition holds. 

Theorem 2.1 IND holds when the following two rules are observed: 

Rl An object holds a Z-reference if and only if it is active. 

R2 Each message of the basic computation contains a Z-reference. 

Proof. Z is garbage is equivalent to: Z is not a. descendant of any of the Ap. By 
definition, this means that no Ap holds a Z-reference, and to no Ap a. message is in 

transit containing a Z-reference. By Rl and R2 this is equivalent to: no Ap is active and 

to no Ap a message (of the basic computation) is in transit. This is the definition of the 
termination condition. D 



www.manaraa.com

142 

It remains to be shown how R1 and R2 can be maintained. It is possible to ensure 

through proper initialization that R1 and R2 hold initially. To this end, assume that active 

objects are initialized with the necessary Z-reference, and passive objects without it, and 

that messages in transit initially contain the reference also. To maintain R1 and R2 during 

the distributed computation, each transmission of a message copies the Z-reference, and 

processes delete their Z-reference when they become passive. More explicitly, the actions 

to be carried out by Ap are modified as follows: 

Sp: { statep = active } 

send a message (M, Z) 

R,: { A basic message has arrived } 

receive message (M, Z) ; statep := active ; 

insert Z in the references of Ap 

Ip: { stateP = active } 

statep := passive ; 
delete Z from the references of Ap 

With these modifications R1 and R2 are maintained indeed. R1 is maintained because 

Z-references are deleted in action Ip, and inserted in action R,. The latter is possible 

because the message contains a Z-reference by R2. R2 is maintained because in action Sp a 

Z-reference is included in every message. This is possible because only active objects send 

messages, and these objects contain a Z-reference by Rl. Thus R1 and R2 are maintained 

during computation, and by theorem 2.1 IND holds. To arrive at a termination detection 

algorithm, superimpose upon the objects as described a garbage collection algorithm to 

detect that Z is garbage. The garbage collection algorithm is then modified so as to 

inform the objects Av when Z is identified as garbage. (On receiving this notice, the root 

objects enter the terminated state. We omit this (trivial) operation from the description 

of the algorithms that will follow.) 

Theorem 2.2 The algorithm as constructed satisfies conditions Tt and T2. 

Proof. Assume any process enters the terminated state. This happens upon notice that 

Z is collected. By the correctness of the garbage collection algorithm (condition G 1) this 

implies that Z is garbage. By IND the termination condition holds. 

Assume the termination condition holds. By IND, Z is garbage, hence, by the liveness 

of the garbage collector (condition G2) Z will eventually be collected. Notice of this will 

be sent to the processes, and these will enter the terminated state in finite time. 0 



www.manaraa.com

143 

Garbage collectors of the reference counting type are not able to collect cyclic struc
tures of garbage, which may possibly harm the liveness of the termination detection 

algorithm. It is, however, easily seen that Z is not part of such a cyclic structure, and in 
fact the following, stronger equivalence holds. 

There are no references to Z <=>the termination condition holds. 

Summary of the transformation. The construction of a termination detection algo

rithm is summarized in the following four steps. 

1. Form the set 0 of objects, consisting of the root objects Ap and one indicator object 

z. 
2. Superimpose upon the actions of the basic computation the handling of the Z

reference. 

3. Superimpose upon this combined algorithm a garbage collection algorithm. 

4. Replace the collection of Z (or its identification as garbage) by a notification of 

termination. 

3 An Example of the Transformation 

The transformation described in section 2 can in principle be applied to any garbage col

lection scheme, of the reference counting as well as the mark-and-sweep type, or working 

according to other principles. In this section we consider the transformation of a garbage 

collection algorithm based on weighted reference counting. The resulting termination 

detection algorithm tums out .to be an already known algorithm: it was proposed in 
(Ma89]. More derivations, yielding new and non-trivial termination detection algorithms, 
are found in the full paper (TM90]. 

In a weighted reference counting scheme, each reference has an associated positive 

weight. Each object o maintains a reference count, which equals (barring certain update 
delays) the total weight of existing a-references. (The term "reference weight accumu
lator" might be more appropriate for this variable, but in accordance with the existing 
literature we shall continue to use the word "count".) When a reference is copied, its 

weight is split among the existing and the new reference. Thus, although the number of 
references increases, the weight remains the same, and the reference count need not be in

cremented and no message need be sent to the referenced object. When an object deletes 

an r-reference, a decrement message is sent to r, reporting the weight of the deleted 



www.manaraa.com

144 

reference. Upon receipt of this message, r subtracts this weight from its reference count 
(and is collected if the count drops to zero). 

3.1 Description of the Scheme 

Distributed weighted reference counting schemes have been given by Watson and Watson 
[WW87], Bevan [Be89], and others. In the description below the mechanism to create 
new objects is omitted, because in the transformation no new objects are ever created. 
An a-reference is a tuple (o,w), where w denotes the weight of the reference. Initially 
for each non-root object o, the reference count RG0 equals the sum of the weights of all 
existing a-references. The following (atomic) actions can take place. (CR, represents 
the sending of a copy message, RR, the receipt of such a message, DR, the deletion 
of a reference and the associated sending of a decrement-weight message, and RDo the 

receipt of such a message.) 

CR.,: { p holds reference ( o, w) } 
send cop(o,w/2) to q; w := w/2 

RR,: { A message cop( o, w) has arrived at p } 

receive cop( o, w) ; 
if p has an a-reference 

then add w to its weight 
else insert the a-reference with weight w 

DR,: { p holds reference ( o, w) } 
send dec( o, w) to o ; delete the a-reference 

RD0 : { A dec( o, w) message has arrived at o } 

receive dec( o, w) ; RCa := RCa - w j 

if RG0 = 0 then collect o 

Action RR, guarantees that in this scheme an object has at most one reference to 
each other object. A correctness proof and analysis of the scheme is found in [WW87] or 

[Be89] and is based on invariance of the following two assertions: 

1. Each reference has a positive weight; each delete message contains a positive weight. 

2. RGo = LR=(o,w) w+ LD=dec(o,w) w, where R ranges over all a-references in existence 
(including cop messages) and D ranges over all delete messages in transit. 



www.manaraa.com

145 

3.2 Transformation into a Termination Detection Algorithm 

To transform the garbage collection scheme into a termination detection algorithm we 
apply the four-step construction of section 2. 

1. The set 0 of objects consists of the objects Ap and the indicator object Z. 

2. Superimpose upon the actions of the basic computation the handling of the Z
reference. This yields the following program text. 

Sp: { statep = active } 

send a message (M, Z) 

Rp: { A basic message has arrived } 
receive message (M, Z) ; statep := active ; 
insert Z in the references of Ap 

I,: { statep = active } 

statep := passive ; 

delete Z from the references of Ap 

3. Superimpose the reference counting scheme upon these actions. To this end, action 
CR., is included in action Sp, action RR, is included in action Rp, and action 
DR, is included in action I,. For o the object Z is substituted. This results in the 
following program text. 

Sp: { statep = active and p holds reference ( Z, w) } 
send a message (M,cop(Z,w/2)); w := w/2 

Rp: { A basic message has arrived} 
receive message (M, cop( Z, w)); statep := active; 
if p has a Z-reference 

then add w to its weight 
else insert the Z-reference with weight w 

Ip: { statep = active } 

statep := passive ; 
send dec(Z, w) to Z ; delete the Z-reference 



www.manaraa.com

146 

RDz: { A dec(Z, w) message has arrived at Z} 
receive dec(Z,w); RCz := RCz- w; 
if RCz = 0 then collect Z 

4. Replace the collection of Z by a notification of termination. Some more simpli
fications can be made in addition: the actual handling of the Z reference can be 
removed; instead we equip every process p with a variable WP, representing the 
weight of p's (virtual) Z-reference (0 if p has no such reference). The subscript Z 
is dropped. This finally results in the following algorithm. 

Sp: { statep = active } 

send a message (M, Wp/2) ; Wp := Wp/2 

Rp: { A basic message has arrived } 
receive message (M, W); statep := active; 
Wp := WP+ W 

I,: { statep = active } 
''statep :=passive; 

send dec(Wp) to Z ; Wp := 0 

RD: { A dec(W) message has arrived at Z } 
receive dec(W) ; RC := RC - W ; 
if RC = 0 then send term to all Ap 

The initial conditions for this algorithm are: WP = 0 if p is passive; WP > 0 if p is 
active; RC = L:P WP; and no messages are in transit. (Or, if there are messages, 
RC correctly reflects their weight.) 

The termination detection algorithm that has just been derived is known as the Credit 
Recovery algorithm [Ma89). The algorithms discussed in this section face the problem 
of so-called weight underflow. When weights are represented in a finite number of bits, 
there exists a smallest positive value a weight can take, and it is not possible to split 
this weight in two positive parts. Furthermore, the accumulation of small fragments may 
cause problems. Solutions to these problems and variants of the scheme may be found in 
[Be89, Ma89). 



www.manaraa.com

147 

4 Conclusions 

In this paper we have presented a transformation of garbage collection schemes into ter
mination detection algorithms. Applying the transformation to the weighted reference 
counting scheme, we have derived the Credit Recovery algorithm for termination detec
tion. Virtually all garbage collection schemes can be transformed into sensible termination 
detection algorithms. The full paper [TM90] contains derivations of more termination 
detection algorithms, including three new ones: the Activity Counting algorithm, the 
Generational termination detection algorithm, and a "dual-tour" token algorithm for a 
ring of processes. It also contains a discussion of several related aspects, of which we only 
sketch two here. 

4.1 Reverse Transformation 

It is also possible to transform a termination detection algorithm into a reference counting 
garbage collection scheme. The aim of a reference counting algorithm is to collect an object 
o when all o-references (in objects) have been deleted and no more o-references are in 
transit (in copy messages). 

An object is defined to be o-active if it holds an o-reference and o-passive otherwise, 
and a message is called an o-activation message if it carries an o-reference. Under these 
definitions, an o-passive object becomes o-active only upon receipt of an o-activation 
message, and only o-active objects send o-activation messages. Now the a-termination 
condition, defined as: 

No process is o-active and no o-activation messages are in transit 

is stable and can be detected by a termination detection algorithm. Furthermore 

(RT) There are no o-references {:} the o-termination condition holds. 

To arrive at a reference counting garbage collection algorithm, a termination detection 
algorithm is superimposed on the o-reference handling. When o-termination is detected, 
o is collected. For each object a separate instance of the termination detection algorithm 
is executed concurrently. 

Although this transformation could be applied to any termination detection algorithm, 
the resulting reference counting garbage collection scheme would not be feasible in all 
cases. A complete algorithm along these lines, based on the algorithm in [DS80], was 
proposed by Rudalics [Ru90]. 



www.manaraa.com

148 

4.2 Deadlock Detection 

The termination detection problem is an instance of a class of detection problems in 

distributed systems. Communication deadlock detection is a generalization where also 
a part of the network can be terminated. In this problem, for each passive process a 
subset of the processes is determined at the moment it becomes passive. The process can 
become active only by receiving a message from a process in this subset. The termination 
detection problem is obtained, when each process always chooses the full set of processes. 
We are currently investigating how the approach in this paper can be generalized to derive 
{mark-and-sweep) deadlock detection algorithms from garbage collection algorithms. 

Acknowledgements: We want to thank Martin Rudalics and Jorg Richter for their 
discussions of the paper and numerous suggestions and comments. We want to thank the 
Eindhoven Tuesday Afternoon Club and Reinhard Schwarz for their careful revision of 

the text. 

References 

[Be89] Bevan, D.I., An Efficient Reference Counting Solution to the Distributed 
Garbage Collection Problem, Parallel Computing 9 {1989) 179-192. 

[CL85] Chandy, K.M., L. Lamport, Distributed Snapshots: Determining Global States 
of Distributed Systems, ACM Trans. on Computer Systems 3 (1985) 45-56. 

[CMH83] Chandy, K.M., J .. Misra, L.M. Haas, Distributed Deadlock Detection, ACM 
Trans. on Computer Systems 1 (1983) 144-156. 

[Co60] Collins, G.E., A Method for Overlapping and Erasure of ftists, Comm. ACM 3 
(1960) 655-657. 

[DFG83] Dijkstra, E.W., W.H.J. Feijen, A.J.M. van Gasteren, Derivation of a Termi
nation Detection Algorithm for Distributed Computations, Inf. Proc. Lett. 16 

(1983) 217-219. 

[Dij78] Dijkstra, E.W., L. Lamport, A.J. Martin, C.S. Scholten, E.F.M. Steffens, On
the-fly Garbage Collection: An Exercise in Cooperation, Comm. ACM 21 (1978) 
966-975. 

(DS80] Dijkstra, E.W., C.S. Scholten, Termination Detection for Diffusing Computa
tions, Inf. Proc. Lett. 11 (1980) 1-4. 



www.manaraa.com

149 

[LM86] Lermen, C.-W., D. Maurer, A Protocol for Distributed Reference Counting, 
ACM Conference on Lisp and Functional Programming, Cambridge, 1986, 
pp. 343-354. 

[Ma87] Mattern, F., Algorithms for Distributed Termination Detection, Distributed 
Computing 2 (1987) 161-175. 

[Ma89] Mattern, F., Global Quiescence Detection Based on Credit Distribution andRe
covery, Inf. Proc. Lett. 30 (1989) 195-200. 

[McC60] McCarthy, J., Recursive Functions of Symbolic Expressions and Their Compu
tation by Machine, Comm. ACM 3 (1960) 184-195. 

[Ru90] Rudalics, M., Implementation of Distributed Reference Counts, Technical Re
port (forthcoming), Research Institute for Symbolic Computation, J. Kepler 
University, Linz, 1990. 

[SF86] Shavit, N., N. Francez, A New Approach to Detection of Locally Indicative Sta
bility, in: L. Kott (ed.), Proceedings ICALP 1986, Lecture Notes in Computer 
Science 226, Springer-Verlag, 1986, pp. 344-358. 

[Te90] Tel, G., Total Algorithms, Technical Report RUU-CS-88-16, Dept. of Computer 
Science, Utrecht University, 1988. Also in: Algorithms Review 1 (1990) 13--42. 

[TM90] Tel, G., F. Mattern, The Derivation of Distributed Termination Detection Al
gorithms from Garbage Collection Schemes, Technical Report RUU-CS-90-24, 
Dept. of Computer Science, Utrecht University, 1990. 

[TTL88] Tel, G., R.B. Tan, J. van Leeuwen, The Derivation of Graph Marking Algo
rithms from Distributed Termination Detection Protocols, Science of Computer 
Programming 10 (1988) 107-137. 

[WW87] Watson, P., I. Watson, An Efficient Garbage Collection Scheme for Parallel 
Computer Architectures, in: J.W. de Bakker, A.J. Nijman, P.C. Treleaven (eds.), 
Proceedings Parallel Architectures and Languages Europe, vol. II, Lecture Notes 
in Computer Science 259, Springer-Verlag, 1987, pp. 432--443. 



www.manaraa.com

Indirect Reference Counting: 
A Distributed Garbage Collection Algorithm* 

Jose M. Piquer t 
INRIA - Ecole Polytechnique 

Doma.ine de Volucea.u, B. P. 105 
78153 LE CI-IESNAY CEDEX (France). 

email: piquer@inria..inria.fr 

Absh•act 

This paper exposes a. Garbage Collection (GC) algoriLlun for loosely-coupled 
multi-processors. Tbe algoritbm is based on reference counting and is designed 
to reclaim dista.ut-pointed objects. It beba.ves like weighted •·eference counting, 
using only decrement messages. The main advantages are that it never creates 
indirect cells (so accesses to distant pointed objects arc always done in con
stant time) and it does not need synchronization with the proprietary site of 
the object. Object migration is also supported with only one decreme11t mes
sage, involving only the source and destination sites. Ou the other hand, two 
extra. fields are needed in every remote pointer and dec1·ement messages can be 
generated in cascades of arbitrary size, making it less predictable. 

A first version adapted to a distributed Lisp running on a. group o£Transputcr1 

processors will be presented along with some measures. Each processor has its 
own local Garbage Collector (of tbe Mark-Scan type) and the indirect reference 
counting for remote poiuters ltas been implemented without having to change 
the local GC. 

In this paper the algorithm is presented, H is compared with the weighted 
reference counting garbage collector and some experimental results are shown 
along with some implementation issues. 

Keywo1•ds: Garbage Collection, Reference Counting, Distributed Systems. 

1 Introduction 
Many garbage collecting algorithms have been proposed for distributed systems. They 
can be classified as Mark-Scan or as Reference Count (excepting some wot·k existing 
on distributed copying [Ruda 86]). The first ones are rather complex, as they must 

*This work was partially supported by the University of Chile, INRIA and U1e french government. 
tAuthor's current address: Depw:tamcnto de Computaci6n, Universidad de Cbile, Casilla 2777, 

Santiago, Cbile. 
1Transputer is a tradcmm:k of INMOS Ltd. 



www.manaraa.com

151 

be "on-the-fly" [Dijk 78] and distributed [IIuda 82, Augu 87, Derb 90], adding the 
termination problem [Dijk SO] and the detection of global states [Chan 85] to the 
parallelism problem. The reference counting algorithms have the problem of being 
unable to reclaim cyclic structures (even though they can be extended to do it), but 
are much simpler than the Mark-Scan ones and do not require synchronization be
tween the collectors and the mutators. We have chosen the reference count scheme 
mainly for its simplicity and because it could be implemented without modifying the 
local garbage collectors. In this way we have two completely independent Garbage 
Collection algorithms for local objects (a Mark-Scan) and for remote pointers (Ref
erence Counting), an idea already advocated in [Fost 89]. Their only interaction is 
at the end of each local garbage collection, to find which remote pointers have been 
deleted. 

The environment in which the algorithm is designed to run is a loosely-coupled 
multi-processor system with independent memories, and a reliable point to point 
message passing system. The message passing is very expensive and remote pointers 
already have many fields of information concerning the remote site, address, etc. In 
this kind of machine, we can accept to lose memory if extra messages can be avoided 
when requiring remote access, or when doing garbage collection. The proposed al
gorithm requires two extra fields per remote pointer, and one reference count per 
remote-pointed object, but it guarantees that the remote accesses are always done 
without indirections and it never requires synchronization with another site. This 
is important in a language with mutable data such as Lisp, because the maximum 
n~mber of indirect cells created by algorithms like weigltlcd reference counting can
not generally be estimated, as is done for pure functional languages in [Beva 87]. 
The algorithm is easy to extend to support object migration, which is used by the 
distributed Lisp to mutate distant objects. 

2 The Model 
The basic model is composed of the set of processors P and the set of all objects a. 
Given an object a E a, it resides at a processor pEP: pis called the owner of a. The 
set of all the remote pointers to a is denoted RP{a). It is assumed that each object 
has one and only one owner at a given time (although it may change). 

A remote pointer to an object o is called an a-reference2 • For every object a E a, 
RP(a) includes all of the existing a-references, including the remote pointers to a 
contained in messages already sent but not yet received. Only remote pointers are 
considered in this model, so the local pointers to a are not included in RP(a) and 
they are not called a-references. 

The model requires also that, given an object a residing at site p, every other site 
can hold at most one a-reference. Obviously, there are no a-references at p. Remote 
pointers are usually handled this way: if there are multiple pointers at a site to the 
same remote object a, they pass by a local indirection. This indirection represents 
for us the only a-reference at the site. 

Any garbage collection algorithm must detect the objects which are not remote
pointed from any other site. For this, every remote pointer operation must be con-

2The o-referencc terminology and the basis of tlus model were proposed in [Lcnn 86). 



www.manaraa.com

152 

sidered, and the model includes only four operations: 

1. Creation of an o-reference 

A site p, where an object o resides, transmits an o-reference to another site q. 
This operation does not imply the creation of the object, and happens each time 
that the owner of an object o sends a message with an o-reference to another 
site. 

2. Duplication of an o-refcrence 

A site q, which already has an o-reference to an object on another site p, trans
mits the o-reference to a third site r. This operation differs from creation 
because the owner of the object (p) is not involved. So, it does not know that 
a new o-reference was created. 

3. Deletion of an o-reference 

A site q, holding an o-reference to an object located on a distant site p, discards 
it. 

4. Migration of an object o 

A site q, holding an o-reference to an object located at a distant site p, wants 
to become the new owner of the object (with the permission of p). The object 
o is going to change its owner, and every o-reference is going to change along 
with it, while the old owner transforms its local pointer to o into an o-reference 
to the new owner. This is done with a distributed protocol using, for example, 
multicast or broadcast messages. This migration protocol is independent of the 
GC algorithm. llowever, the GC protocol must support asynchronous owner 
changes, with messages in transit, without losing consistency. 

Existing distributed garbage collection algorithms do not consider this opera
tion. It will be shown how these algorithms can be extended to handle it. 

The model abstracts from the remote pointers implementation and the way to 
decide when to delete an o-reference. On the other hand it distinguishes the a
reference creation from its duplication which pose completely different problems to 
the reference counting algorithms as is explained later. 

The distributed garbage collection algorithm should specify how to decide when 
an object o can be deleted locally (i.e. how to detect that RP(o) is empty) and what 
actions are to be performed in the four cases above. 

As the model only considers remote pointers, it is presumed that there are local 
garbage collectors keeping track of the local r~ferences and objects. Thus, when an 
object o can be deleted locally, it is the responsibility of the local garbage collector to 
do so. The only restrictions on interactions between the distl·ibuted and local garbage 
collectors are that the local collector must never reclaim remote-pointed objects (it 
is enough to keep them in a local list), and that at the end of each local garbage 
collection, every o-reference locally reclaimed could be found (to detect the deletion 
operation). 



www.manaraa.com

153 

3 The Existing Reference Counting Algorithms 

Existing reference counting algorithms (initially proposed for Lisp systems in [Coil 60]) 
are based on maintaining, for each object a, the total number of existing pointers to it, 
called the reference count of a. For this, every object a has an extra field, ReLcnt(a), 
which, in the classic algorithm, keeps the reference count of a. In our model, it is the 
number of elements of RP(o), denoted card(RP(a)). 

In the shared memory version, the mutator adjusts every object's Ref..cnt(a) each 
time a pointer is created, duplicated or deleted. When the reference count reaches 
zero, the object can be reclaimed, which means that all of the pointers contained in it 
can be deleted. This scheme does not detect self-referential structures which are not 
accessible from the outside, but extensions to handle cycles have been designed for 
purely functionallanguages[Bobr 80], combinator graph reduction machines[Brow 85] 
and distributed systems[Beck 86]. However, in this paper only the basic algorithm is 
considered. 

When trying to map the simple reference counting algorithm onto our distributed 
model, there are new problems and new algorithms. In this section we present two 
known distributed reference counting algorithms and their problems. 

3.1 The Naive Algorithm 

The first algorithm obtained from direct extension of the shared memory version is 
to keep the reference count of each object a equal to the total number of a-references 
in the system. Note that only remote pointers are considered. 

Thus, for every object a we have: 

card(RP(a)) = ReLcnt(o). 

The actions associated with each operation are: 

1. Creation of an a-reference 

When p sends an a-reference to q, it increments locally the ReLcnt(a). 

2. Duplication of an a-reference 

When q duplicates an a-reference, it sends an increment message to the owner 
site p to make it increment ReLcnt(o). 

3. Deletion of an a-reference 

When an a-reference is discarded at site q, it sends a decrement message to the 
owner site p to make it decrement ReLcnt(o). 

4. Migration of an object a 

Migrations are not handled in the original algorithm. However, it is important to 
see what kind of problems may be encountered if objects can change their owner. 
A simple solution is to perform one distant pointer creation (from the old owner 
to the new owner) and every time an a-reference is changed (at the other sites), 
send a decrement message to the old owner and an increment message to the 
new owner. If there arena-references in the system, this algorithm uses 2(n-1) 



www.manaraa.com

154 

messages for one migration. This is extremely expensive in messages, but the 
algorithm can be iniproved, noting that the reference count of the object remains 
the same (since no a-reference is created or deleted). Therefore, the object can 
migrate along with its reference count, without spending any messages. 

To consider messages in transit on the network, the invariant must be extended. 
Denote by DM(o) the set of all the decrement messages concerning o not yet received, 
and by IM(o) the set of the i1lcrcment messages. The extended invariant becomes: 

For every object o we have: 

card(RP(o)) = ReLcnt(o)- card(DM(o)) + card(IM(o)). 

The garbage collection rule is: "an object o can be deleted when ReLcnt(o) reaches 
zero". 

The problem of this algorithm is that it does not work correctly if the messages in 
the network are not guaranteed to be totally time-ordered (which is expensive). When 
there exists asynchronous communication between sites, messages are only partially 
ordered as was noted by the well-known paper [Lamp 78]. 

The object 0 

........• 

1: q copies an o-reference to r 

p 
decrement msq 

messages 

remote pointer 

r 

copy of the o-reference 

2: upon reception, r 
discards the pointer 

Figure 1: Two contradictory messages on their way top 

The co-habitation of two kinds of messages (increment and decrement) introduces 
a problem which invalidates the algorithm. Since it cannot be guaranteed that two 



www.manaraa.com

155 

messages sent at different times from different sites will arrive to a third site time
ordered, a decrement message can arrive first even if an increme11t message is on its 
way to the site. This situation can be seen in Figure 1. 

The problem exists even if the messages can be guaranteed to be ordered between 
two given sites, because q can send a copy of an a-reference (for an object residing at 
p) to r, with r discarding it immediately after reception. In this case there are two 
messages in transit to p from two different sites and it cannot be known which will 
arrive first. Obviously, the worst case is the decrement message arriving first, which 
can cause a premature zero of the object's reference count at p. Some other solutions 
have been proposed ([Lerm 86, Gold 89]) but they use more messages or consume 
more memory. 

Furthermore, the improved migration protocol (migrating the object along with 
its reference count) is incorrect in an asynchronous environment. Messages affecting 
the reference count of an object can be in transit while the object is migrating. If 
using the improved migration algorithm, a site can receive i11cremcnl or decrement 
messages for an object already migrated to another site. This can be handled keeping 
track of migrated objects and forwarding messages to the new owner site. However, 
this indirection must be maintained until every message has been received, which is 
a global condition and thus, difficult to detect. 

3.2 Weighted Reference Count 

A better solution to the distributed reference counting problem is the weigltted refer
ence count [Beva 87, Wats 87]. This algorithm avoids the problem of the premature 
zero by simply eliminating the increment messages. The algorithm is elegant and sim
ple: each a-reference rp has a weight associated with it (noted Weight(rp)) and each 
object has, as always, a reference count. The difference is that now the Ref..cnt(a) 
does not keep the number of pointers to a but the sum of their weights. So, the 
invariant is: 

For every object a: 

2: Weight(171) = Ref_cnt(a). 
rpERP(o) 

To preserve this invariant, the actions associated with the remote pointer operations 
are: 

1. Creation 

The new a-reference takes an initial weight, say w (with w > 0), and the 
reference count of a is incremented by w. (It is supposed that, at object creation, 
its reference count is zero.) 

2. Duplication 

If a resides at p, and q is sending a copy of the a-reference to r, the original 
a-reference at q takes half of its old weight and the newly created copy takes the 
other half (this is why usually the initial value w is a power of two) 3 • In this 

3 In fact, this is an optimization. Theo1-etically, if w is the old wcight of the pointer, it is enough 
to find two new wcights u and v sucl1 tbat u + v = w. 



www.manaraa.com

156 

way, the invariant is preserved without having to send a message to the owner, 
p. 

3. Deletion 

When an o-reference is deleted, a decrement message is sent to the owner along 
with the weight of the deleted pointer. Upon reception of a decrement message, 
the reference count is decremented by this amount. 

4. Migration 

This operation was not considered in the original papers. When an object o 
migrates from p to q, we can migrate the object along with its reference count 
and the new distant pointer (from p to q) can take the weight associated with 
the old pointer (from q top). If every pointer is changed at the same time, the 
invariant is preserved. 

In order to consider decreme1~t messages in transit, the original invariant must be 
extended to consider the weights of the decrement messages not yet received. Denoting 
as DM(o) the set of existing decrement messages related to remote pointers too, the 
extended invariant is: 

I: Weight(rp) = ReLcnt(o) - I: Weight(m). 
rpERP(o) mEDl\-l(o) 

The big problem with this algorithm is the copying of an o-reference with weight 
1. One solution is to send an increment message to the proprietary site [Beck 86] 
and wait for an acknowledge, which means a synchronization with this site before 
proceeding with the local computation. Another solution is to create an indirection 
cell [Wats 87, Beva 87] with a new reference count of w, but the accesses are now done 
to this cell and must be forwarded to the original object. In a distributed environment, 
this can create remote indirections which arc very expensive, and also affects accesses 
to the data. Even worse, references can be copied many times from one processor to 
another, having to create indirection cells many times. 

The migration protocol also poses a problem if considering messages in transit: 
decrement messages can arrive at the wrong site (the old owner). The old owner site 
can keep track of the migration to forward these messages, but, again, the global 
condition "every o-reference has been changed" is not easy to detect. 

4 Indirect Reference Counting 
In this section the proposed algorithm is presented, which is based on avoiding the 
increment messages by maintaining a distributed reference count[Piqu 90a]. 

The weighted reference algorithm eliminates the increment messages using a new 
definition of the field Ref..cnt(o) which only decreases. The indirect refere7~ce algo
rithm eliminates the increme1Jt messages by always maintaining enough information 
at each node to do the increments locally, without any communication. This is true 
even for duplications. 

The basis of the algorithm is to maintain a tree structure representing the diffusion 
tree of the pointer throughout the system. In fact, this structure is equivalent to 



www.manaraa.com

157 

the tree used by [Dijk 80] to detect termination, and we are using it to detect the 
end of the pointer's diffusion. This structure contains every o-reference and the 
object itself (which is always the root of the tree). When an o-reference is created 
or duplicated, a node is added as a child of the creator. When an o-reference is 
deleted, the corresponding node is deleted from the tree only if it was a leaf. If not, 
the descriptor is kept in the structure until it becomes a leaf (to avoid a distributed 
deletion, the leaf case being trivial). Obviously, when the root is the only node in the 
tree, there are no more o-references in the system. 

The implementation is very simple: an inverted tree is used, where each node 
keeps one pointer to its parent and a counter with the number of children4 • The 
structure can be seen in Figure 2. 

2 

count = 0 

Figure 2: The inverted tree 

Pointer 
Diffusion 
direction 

The nodes of the tree are the o-references themselves, which are extended with 
two new fields: copy ..cnt (the number of children) and parent (the pointer to the 
parent in the tree). We suppose that an o-reference always contains the owner field 
(which in our case is a pointer to the root of the tree). 
Each remote pointer is a record: 

remote_pointer = record 
integer owner; I• owner, root of the tree •I 

I* necessary information for accesses *I 

integer copy_cnt; I* number of duplications *I 
integer parent; I* from which we received it *I 

end; 

The object o (the root of the tree) has a similar descriptor, where owner shows 
that the local site is the owner, parent is NIL, and the copy_cnt keeps the number 
of creations done locally. Upon record creation, the parent initial value is NONE, to 
distinguish it from the root descriptor (with parent value NIL). 

The invariant of the algorithm is to preserve the tree structure consistently, with 
only one root, and with the correct number of children. It is easy to see that if the 

'This is the Indirect Reference Count because, when it reaches zero (the node becomes a leaf), 
the node can be deleted front the st1uctw-e if Lhe local o-reference is deleted. 



www.manaraa.com

158 

tree is correct, when the copy _cnt of the root is zero, the object can be deleted locally. 
For every a-reference or object rp at site p, we denote Children(rp,p) the set of all 
a-references with parent p. At each node p, the invariant is: 

card(Childrcn(rp,p)) = copy_cnt(rp). 

The total number of a-references on the system is equal to the total number of 
nodes on the tree: 

card(RP(a)) = L copy_cnt(rp). 
rpERP(o) U!o} 

To preserve this structure, we must avoid cycles, so every received a-reference 
already known is refused, replying with a decrement message. The actions performed 
upon operations on remote pointers are: 

1. Creation 

• at p, when a message containing an a-reference is sent: 

o.copy_cnt = o.copy_cnt + 1; 

• at q, upon reception of a message with an a-reference rp: 

if ( rp.parent == NONE ) 
{ 

} 

rp.parent = p; 
rp.copy_cnt = 0; 

else 
I• the reference already belonged to the tree •I 
''send decrement message top'': 

2. Duplication (it is as a Creation) 

• at q, when a message with a copy of an a-reference rp is sent: 

rp.copy_cnt = rp.copy_cnt + 1; 

• at r, upon reception of a message with a copy of an a-reference rp: 

if ( rp.parent == NONE ) 
{ 

} 

rp.parent = q; 
rp.copy_cnt = 0; 

else 
I• the reference already belonged to the tree •I 
''send decrement message to q''; 



www.manaraa.com

159 

3. Deletion 

When an o-reference rp is deleted at p, and its copy_cnt is zero, it can be 
deleted from the tree. Leaf deletion is trivial: a decrement message is sent to 
the parent. If the count is not zero, the descriptor must be maintained waiting 
for other decrement messages, but it is marked as deleted: 

if( rp.copy_cnt == 0) 
{ 

} 

••send decrement message to rp.parent''; 
Delete(rp); 

else 
Mark_deleted(rp); 

Upon reception of the decrement message for an object o, the number of children 
must be decremented. If the count reaches zero, and if the local o-reference was 
deleted, a decrement message is sent to the parent: 

I• reception of a decrement message for a remote pointer rp •I 

rp.copy_cnt = rp.copy_cnt - 1; 
if (rp.copy_cnt == 0 tt Test_deleted(rp)) 

{ 

} 

''send decrement message to rp.parent''; 
Delete(rp); 

An o-reference marked as deleted can be unmarked if the same o-reference is 
received again, before its copy _cnt reaches zero. However, a decrement message 
must be sent to the o-reference's sender, because the descriptor already has a 
valid parent. Thus, an Unmark..deleted directive must be added to the code 
handling the reception of any o-reference. 

4. Migration 

The migration of an object o from p to q means a change of the root in the 
diffusion tree. This operation is trivial on an inverted tree if the old root is 
known: the new root (at q) is extracted from the tree (along with its sub-tree) 
and the old root (at p) is added as a son of the new root. The extraction costs 
one decrement message, and the addition is done locally at the respective nodes 
(the new and old roots): 

• at p, when it changes the owner of the object o: 

o.parent = q; 



www.manaraa.com

160 

• at q, upon reception of a message authorizing it to be the new owner of an 
object pointed by rp: 

''send decrement message to rp.parent''; 
rp.parent = NIL; 
rp.copy_cnt = rp.copy_cnt + 1; 

The condition to locally delete an object o is simply that the copy ..c:nt of o equals 
zero. 

This system sends only decrement messages, as the increments are always done 
locally. The sites are informed of the deletion of locally sent o-references, only when 
the reference and all of its remote duplicated copies have been deleted. Also, accesses 
to distant objects are always done directly 5 • 

Migrations are handled neatly, with a simple modification of the tree structure. 
The migration operation complicates the other GC algorithms because it asynchro
nously modifies the owner pointers which are used by the decrement messages. If the 
objects were to migrate with their reference counts, messages could arrive at invalid 
destinations from which they would have to be forwarded. If not, many messages 
should be used to assure the invariant at any time. 

The indirect reference counting does not use the owner pointers, but rather the 
parent pointers, to send its decrement messages. However, parent pointers are also 
modified during migration (the other operations are only allowed to initialize the 
parent field, not to change it) but the reference counts never move: objects migrate 
alone and they get the local reference counts. Therefore, any decrement message in 
transit will always arrive at the correct destination (which is the site holding the 
reference count to be decremented). 

A shortcoming of the GC algorithm is that the deletion of an o-reference could gen
erate many messages in cascades of arbitrary size, if the pointer was forwarded from 
one site to another many times. However, this only happens if all of the copy_cnt's 
are reaching zero at once. 

5 Implementation Issues 

The indirect reference counting algorithm has been implemented on a distributed Lisp 
system called TransPive[Piqu 90b], based on Le-Lisp version 15.2 [Chai 84], extended 
to support remote pointers. In this system, remote pointers can be accessed for 
writing (for functions such as rplaea) which causes data migration. The current 
implementation uses the following organization: 

• remote pointers 

Remote pointers are implemented adding an extra field on every Lisp object. 
This field, called descriptor, points to an object descriptor which contains all 
the information about the object: obj.J.d is a unique object identifier, owner 
is the object's owner, and copy_ent and parent are the extra fields for the 
garbage collector. This descriptor also exists if the object is local. 

5 The parent is a new field and it is not used upon accesses to tbc values. The remote pointers 
always point directly to the site where o resides (as there are no iuclli-ection cells) using the ovner 
field. 



www.manaraa.com

161 

• object identifier 

Each site has a local hash table with the descriptor of every locally known object. 
The keys are the unique object identifiers. We have a function (search..desc 
obj..id) which returns a pointer to the descriptor. 

• local garbage collectors 

The local GC always invokes a function gcalarm [Chai 84] after each execu
tion. This permits us to search in the hash table all the deleted objects. We 
have a function called garbagep to detect descriptors of deleted objects. This 
descriptors are kept in the hash table until their copy _cnt field is zero. 

Also a GC~ist is constructed to retain every object witl1 a copy ..cnt greater 
than zero, to prevent them from being garbage collected (the hash table does 
not keep a pointer to the object itself, only to the descriptor). Every time an 
object gets a copy_cnt equal to zero, it is deleted from this list. 

The Lisp codification of the algorithm is (ignoring semaphores and some details): 

every Lisp object has a new field: 
(descriptor obj) 

(descriptor obj) returns 
; . (obj_id desc) 

(owner desc) 
(copy_cnt desc) 
(parent desc) 

a structure with fields: 
unique object identifier 
owner of this object 
indirect reference count 
from which it came to us 

Each time a pointer is sent in a message the copy_ptr routine is called. 
This is done both for creation and duplication of a remote pointer 

The actions perlormed are: 
add the object to the GC_list (the first time) 

to prevent the local GC from collecting it 
increment its copy_cnt 

(de copy_ptr (obj) 
(let ((desc (descriptor obj))) 

(when (= (copy_cnt desc) 0) 
(setq GC_list (cons obj GC_list)) ) 

(copy_cnt desc (+ (copy_cnt desc) 1)) )) 

Atter a local GC 
(de gcalarm () 

; update the GC_list 
(setq GC_list (del_ptrs GC_list)) 



www.manaraa.com

; update the hash_tab 
(foreach (desc hash_tab) 

162 

(when (and (garbagep desc) (= (copy_cnt desc) 0)) 
; this is a leaf, we can just delete it 
(send_decr_msg (obj_id desc) (parent desc)) 
(delete_from_htab hash_tab desc) ))) 

; delete from the list every object with ref_cnt = 0 
(de del_ptrs (list) 

(i:f (null list) 
() 
(if (= (copy_cnt (descriptor (car list))) 0) 

(del_ptrs (cdr list)) 
(cons (car list) (del_ptrs (cdr list))) ))) 

The GC process: 

upon reception of a decrement message 
(de decr_msg (obj_id) 

(let ((desc (search_desc obj_id))) 
(copy_cnt desc (- (copy_cnt desc) 1)) )) 

Migrations: 

We are the new owner of the object 
(de new_owner (desc) 

(send_decr_msg (obj_id desc) (parent desc)) 
(parent desc ()) 
(copy_cnt desc (+ (copy_cnt desc) 1)) ) 

We are the old owner 
(de migrate_to (desc new_owner) 

(parent desc new_owner) ) 

We can see in this implementation that, upon the reception of a decrement mes
sage, we just perform the decrement. The test to see if the object was locally 
deleted and its copy _cnt is already zero is done only after local garbage collection (in 
gcalarm). 

6 Measures and Results 
We have done some measures on three distributed applications: a merge-sort (using 
physical modification routines, thus causing migrations and being very inefficient), a 
search on a graph and a tic-tac-toe playing program. The applications were run on 
four Transputers, excepting the tic-tac-toe which was run on five Transputers. 



www.manaraa.com

163 

Execution Time (s) 
Applic. with GC no GC overhead(%) 
sort(1000) 4.1/3.1 3.8/2.8 7/9 
sort(2000) 7.1/6.0 6.6/5.2 7/14 
search 18.9/10.0 18.5/9.7 2/3 
tic-tac-toe 11.3 11.2 1 

Table 1 
The GC overhead 

We have measured the total execution time of the same application with or without 
the GC. The results are shown in Table 1, and we can sec that the total time overhead 
of the GC is, on average, 10%. There are two numbers for each application, the first 
time and the second time it runs, because the second time the TransPive cache system 
has kept the data copied locally and so it runs faster. The tic-tac-toe application runs 
at the same speed both times. 

The memory available for each Lisp was 1 Megabyte, and each execution generated, 
on average, one local GC at each node. 

7 Conclusions 
A new reference counting algorithm has been designed and implemented for dis
tributed systems, based on a distributed tree structure of the pointers to each ob
ject, keeping indirect reference counts at each node. It spends two extra fields in 
each pointer (parent and copy_cnt) and can generate more than one message when 
a reference is deleted, but in total there is always at most one message per deleted 
reference. It never creates indirect cells nor needs to synchronize with any other site, 
and migrations are supported neatly with only one overhead message for the GC. 

The algorithm is very simple and has a time overhead of approximatively 10% in 
the cases studied. Obviously, it is not suited to do garbage collection of local refer
ences, as two fields per pointer is unrealistic. However, when only remote pointers are 
concerned it becomes feasible and very simple to add to any local garbage collection 
system. 

Generating messages in cascades of arbitrary size can be a serious problem if used 
on real-time systems (which was not our case). 

Sharing a typical disadvantage of reference counting algorithms, the algorithm, as 
presented, is unable to collect distributed cyclic structures. 

8 Acknowledgements 
I am greatly indebted to Dr. Christian Queinnec who always suggested interesting 
ideas. This work was made possible thanks to the constant support of INRIA, the 
University of Chile and the French-Chilean cooperation program. 



www.manaraa.com

164 

References 

[Augu 87] Lex Augusteijn, Garbage Collection in a Distributed Environment, LNCS 
259, PARLE Proceedings Vol. I, Eindhoven, Springer Verlag, June 1987. 

[Beck 86] M. J. Beckerle, K. Ekanadham, Distributed Garbage Collection wit!& no 
Global Synchronization, IBM Research Report, RC 11667 (#52377), Jan
uary 1986. 

[Beva 87] D. I. Bevan, Distributed Garbage Collection Using Reference Counting, 
LNCS 259, PARLE Proceedings Vol. II, Eindhoven, Springer Verlag, June 
1987. 

[Bohr 80] D. G. Bobrow, .Managing Reentrant Structures Using Reference Counts, 
ACM Trans. on Programming Languages and Systems, Vol. 2, No. 3, pp. 
269-273, July 1980. 

[Brow 85] D. R. Brownbridge, Cyclic Reference Counting for Combinator .MacMnes, 
Functional Programming Languages and Computer Architecture, LNCS 
201, pp. 273-288, Springer Verlag, September 1985. 

[Chai 84] J. Chailloux, M. Devin, J. M. Ilullot, Le-Lisp: A Portable and Efficient 
Lisp System, Proc. 1984 ACM Symposium on Lisp and Functional Pro
gramming, August 1984. 

[Chan 85] K. M. Chandy, L. Lamport, Distributed snaps/10ts: Determining global 
states of distributed systems, ACM Trans. on Computer Systems, Vol. 3, 
No. 1, February 1985. 

[Coll 60] G. E. Collins, A Method for Overlapping and Erasure of Lists, Comm. of 
the ACM, Vol. 3, No. 12, pp. 655-657, December 1960. 

[Derb 90] M. II. Derbyshire, Mark Scan Garbage Collection On A Distributed Ar
chitecture, Lisp and Symbolic Computation, Vol. 3, No. 2, pp. 135-170, 
April 1990. 

[Dijk 78] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten, E. F. M. Stef
fens, On-the-fly Garbage Collection: an exercise in cooperation, Con1111. 
of the ACM Vol. 21, No. 11, November 1978. 

[Dijk 80] E. W. Dijkstra, C. S. Scholten, Termination Detection for Diffusing Com
putations, Information Processing Letters, Vol. 11, No. 1, August 1980. 

[Fost 89] I. Foster, A Multicomputer Garbage Collector for a Single-Assignment 
Language, Int. Journal of Parallel Programming, Vol. 18, No. 3, 1989. 

[Gold 89] B. Goldberg, Generational Reference Counting: A Reduced-Communica
tion Distributed Storage Reclamation Scheme, SIGPLAN Conference on 
Programming Languages Design and Implementation, Portland, Oregon, 
June 1989. 



www.manaraa.com

165 

Viuda 82] P. Hudak, R. M. Keller, Garbage Collection and Task Deletion in a Dis
tributed Applicative Processing System, 1982 ACM Symposium on Lisp 
and Functional Programming, 1982. 

[Lamp 78] L. Lamport, Time, Clocks, and tile Ordering of Events in a Distributed 
System, Comm. ACM, Vol. 21, No.7, pp. 658-666, July 1978. 

[Lerm 86] C. W. Lermen, D. Maurer, A Protocol for Distributed Reference Count
ing, Proc. 1986 ACM Conference on Lisp and Functional Programming, 
Cambridge, Massachussets, August 1986. 

[Piqu 90a] J. M. Piquer, Un GC parallcle pour un Lisp distribue, Journees franca
phones des langages applicatifs, La Rochelle, January 1990. BIGRE 69, 
July 1990 (french). 

[Piqu 90b] J. M. Piquer, Sharing Data Structures in a Distributed Lisp, Proc. lligh 
Performance and Parallel Computing in Lisp Workshop, Twickenham, 
London, UK, November 1990. 

[Ruda 86] M. Rudalics, Distributed Copying Garbage Collection, Proceedings of the 
ACM Conference on LISP and functional prog., Cambridge, Massachus
sets, August 1986. 

[Wats 87] P. Watson, I. Watson, All Efficient Garbage Collection Scheme for Par
allel Computer Arcl1itectures, LNCS 259, PARLE Proceedings Vol. II, 
Eindhoven, Springer Verlag, June 1987. 



www.manaraa.com

Periodic Multiprocessor Scheduling 
Jan Korst1, Emile Aarts1•2, Jan Karel Lenstra2•3 and Jaap Wessels2 

1. Philips Research Laboratories, P.O. Box 80.000, 5600 JA Eindhoven, the Netherlands 
2. Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands 

3. CWI, P.O. Box 4079, 1009 AB Amsterdam, the Netherlands 

Abstract 
A number of scheduling and assignment problems are presented involving the execution 
of periodic operations in a multiprocessor environment. We consider the computational 
complexity of these problems and propose approximation algorithms for operations with 
identical periods as well as for operations with arbitrary integer periods. 
Keywords: periodic scheduling, periodic assignment, cyclic scheduling, nonpreemptive 
scheduling 

1 Introduction 

This paper deals with the problem of scheduling periodic operations, i.e., operations that 
have to be repeated at a constant rate over an infinite time horizon. Periodic scheduling 
problems naturally arise in such diverse areas as real-time processing, process control, vehicle 
scheduling, personnel scheduling and preventive maintenance scheduling; see Section 2 for 
references. Our interests in periodic scheduling originate from the field of real-time video 
signal processing, where the samples of a video signal have to be processed at a constant 
high frequency (10- 100 MHz) on a network of processors. Due to the high frequencies, the 
processing of successive samples necessarily overlaps in time. The intrinsic periodic nature 
of video signal processing gives rise to a periodic scheduling formulation. This application 
area poses some specific constraints, resulting in a class of optimization problems that so far 
have received little attention in the literature. In this paper we discuss this class of problems 
by examining their computational complexity, introducing approximation algorithms, and 
indicating relevant results presented in the literature. 

We aim to keep the discussion as general as possible by proposing solution strategies that are 
also applicable in other application areas. Many papers on periodic scheduling are concerned 
with specific applications, proposing solution strategies that are often strongly tailored to 
the application at hand, a notable exception being the paper by Serafini & Ukovich [1989], 
which presents a general mathematical model for periodic scheduling problems. However, 
their emphasis is on periodic scheduling subject to precedence constraints. In our paper, the 
emphasis is on periodic scheduling subject to resource constraints. In that respect, our work 
is complementary to theirs. 

The organization of the paper is as follows. Section 2 briefly surveys the literature on periodic 
scheduling. Section 3 gives a mathematical model of periodic scheduling, from which a 
number of interrelated optimization problems are derived. The computational complexity 
of these problems is examined in Section 4. Section 5 gives approximation algorithms and 
bounds on their worst-case performance, if available. Section 6 contains some concluding 
remarks. 



www.manaraa.com

167 

2 Survey of the Literature 

In the literature, the notion 'scheduling' refers to planning in time as well as planning in 
time and space. In this paper, we take the latter interpretation. We divide the literature on 
scheduling periodic operations into two main areas of interest, namely 

(i) Periodic Scheduling: assigning start times and processors to periodic operations so as 
to minimize the number of processors, possibly subject to precedence constraints, and 

(ii) Periodic Assignment: assigning processors to periodic operations so as to minimize the 
number of processors for periodic operations with fixed start times. 

Clearly, periodic assignment is a subproblem in periodic scheduling. Next, we briefly describe 
some results obtained in both areas. We do not aim to give a complete overview. 

2.1 Periodic Scheduling 

Most of the literature on scheduling periodic operations in time is restricted to preemptive 
scheduling. Preemptive scheduling allows interruption of an execution on a given processor 
at some time and its resumption at the same time on a different processor or at a later time 
on any processor. 

2.1.1 Preemptive Periodic Scheduling 
Preemptive periodic scheduling problems are usually modelled as follows. Given a set of 
operations 0 = { o1, ••• , on}, any operation o; E 0 is periodically requested to be executed 
with a given period p(o;) between two successive requests of operation o;. Once requested 
at time t an execution of o; is required to be completed at time t + d(o;), called its deadline. 
The objective is then to find a feasible schedule that requires a minimal number of proces
sors, where a schedule is called feasible if all deadlines are met. Leung & Merrill [1980] 
prove that the problem of deciding whether a feasible schedule exists on m processors is 
NP-complete, even for m = 1. However, this problem can b,e solved in polynomial time if 
the deadline of each execution coincides with the next request for the operation. Form = 1, 
Liu & Layland [1973] and Labetoulle [1974] prove that, if a feasible schedule exists, then it 
is obtained by the so-called deadline driven algorithm, which is a dynamic-priority algorithm 
that schedules executions with earliest deadlines as soon as possible. Liu & Layland also give 
a fixed-priority scheduling algorithm form= 1, known as rate-monotonic priority assignment, 
which is optimal in the sense that the algorithm finds a feasible schedule whenever a feasi
ble fixed-priority schedule exists. Dhall & Liu [1978] present two fixed-priority scheduling 
algorithms form 2:: 1, and discuss their worst-case performance. Leung & Whitehead [1982] 
study the complexity of preemptive fixed-priority scheduling. Lawler & Martel [1981] show 
that a feasible preemptive schedule exists if and only if a feasible periodic schedule exists 
with a period equal to the least common multiple of the periods of the individual operations. 
Bertossi & Bonuccelli [1983, 1985] consider preemptive scheduling on multiprocessor sys
tems consisting of 'processors of different speeds'. Scheduling periodic operations together 
with 'sporadic time-critical operations' is examined by Chetto & Chetto [1989]. 

2.1.2 Nonpreemptive Periodic Scheduling 
So far, nonpreemptive periodic scheduling has received little attention in the literature. To 
schedule periodic operations nonpreemptively, it is usually assumed that the operations have to 



www.manaraa.com

168 

be executed with a fixed time between successive executions of the same operation. Gonzalez 
& Soh propose an optimization algorithm for nonpreemptively scheduling periodic operations 
for the rather special case that the period of the ith operation is half the period of the (i + 1)th 
one. Serafini & Ukovich [1989] discuss nonpreemptive periodic scheduling subject to prece
dence constraints and show that this problem is NP-complete. Park & Yun [1985] give an 
ILP formulation of a nonpreemptive scheduling problem. They consider a set of independent 
periodic operations, where each execution requires a given number of resources during one 
unit of time, and aim to minimize the maximum required amount of resources. They show 
how this problem can be partitioned into a set of independent subproblems, which can be 
optimized independently. The partitioning divides the operations into subsets such that the 
periods of operations in different subsets are relatively prime. A problem related to nonpre
emptive periodic scheduling is the problem of inscribing regular polygons in a circle so as to 
maximize the minimum distance between two vertices on the circle. Burkard [1986] solves 
this problem for a set of regular polygons that includes only two different types of polygons. 
Vince [1989] presents a more general approach to this problem. 

2.2 Periodic Assignment 
Periodic assignment deals with the problem of assigning the executions of periodic operations 
to a minimal number of processors, assuming that the executions are fixed in time. As we 
show in the next sections, this problem is closely related to that of colouring circular arcs. 
Circular-arc colouring has been studied by several authors. Garey, Johnson, Miller & Pa
padimitriou [1980] prove that circular-arc graph colouring is NP-hard. Tucker [1975] gives 
upper bounds on the number of colours needed to colour various types of circular-arc graphs. 
Orlin, Bonuccelli & Bovet [1981] and Shih & Hsu [1989] give efficient algorithms for the 
polynomially solvable subproblem of colouring proper circular-arc graphs. 

Bartholdi, Orlin & Ratliff [1980] consider the periodic assignment problem under the as
sumption that the availability of resources is also periodic. This problem naturally arises in 
the area of personnel scheduling, where periodic jobs have to be assigned to persons having 
periodic working hours. Bartholdi [1981] proposes a linear programming round-off algorithm 
and gives its worst-case deviation from optimum. Orlin [1982] discusses the periodic assign
ment problem under the assumption that processors require a setup time Sij to switch from 
execution i to execution j. This problem naturally arises in the area of vehicle scheduling, 
where a vehicle has to be transported from the end point of route i to the starting point of 
route j before it can start traversing route j. 

3 Problem Description 

In this section we give a formal description of a number of interrelated periodic scheduling 
and assignment problems. We restrict ourselves to nonpreemptive scheduling and do not 
consider precedence constraints. 

Let 0 = { o1, .•• , On} be a set of n periodic operations. For each o E 0 an execution time 
e(o) E IN and a period p(o) E IN are given. We assume that p(o) ~ 1 and e(o) ::::; p(o) for each 
o E 0. Once an execution of an operation o is started at a time unit t E 'ZZ, it is completed 
without interruption on the same processor. Note that in this paper time is measured in time 
units, i.e., time periods of equal length. If an operation o with execution time e(o) is said to 



www.manaraa.com

169 

start at time unit t, it starts at the beginning of time unit t and completes at the end of time 
unit t + e(o) - 1. Similarly, a time interval [t1, t2 ] denotes a set of consecutive time units, 
given by {t1 ,t1 + 1, ... , t2}. The kth execution of operation o is denoted by o[k]. If execution 
o[k] is started at time unit t, then execution o[k+ 1] is started at time unit t+p(o). The set of 
all executions is given by 

E = {o[k] I o E 0, k E 7Z}. 

So, each operation o E 0 is started exactly every p(o) time units. Consequently, if for an 
operation o the start time of an arbitrary execution is fixed, then all executions of o are 
fixed in time. Without loss of generality, the executions of operation o are uniquely specified 
by a start time s(o), with 0 ~ s(o) < p(o). Hence, a schedule S of the operations in 0 
is uniquely determined by an n-tuple (s(o 1), s(o2), ••• , s(on)), with 0 ~ s(o;) < p(o;) for all 
o; E 0. Furthermore, the operations are considered independent, i.e., there are no precedence 
constraints between executions of different operations. 

Scheduling periodic operations naturally leads to periodic schedules. A schedule S is called 
periodic with period P if for each time unit t E 7Z and each o E 0 the following holds: 

operation o is executed at time unit t if and only if it is executed at time unit t + P. 

Clearly, in order for a schedule to be periodic with period P, it is required that p(o) I P, for each 
o E 0. Consequently, the minimal period P of a schedule is given by lcm(p(o1), ••• ,p(on)), 
i.e., the least common multiple of the periods of the individual operations. 

Let M denote the set of processors. The processors are supposed to be identical, i.e., each 
operation o E 0 can be executed on any processor m E M and the time to execute operation 
o does not depend on the processor. Furthermore, a processor can only execute one operation 
at a time. We aim to minimize the number of processors necessary for the execution of the 
operations in 0. Given a schedule S, we can define the thickness function Ts : 7Z -+ IN 
which assigns to each t E 7Z the number of operations that are being executed at that time 
unit. Since a processor can only execute one operation at a time, max, T s(t) gives, for a given 
scheduleS, a lower bound on the number of processors that is required to carry out schedule 
S. If schedule S is. periodic with period P, then the thickness function Ts is also periodic 
with a period P', for which P' I P. Hence, to determine max, Ts(t), it suffices to consider 
time units t E {1, ... ,P}. 

With respect to the assignment of executions to processors we consider two different cases, 
namely 

(i) the constrained case, where all executions of an operation o have to be assigned to the 
same processor, for all o E 0, i.e., an assignment from 0 toM is required, and 

(ii) the unconstrained case, where each execution o[k] can be assigned to a different pro
cessor, i.e., an assignment from E to M is required. 

An assignment of each execution in E to a processor in M may be difficult to specify, since 
E is a (countably) infinite set. We therefore restrict ourselves to periodic assignments. An 
assignment is called periodic with period P E IN if for each time unit t E 7Z, each o E 0, 
and for each m E M the following holds: 

m executes oat time unit t if and only ifm executes oat time unit t + P. 



www.manaraa.com

170 

If for a periodic schedule S with period P the corresponding assignment is periodic with pe
riod P', then necessarily P I P'. In the constrained case, i.e., if all executions· of an operation 
are assigned to the same processor, the assignment is necessarily periodic with period P' = P. 
For the unconstrained case, restricting oneself to periodic assignments does not lead to the 
use of extra processors as long as the length of period P' is not restricted. This is shown in 
the following theorem. 

Theorem 1 For each periodic scheduleS a periodic assignment exists requiring only max1 Ts(t) 
processors. 

Proof We have seen that max1 T 5 (t) gives a lower bound on the required number of proces
sors. Now a finite set of executions can be optimally assigned to max1 T5 (t) processors, using 
an O(nlogn) algorithm [Hashimoto & Stevens, 1971; Gupta, Lee & Leung, 1979], where n 
denotes the number of executions. The algorithm assigns the executions in order of increasing 
start times to the first available processor, i.e., to the available processor with the smallest 
index number. Let us consider the assignment of a finite set of executions, namely the set of 
all executions in the time interval [0, mP -1], with m E 1N and P = 1cm(p(o1), ••• ,p(on)). We 
show that, if m is chosen sufficiently large, the assignment necessarily becomes periodic with 
some period m' P, m' < m. Let us examine the assignment in intervals [lP, (l + 1 )P - 1], with 
0 :::; l < m. The assignment can attain only a finite set of different solutions in such an interval 
[lP, (l + 1)P- 1], since a finite set of executions can be assigned to a finite set of processors. 
Consequently, if m is chosen sufficiently large, then in two intervals [lP, (l + 1)P- 1] and 
[l'P, (l' + 1)P- 1], with 0 :::; l < l' < m, the assignment must necessarily be identical. Hence, 
the assignment necessarily becomes periodic with period (l' -l)P, using only max1 T s(t) pro
cessors, which completes the proof of the theorem. • 

The minimum period for which a periodic assignment uses max1 T s(t) processors may gener
ally be very large. For reasons of simplicity, we restrict ourselves in this paper to periodic 
assignments with periods of minimal length, i.e., with a period P = lcm(p(o1), ••• ,p(on)). In 
this way, an operation o is executed on at most P jp(o) different processors. For the uncon
strained case, an assignment is thus completely specified if the processor is given for P jp(o) 
successive executions of each operation o E 0, denoted by o[1], o[2], ... , o[P jp(o)], where 
o[l] is defined to be the first execution starting at a time unit t;::: 0. 

Given the definitions and assumptions described above, we can define the following periodic 
assignment problems. We formulate these problems as decision problems. 

Unconstrained Periodic Assignment (UPA) 
Given a scheduleS for a set 0 of periodic operations with an execution time e(o) E 1N and a 
period p(o) E 1N for each o E 0, and an integer k, does an unconstrained periodic assignment 
with period P = lcm(p(o1), ••• ,p(on)) exist that uses at most k processors? 

Constrained Periodic Assignment (CPA) 
Given a scheduleS for a set 0 of periodic operations with an execution time e(o) E 1N and 
a period p(o) E 1N for each o E 0, and an integer k, does a constrained periodic assignment 
exist that uses at most k processors? 



www.manaraa.com

171 

Likewise, we define the following periodic scheduling problems. 

Unconstrained Periodic Scheduling (UPS) 
Given a set 0 of periodic operations with an execution time e(o) E IN and a period p(o) E IN 
for each o E 0, and an integer k, does a schedule exist for which an unconstrained periodic 
assignment with period P = lcm(p(o1), ••• ,p(on)) uses at most k processors? 

Constrained Periodic Scheduling (CPS) 
Given a set 0 of periodic operations with an execution time e(o) E IN and a period p(o) E IN 
for each o E 0, and an integer k, does a schedule exist for which a constrained periodic 
assignment uses at most k processors? 

With respect to CPS the following theorem gives a necessary and sufficient condition for 
scheduling the executions of two operations on the same processor. 

Theorem 2 The executions of two periodic operations o; and Oj can be scheduled on the same 
processor if and only if 

gcd(p(o;),p(oj)) ~ e(o;) + e(oj). (1) 

Proof Let g = gcd(p(o;),p(oj)). We first prove that (1) is a sufficient condition. This is shown 
as follows. Choosing the start times s(o;) = 0 and s(oj) = e(o;), operation o; is executed in 
a subset of the set I; of intervals, defined by [lg, lg + e(o;) - 1], 1 E 7Z, and operation Oj is 
executed in a subset of the set Ij of intervals, defined by [lg + e(o;), lg + e(o;) + e(oj) - 1], 
1 E 7Z. Hence, if g ~ e(o;) + e(oj), then no intervals of I; and Ij overlap, which proves the 
sufficiency of (1 ). 

We prove the necessity of (1) by showing that, if g < e(o;) + e(oj), operation o; and Oj cannot 
be scheduled on the same processor. So, assume that g < e(o;) + e(oj). Without loss of 
generality we may assume that s(o;) = 0. We now have to prove that integers x,y exist for 
which 

[xp(o;),xp(o;) + e(o;)- 1] n [s(oj) + yp(oj), s(oj) + yp(oj) + e(oj)- 1] =/0 
or, equivalently, 

[xp(o;)- yp(oj), xp(o;)- yp(oj) + e(o;) - 1] n [s(oj), s(oj) + e(oj)- 1] =/0. 

From elementary number theory it is known that integers w, z exist for which wp(o;)+zp(oj) = 
g. If we choose x = lw andy= -lz, with 1 E 7Z, it suffices to show that for some integer 1 

[lg, lg + e(o;)- 1] n [s(oj), s(oj) + e(oj)- 1] =/0. 

Clearly, this must be the case since the free intervals between the intervals [lg, lg + e(o;)- 1], 
1 = 0, 1, ... , are of length g- e(o;), while the intervals [s(oj), s(oj) + e(oj) - 1] are of length 
e(oj). Hence, the assumption that g < e(o;) + e(oj) implies that some integer 1 necessarily 
exists for which [lg, lg + e(o;) - 1] and [s(oj), s(oj) + e(oj) - 1] overlap. This completes the 
proof of the theorem. • 

A similar condition can be derived for CPA, as is shown in the following theorem. 



www.manaraa.com

172 

Theorem 3 For CPA, two periodic operations o; and Oj with given start times s(o;) and s(oj), 
can be executed on the same processor if and only if 

e(o;) $ (s(oj) - s(o;)) mod g $ g - e(oj), 

where g = gcd(p(o;),p(oj)). 

(2) 

Proof Without loss of generality we may assume that s(o;) = 0. This is true since, if s(o;) =I 0, 
then the start times of o; and oi can be shifted such that s(o;) becomes zero, without affecting 
possible overlap. The sufficiency of (2) is shown as follows. Let us consider time intervals 
[0 +kg, g - 1 +kg], with k E 'ZZ. The first e(o;) time units of each of these intervals can 
be allocated for executions of o;, and the remaining g - e(o;) time units for executions of 
oi. Now, if (2) holds, then the allocated time units surely suffices to execute o; and Oj· The 
first e(o;) time units of the intervals are only used to execute o; once every p(o;)jg intervals. 
The remaining g- e(o;) time units are only (partly) used to execute oi once every p(oj)/g 
intervals. 

The necessity of (2) is shown as follows. Let us again consider the time intervals [0 +kg, g -
1 + kg], with k E 'ZZ. If (2) does not hold then the execution of oi overlaps the first e(o;) 
time units once every p(oj)/g time intervals. We have already seen that the first e(o;) time 
units of the intervals are used for the execution of o; once every p(o;)/g time units. Now, by 
definition, gcd(p(o;)/g,p(oj)/g) = 1. Hence, if (2) does not hold, then operations o; and oi 
cannot be executed on the same processor. This completes the proof of the theorem. • 

Note that Theorem 2 can be considered a corollary of Theorem 3, since (1) directly follows 
from (2). In the next section we examine the computational complexity of the problems 
defined above. 

4 Computational Complexity 

To examine the complexity of the periodic assignment problems CPA and UPA, we focus 
our attention on the subset of problem instances for which p(o) = p for all o E 0. Note that 
under this restriction CPA and UPA are identical. If we prove that this subset of instances is 
NP-complete, then both CPA and UPA have been proved to be NP-complete. 

Theorem 4 CPA and UPA are NP-complete. 

Proof It is easily verified that CPA and UPA are in NP. Now the NP-completeness is 
proved by a reduction from circular-arc colouring, which has been shown to be NP-complete 
by Garey, Johnson, Miller & Papadimitriou [1980]. We first define circular-arc colouring. Let 
a set of circular arcs A = { a1, ••• , an} be given, where each arc a;, specified by an ordered pair 
(l;, r;), with 1;, r; E {0, 1, ... , 2n -1 }, is an arc on a circle with circumference 2n that stretches 
clockwise from point I; to point r;, containing both endpoints, and let an integer k be given. 
The problem is now: is A k-colourable, i.e., does a function f : A ~ { 1, ... , k} exist such 
that f(a;) =I f(ai) whenever a; and ai overlap? Any instance of circular-arc colouring can be 
transformed to a periodic assignment instance as follows. For each arc a; we define a periodic 
operation with period p(o;) = 2n, start time s(o;) = I;, and execution time e(o;) = r; - I;+ 1 if 
r; ;?: I; and e(o;) = r; - I; + 2n + 1 if r; < l;. Now two periodic operations can be assigned 
to the same processor if and only if the corresponding circular arcs can be coloured with the 



www.manaraa.com

173 

same colour. Consequently, the circular arcs can be coloured using k colours if and only if 
the periodic operations can be assigned to k processors. Evidently, this is a polynomial-time 
transformation, which completes the proof of the theorem. • 

Note that the transformation from circular-arc colouring defines an equivalence between 
circular-arc colouring and the problem of assigning operations with identical periods, which 
we will use in Section 5.1. 

To consider the complexity of CPS and UPS we again focus our attention on the subset of 
problem instances for which p(o) = p for all o E 0. Again notice that this subset is in the 
intersection of the CPS and UPS problem instances. 

Theorem 5 CPS and UPS are NP-complete in the strong sense. 

Proof It is easily verified that CPS and UPS belong to NP. We now prove the NP
completeness by a reduction from bin packing, which is NP-complete in the strong sense 
[Garey & Johnson, 1979]. An instance of bin packing is specified as follows. Let a finite 
set A = { a 1, ••• , an} of items be given, with for each item a; E A a positive integer size 
s(a;), a positive bin capacity B and a positive integer k. Can A be partitioned into k disjoint 
subsets A 1 , ••• , Ak> such that the sum of the sizes in each subset A; does not exceed the bin 
capacity B? Any instance of bin packing can be directly transformed into an instance of CPS 
or UPS as follows. For each item a; we define a periodic operation o; with execution time 
e(o;) = s(a;) and period p(o;) =B. Clearly, a number of periodic operations can be executed 
on the same processor if the corresponding items can be packed in one bin, and vice versa. 
Hence, the items a 1, ••• , an can be packed into k bins if and only if the operations o1, ••• , On 
can be scheduled on k processors. Since the above transformation is polynomial, CPS and 
UPS are both NP-complete in the strong sense. • 

An alternative reduction from 3-partition can be constructed, showing that the problems re
main NP-complete in the strong sense for the case that only one processor is available. 
Hence, this gives a stronger result. We have chosen, however, to give the reduction from 
bin packing since this reduction defines an equivalence between bin packing and the prob
lem of scheduling periodic operations with identical periods, which we will use in Section 5 .1. 

5 Approximation Algorithms 

All problems presented in Section 3 are NP-complete. This means that, unless P = NP, 
efficient optimization algorithms do not exist for these problems. We therefore focus our 
attention on approximation algorithms, i.e., algorithms which do not guarantee to find an 
optimal solution for every instance but attempt to find near-optimal solutions. In the remainder 
of this paper we present approximation algorithms for the periodic scheduling and assignment 
problems presented in Section 3 and, to some extent, analyse their performance. An interesting 
subclass of problems arises if we assume that the operations all have identical periods. We 
first consider approximation algorithms for this subclass of problems. 

5.1 Periodic Operations with Identical Periods 
In Section 4 we already indicated the equivalence between bin packing and the problem 



www.manaraa.com

174 

of scheduling periodic operations with identical periods. Hence, approximation algorithms 
for bin packing can be directly applied to this problem. A large number of approximation 
algorithms exist for bin packing, ranging from simple approximation algorithms called first fit 
and first fit decreasing, which have asymptotic performance ratios of ~ and ¥, respectively, 
to approximation schemes. An extensive survey of the literature on approximation algorithm!: 
for bin packing is given by Coffmann, Garey & Johnson [1984]. A bin packing algorithm 
gives a partitioning of the operations into subsets such that the operations in the same subset 
can be assigned to the same processor. A feasible schedule can then easily be obtained by 
scheduling the operations in each subset one after the other, in some arbitrary order. The 
wealth of approximation algorithms for bin packing provided by the literature surely suffices 
to effectively handle this subclass of periodic scheduling problems. 

To present approximation algorithms for the assignment of periodic operations with identical 
periods we refer to its equivalence with the problem of colouring circular arcs, as indicated 
in Section 4. To the best of our knowledge, Tucker [1975] is the only author who considers 
the subject of approximation algorithms for colouring circular arcs, in order to give an upper 
bound on the number of colours necessary for colouring circular arcs. Elaborating on this 
result, we present the following 2-step approximation algorithm for colouring circular arcs, 
called sort&match. 

1. Partition the set of arcs into two subsets A and B, where A contains all arcs that cover one 
specific point t E { 0, 1, ... , 2n- 1} for which the thickness function attains a minimum 
value, and B contains all remaining arcs. Consequently, !AI = min1 T8 (t). Now the 
arcs in B can be optimally assigned using the assignment algorithms of Hashimoto & 
Stevens [1971] or Gupta, Lee & Leung [1979] using max,T8 (t) colours: the arcs a; in 
B are sorted in order of their starting point l; and they are assigned in this order to the 
first available colour, i.e., the available colour with the smallest index number. 

2. Determine a maximum subset A' of arcs in A which can be coloured with a colour 
that is already used in step 1 to colour arcs in B. This problem can be formulated 
as a maximum-carcjinality matching problem in a bipartite graph, which can be solved 
efficiently using an augmenting path algorithm [Edmonds, 1965; Hopcroft & Karp, 
1973]. Finally, each remaining arc in A- A' is given a different free colour. 

Tucker [1975] only considers the first step of the algorithm presented above. Clearly the 
algorithm requires at most max, T 8 (t) +min, T 8 (t) colours. Since max, T8 (t) is a lower bound 
on the number of required colours, sort&match has a worst-case performance ratio of 2. This 
worst"case performance ratio already holds for the first step of the algorithm (assuming that 
all arcs in A are given a different free colour), which Tucker already showed. The worst-case 
performance bound can be shown to be tight [Korst, Aarts, Lenstra & Wessels, 1991]. The 
average-case performance of sor.t&match is much better. Experimental results indicate that 
the algorithm almost always finds solutions that are within 10% of the optimum for randomly 
generated instances [Korst, Aarts, Lenstra & Wessels, 1991]. 

5.2 Periodic Operations with Arbitrary Periods 
In this subsection we discuss possible approximation algorithms for the UPA, CPA, UPS and 
CPS problems, for the case that operations have arbitrary integer periods. 

Approximation Algorithm for UPA 



www.manaraa.com

175 

Sort&match, presented in Section 5.1, can also be used as an approximation algorithm for 
UPA by associating an arc with each execution that is contained in a time window of length 
P = Icm(p(o1), ••• ,p(on)). Note, however, that here the number of arcs is not polynomially 
bounded by the number of operations. The performance bound of sort&match clearly remains 
unaffected. Circular arcs can be efficiently coloured if they are proper, i.e., if no arc is 
completely contained in another arc [Orlin, Bonuccelli & Bovet, 1981;Shih & Hsu, 1989]. 
Hence, if periodic operations all have identical execution times, they can be optimally assigned 
to processors in a time that is polynomial in the number of executions. 

Approximation Algorithms for CPA 
Using Theorem 3 we can easily determine for each pair of periodic operations whether they 
can be assigned to the same processor. Consequently, we can define a graph g = (V, £), 
where each v; E V is associated with a periodic operation o;. Two vertices v; and vi are 
adjacent if the associated operations o; and oi cannot be assigned to the same processor. The 
resulting graph g is called a periodic-interval graph. Now it is easy to see that solving 
a CPA instance is identical to colouring the vertices of the corresponding periodic-interval 
graph with a minimum number of colours. A periodic-interval graph can be considered to 
be a generalization of a circular-arc graph in the case that all periods are identical. To the 
best of our knowledge no graph colouring algorithms are presented in the literature that 
are tailored to colouring periodic-interval graphs. However, approximation algorithms for 
colouring arbitrary graphs might give satisfactory results in practice. 

Approximation Algorithms for UPS 
Experimental results indicate that sort&match is able to find solutions for UPA that are often 
close to max1 T8 (t). It therefore seems tempting to handle UPS using the following two-step 
approach: 

1. first determine start times for the operations such that max1 T 8 (t) is minimized, and 

2. next use sort&match to find a feasible assignment. 

Now the problem of finding a schedule such that max1 T 8 (t) is minimized can be shown to 
be NP-complete. This immediately follows from the fact that UPS remains NP-complete 
for the single processor case. Consequently, we can restrict ourselves to constructing an 
approximation algorithm for the problem of finding start times that minimize max1 T 8 (t). 
Note that for a set O' of periodic operations with gcd(p(o;),p(oj)) = 1 for all o;, Oj E 0', 
we have max1 T 8 (t) = JO'J for any possible choice of start times. This is a corollary of 
Theorem 2; see also [Park & Yun, 1985]. Consequently, the set of periodic operations 0 can 
be partitioned into a number of disjoint subsets 0 1, 0 2 , ••• , 0 1 such that gcd(p(o;),p(oj)) = 1 
for each pair of operations o;, oi that have been assigned to different subsets, and max1 Ts(O;)(t) 

can be minimized independently for each subset 0;. The total thickness max1 T 8 (t) is then 
given by I:o; max1 T S(O;>· This partitioning approach will reduce the size of the problem. 

We now restrict ourselves to minimizing max1 T 8 (t) for a given subset 0;. This can be done 
as follows. First select a subset O;r of 0;, for which gcd(p(o;),p(oj)) = 1 for all o;, Oj E 0;', 
such that 0;' is as large as possible. This is done by using some independent set heuristic. 
The operations in 0;' are given arbitrary start times. Next, the remaining operations must be 
given start times subject to the start times of the operations in 0;'. If the number of operations 
in 0;- 0;' is small, an enumeration is most appropriate. Otherwise, some constructive or 



www.manaraa.com

local search approach can be used. 

Approximation Algorithm for CPS 

176 

In the case of CPS we observe the following. If one or more periodic operations are assigned 
to a processor, then the time that the processor remains idle can be expressed as one or more 
periodic intervals, each with a period and a duration. For example, if a periodic operation o; 
with period p(o;) and execution time e(o;) is assigned to an idle processor, then the remaining 
idle time can be expressed as a periodic interval with period p(o;) and a duration p(o;)- e(o;). 
We can thus consider the problem of assigning periodic operations to processors as the problem 
of assigning periodic operations to periodic intervals. For reasons of simplicity we denote a 
periodic operation o; with period p(o;) and execution time e(o;) by the ordered pair (p;, e;) 
and a periodic interval with period Pj and duration dj by the ordered pair [pj, dj]. From 
Theorem 2 we derive that a periodic operation (p;, e;) can be assigned to a periodic interval 
[pj, dj] if and only if gcd(p;,p) ~ e; + (pj - dj). Let g = gcd(p;,P) and ej = pj- dj; then 
by assigning periodic operation (p;, e;) to periodic interval [pj, dj], the remaining idle time 
can be expressed as a set of periodic intervals in a number of alternative ways. We assume 
that a periodic operation is always started at the begin of the periodic interval to which it is 
assigned. Consequently, the remaining idle time can be expressed as one of the following 
three alternatives. 

1. p;/ g - 1 periodic intervals [p;, g - ej], 
pj/ g - 1 periodic intervals [pj, ej], and 

1 periodic interval [p;, g- e;- ej] 
2. p;/ g - 1 periodic intervals [p;, e;], 

Pj/ g - 1 periodic intervals [pj, ej], and 
1 periodic interval [ g, g - e; - ej] 

3. p;/g- 1 periodic intervals [p;, e;], 
Pj/ g - 1 periodic intervals [pj, g - e;], and 

1 periodic interval [pj, g - e; - ej] 

In all three cases the number of periodic intervals is given by 

P;+Pj -1. 
gcd(p;,Pj) 

Note that, if P; = pj, the three alternatives are identical, leading to only one periodic interval. 
Otherwise, if P;!Pj or pj\pi, then the three alternatives reduce to two essentially different ones. 

Based on this observation, we propose the following iterative approximation algorithm. In 
each iteration all possible assignments of periodic operations to periodic intervals are con
sidered and the one that is considered best is selected to be scheduled. The 'goodness' of 
an operation-to-interval assignment is defined by the amount of idle time that remains after 
assigning the periodic operation to the periodic interval. In each iteration the assignment of 
(p;, e;) to [pj, dj] is selected for which djpj- e;/P; is minimal, provided that the assignment 
is feasible. Clearly, the amount of idle time that remains after assigning an operation (p;, e;) 
to an idle processor is given by 1 - e;/P;· Consequently, the algorithm will not assign a 
periodic operation to an idle processor as long as the periodic operation can be assigned to 
a periodic interval of a processor that is already in use. After each iteration, the remaining 
idle time is expressed as one or more periodic intervals using one of the three alternatives 



www.manaraa.com

177 

mentioned above. Which alternative is selected is determined by considering how well the 
unassigned operations fit in the periodic intervals. This can be considered as a maximum
weight matching problem on a bipartite graph, which can be handled efficiently. 

A detailed analysis of the algorithm is beyond the scope of the paper. We mention that, in 
the case of periodic operations with identical periods, solutions are found that are identical 
to the ones obtained by first fit decreasing for bin packing. 

6 Conclusions 

A number of closely interrelated optimization problems have been discussed from the field of 
nonpreemptive periodic scheduling. The complexity of these problems has been examined. 
We have derived Necessary and sufficient conditions for executing two periodic operations 
on a single processor. Finally, approximation algorithms have been proposed for periodic 
scheduling and periodic assignment problems, for the constrained case as well as the uncon
strained case. 
The material presented in this paper leaves the following open problems: 

- Which constraints do we have to impose on the problems discussed in this paper to 
allow for efficient optimization algorithms? 

- Do approximation algorithms exist for colouring periodic-interval graphs that have a 
constant worst-case performance ratio? 

- Do approximation algorithms exist for colouring circular-arc graphs with a worst-case 
performance ratio smaller than two? 

- Is it possible to give a constant worst-case performance ratio for the approximation 
algorithms for CPS and UPS? 

Bibliography 

Bartholdi, J.J. [1981], A guaranteed-accuracy round-off algorithm for cyclic scheduling and set cov
ering, Operations Research 29, 501-510. 

Bartholdi, J.J., J.B. Orlin, and H.D. Ratliff [1980], Cyclic scheduling via integer programs with cir
cular ones, Operations Research 28, 1074-1085. 

Bertossi, A.A. and M.A. Bonuccelli [1983], Preemptive scheduling of periodic jobs in uniform mul
tiprocessor systems, Information Processing Letters 16, 3-6. 

Bertossi, A.A. and M.A. Bonuccelli [1985], A polynomial feasibility test for preemptive periodic 
scheduling of unrelated processors, Discrete Applied Mathematics 12, 195-201. 

Burkard, R.E. [1986], Optimal schedules for periodically recurring events, Discrete Applied Mathe
matics 15, 167-180. 

Chetto, H. and M. Chetto [1989], Scheduling periodic and sporadic tasks in a real-time system, In
formation Processing Letters 30, 177-184. 

Coffmann, E.G., Jr., M.R. Garey, and D.S. Johnson [1984], Approximation algorithms for bin packing 
- an updated survey, in: G. Ausiello, M. Lucertini, and P. Serafini (Eds.), Algorithms Design 
and Computer System Design, CISM Courses and Lectures 284, Springer, Vienna, 49-106. 

Dhall, S.K. and C.L. Liu [1978], On a real-time scheduling problem, Operations Research 26, 127-140. 



www.manaraa.com

178 

Edmonds, J. [1965], Paths, trees and flowers, Canadian Journal of Mathematics 17, 449-467. 

Garey, M.R. and D.S. Johnson [1979], Computers and Intractability: A Guide to the Theory of NP
Completeness, W.H. Freeman and Co., San Francisco. 

Garey, M.R., D.S. Johnson, G.L. Miller, and C.H. Papadimitriou [1980], The complexity of coloring 
circular arcs and chords, SIAM Journal on Algebraic and Discrete Methods 1, 216-227. 

Gonzalez, M.J. and J.W. Soh [1975], Periodic job scheduling in a distributed processor system, IEEE 
Transactions on Aerospace and Electronic Systems 12, 530-536. 

Gupta, U.l., D.T. Lee, and J.Y.-T. Leung [1979], An optimal solution for the channel-assignment 
problem, IEEE Transaction on Computers 28, 807-810. 

Hashimoto, A. and J. Stevens [1971], Wire routing by optimizing channel assignment with large 
apertures, Proceedings of the 8th Design Automation Conference, 155-169. 

Hopcroft, J.E. and R.M. Karp [1973], An n5f2 algorithm for maximum matchings in bipartite graphs, 
SIAM Journal on Computing 2, 225-231. 

Korst, J.H.M., E.H.L. Aarts, J.K. Lenstra, and J. Wessels [1991], Periodic Assignment and Graph 
Colouring, Philips Research Manuscript. 

Labetoulle, J. [1974], Some theorems on real time scheduling, in: E. Gelenbe and R. Mahl (Eds.), 
Computer Architecture and Networks, North-Holland, Amsterdam, 285-293. 

Lawler, E.L. and C.U. Martel [1981], Scheduling periodically occurring tasks on multiple processors, 
Information Processing Letters 12, 9-12. 

Leung, J.Y.-T. and M.L. Merrill [1980], A note on preemptive scheduling of periodic, real-time tasks, 
Information Processing Letters 11, 115-118. 

Leung, J.Y.-T. and J. Whitehead [1982], On the complexity of fixed-priority scheduling of periodic, 
real-time tasks, Performance Evaluation 2, 237-250. 

Liu, C.L. and J.W. Layland [1973], Scheduling algorithms for multiprogramming in a hard real-time 
environment, Journal of the Association for Computing Machinery 20, 46-61. 

Odin, J.B. [1982], Minimizing the number of vehicles to meet a fixed periodic schedule: an applica
tion of periodic posets, Operations Research 30, 760-776. 

Orlin, J.B., M.A. Bonuccelli, and D.P. Bovet [1981], An O(n2 ) algorithm for coloring proper circular 
arc graphs, SIAM Journal on Algebraic and Discrete Methods 2, 88-93. 

Park, K.S. and O.K. Yun [1985], Optimal scheduling of periodic activities, Operations Research 33, 
690-695. 

Serafini, P. and W. Ukovich [1989], A mathematical model for periodic scheduling problems, SIAM 
Journal on Discrete Mathematics 2, 550-581. 

Shih, W.-K. and W.-L. Hsu [1989], An O(nl.5) algorithm to color proper circular arcs, Discrete Ap
plied Mathematics 25, 321-323. 

Tucker, A [1975], Coloring a family of circular arcs, SIAM Journal on Applied Mathematics 29, 493-
552. 

Vince, J. [1989], Scheduling periodic events, Discrete Applied Mathematics 25, 299-310. 



www.manaraa.com

Embeddings of shuffle-like graphs in hypercubes* 

M. Baumslag§, M.C. Heydemannt, J. Opatrny:j:, D. Sotteaut 
§Comp. and In£. Science Dept, Univ. of Massachusetts, USA 

tLRI, UA 410 CNRS, bat 490, Univ. Paris-Sud, 91405 Orsay France 
:j:Dept of Computer Sciences, Concordia Univ., Montreal, Canada 

Abstract 

Let G and H be two simple undirected graphs. An embedding of the graph G 
in the graph H is an injective mapping f from the vertices of G into the vertices 
of H together with a mapping PJ of edges of G into paths in H. The dilation of 
the embedding is the maximum taken over all the lengths of the paths PJ(x,y) 
associated with the edges (x, y) of G. 
One challenge pointed out in [9] is to find em beddings of the de Bruijn graph in the 
hypercube of the same order which have a low dilation. For a de Bruijn graph of 
diameter D we give an embedding in a hypercube of the same diameter of dilation 
2 r D I 51' and determine the edge-congestion and vertex-congestion of this embed
ding. Similar results are given for the shuffle-exchange graphs. 

1 Introduction 
A parallel algorithm can be represented by a graph, say G, in which the nodes represent 
the processes, and the edges represent the communications among the processes. Similarly, 
a parallel computer can be represented by a graph, say H, in which the nodes represent 
the processors and the edges represent the communication links among the processors. 
An important problem in parallel computations is how to map G into H such that H can 
carry out efficiently all communications specified by G. This problem has two components. 
First, how to map the processes of G into the processors of H, and second, how to assign 
a physical communication path in H to each edge of G so that the parallel algorithm can 
be efficiently executed. This problem is known in graph theoric terms as graph embedding 
problem. We can define it more precisely as follows. 

Let G and H be two simple undirected graphs. An embedding of the graph G in the 
graph H is an injective mapping f from the vertices of G into the vertices of H together 
with a mapping P1 of edges of G into paths in H. For any edge (x,y) of G, PJ(x,y) 
denotes the path between the vertices f(x) and f(y) in H assigned by P,. 

*The work was supported partially by NSERC of Canada and by PRC C3 of France and was partially 
done while the third author was visiting the University of Paris-Sud. 



www.manaraa.com

180 

From among the parameters that have been used in measuring the efficiency of em
beddings (see for example [10]), we will restrict our attention to the following ones. 

The dilation of a given embedding f, denoted by dil (f), is the maximum of the lengths 
of the paths P1(x,y) in H associated with all edges (x,y) of G. The minimum dilation of 
an embedding of Gin H, denoted dil(G, H), is the minimum of dil(f) taken over all the 
em beddings f of G in H. Clearly the minimum will be reached in particular if we take 
for P1(x,y) shortest paths between x andy in H. In this paper we will always do so. 

The expansion of the embedding f is the ratio of the number of vertices in H to the 
number of vertices in G. Here we only consider embeddings with expansion equal to 1. 

The edge-congestion of/, denoted by econg(f) is the maximum, over all edges e of H, 
of the number of edges of G mapped to a path of H which includes e. 

The vertex-congestion of f, denoted by vcong(f) is the maximum, over all vertices v 
of H, of the number of edges of G mapped to a path of H containing vas internal vertex. 

Determining the computational power of hypercubes is a central problem in the the
ory and practice of parallel networks. In particular, we would like to know what com
munication patterns the hypercube can simulate efficiently. The following embeddings in 
hypercubes are known (for other results see the survey [12)): 

• Any binary tree can be embedded in the smallest hypercube big enough to contain 
it with constant dilation and edge-congestion [2]. 

• Any d-dimensional mesh can be embedded in the smallest hypercube big enough to 
contain it with dilation O(d) [4]. 

• Any butterfly-like graph (i.e., the cube-connected cycles, the butterfly or the FFT 
graphs) can be embedded in the smallest hypercube big enough to contain it with 
dilation 2 and unit edge-rongestion [9]. 

Also, Winkler [14] has characterized the graphs that can be embedded as an isometric 
subgraph of the hypercube, and Greenberg and Bhatt [8] have recently studied the problem 
of embedding multiple copies of the above classes of graphs into hypercubes. 

One challenge pointed out by D. Greenberg, L. Heath and A. Rosenberg [9] is to find 
low dilation embeddings with expansion equal to 1 of shuffle-like networks, such as the 
de Bruijn graphs and the shuffle-exchange graphs, in hypercubes. De Bruijn networks 
have been studied as a possible choice for designing large communication networks , and 
very efficient, general sorting algorithms have been developed for them [1]. A de Bruijn 
network is being constructed for the NASA's Galileo space mission to be used as a signal 
decoder [5]. 

A different approach to the problem of a simulation of one network by another is 
through the notion of work-preserving emulations (see, for example, [11]). A guest 
network G is said to have a work-preserving emulation on a host network H if any T 
computation steps of G can be emulated in O(TIGI/IHI) steps on H. In this model, 
computations of G can be replicated at several nodes of H (this may be visualized as a 
one-to-many embedding). Schwabe [13] recently proved that (in this model) any T steps 
of anN-node de Bruijn network can be emulated in O(T) steps on anN-node hypercube, 



www.manaraa.com

181 

provided that T ~ log N. However, this result does not give an embedding of a de Bruijn 
network in a hypercube with expansion 1. 

The D-dimensional hypercube, denoted by H(D), has for vertex set the set of all 
binary words of length D. There is an edge between any two words that differ in exactly 
one position. The distance between two vertices x andy of H(D) is denoted by dn(x,y). 

A de Bruijn digraph B( d, D) of order dD, out and in degree d has been defined in [6] as 
follows. Its vertex set is the set of all words of length D on an alphabet A of size d. There 
is an arc from any vertex x1x2 · · · xn to the d vertices x2x3 • • • xv>., where >. is any letter 
of A. The undirected de Bruijn graph U B( d, D) is obtained from the de Bruijn digraph 
by taking the underlying graph and deleting self loops and multiple edges. In this paper 
we will be concerned with the undirected de Bruijn graph on the alphabet A = {0, 1}. 
We will denote U B(2, D) by B(D) for short. 

The binary shuffle-exchange graph of diameter D, denoted by S(D), is the graph whose 
vertices are all binary words of length D and whose edges are of two types. A shuffle edge 
connects any vertex x1x2 · · · xn to the vertex x2x3 · · · xvx1. An exchange edge connects 
any vertex X1X2 · · · XD to the vertex x1x2 · · · xn where xv = 1 - xn. 

The cartesian product of two graphs G and G', denoted by GOG', is the graph whose 
vertices are all the pairs ( u, v) where u is a vertex of G and v is a vertex of G'. We 
will denote here by uv the pair ( u, v ). The notation ( u, v) will be reserved for the edge 
between the vertices u and v if it exists. Two vertices uv and u'v' are connected in GOG' 
if and only if u = u' and ( v, v') is an edge of G' or v = v' and ( u, u') is an edge of G. 

Some heuristics have been given in [3] for embeddings of de Bruijn graphs in hyper
cubes. As far as the present authors can ascertain, there were no other known non-trivial 
embeddings of the deBruijn network into the hypercube until now. 

In this paper we give constructions of embeddings of de Bruijn and shuffle-exchange 
graphs in hypercubes and deduce upper bounds for the parameters defined above. Notice 
that the dilation of an embedding of these shuffle-like graphs which contain odd cycles is 
at least 2 since the hypercube is bipartite (this is the case for B(D), D ;::: 2, and S(D), 
D ~ 3). But we don't know any better lower bound than 2 for the dilation or 1 for the 
congestions of these embeddings. 

In section 2 we obtain embeddings of the de Bruijn graph B(D) in the hypercube H(D) 
with dilation less than or equal to 2fD/5l and edge-congestion 2. From these embeddings 
we deduce in section 3 a bound for the dilation of embeddings of shuffle-exchange graphs. 

In the appendix we give embeddings of shuffle-like graphs for graphs of diameters 2 to 
6. 



www.manaraa.com

182 

2 Upper bounds for the parameters of em beddings 
of de Bruijn graphs 

Proposition 2.1 Let f and f' be embeddings of B(D) and B(D') respectively in H(D) 
and H(D'). Then there exists an embedding g of B(D + D') in H(D + D') with 

dil(g) $ dil(f) + dil(f') 

econg(g) $max (dil(f), dil(f'), 2) 

vcon(g) $ vcong(f) + vcong(f') + 2 

Thus, for any strictly positive D and D', we have 

dil(B(D + D'), H(D + D')) $ dil(B(D), H(D)) + dil(B(D'), H(D')), 

econg(B(D + D'), H(D + D')) $ max ( econg(B(D), H(D) ), econg(B(D'), H(D')), 2) 

vcong(B(D + D'), H(D + D')) $ vcong(B(D), H(D)) + vcong(B(D'), H(D')) + 2. 

Proof: The hypercube H( D+ D') is isomorphic to the cartesian product of the hypercubes 
H(D) and H(D'). Any vertex u = x1x2 · · · XD+D' of H(D + D') can be written as u1u2 
where u1 = x1x2 · · · xv and u2 = XD+l' · · XD+D'· When u1, u2 is fixed, the vertices u1u, 
uu2 of H(D + D') span an induced subgraph isomorphic to H(D'), H(D) respectively. If 
s = s1s2 and t = t 1t 2 are two vertices of H(D + D') then 

(1) 

Let f and f' be embeddings of B(D) and B(D') in H(D) and H(D'), respectively. 
We define an embedding g of B(D + D') in H(D + D') as follows. For any vertex 
X = X1X2 • • • XD+D'' 

g(X1X2 · · · XD+D') = f(x1x2 · · · xv)f'(xD+1XD+2 · · · XD+D') 

The paths of H(D + D') associated with the edges of B(D + D') will be specified later. 
This embedding could be considered as the composition of two embeddings. First, an 
embedding of B(D + D') in the cartesian product of B(D) and B(D'), where any vertex 
u = x1x2 · · · XiJ+D' of B(D + D') is mapped on the vertex x1x2 · · · xvxD+I · · · XD+D' of 
B(D)DB(D') where u1 = x1x2 • • • xv is a vertex of B(D) and u2 = XD+l · · · XD+D' is 
a vertex of B(D'). Second, an embedding of B(D)DB(D') in H(D)DH(D') defined by 
the embeddings f of B(D) in H(D) and f' of B(D) in H(D'). Embeddings of cartesian 
products have been studied in [10], but here we will not take this approach since it is 
much simpler to study g directly. 
Consider an edge (u, v) of B(D + D') with u = u1u2 = x1x2 · · · xvxD+l · · · XD+D' and 
v = v1v2 = X2X3 · · • xv+1XD+2 · · · XD+D•Y· Note that (u, v) is an edge of B(D + D') if and 
only if (u1,v1) is an edge of B(D) and (u2,v2) is an edge of B(D'). 

By the definition of the embedding g, g(u) = f(ui)f'(u2) and g(v) = f(v1)f'(v2) in 
H(D + D'). Therefore, by (1) we get 

dv+D•(g(u),g(v)) = dv(f(ui),f(vi)) + dv•(f'(u2),j'(v2)). 



www.manaraa.com

183 

Thus, forD~ D' ~ 1, 
dil(g) :5 dil(J) + dil(J'). 

We will now study the congestion of g. 
To complete the definition of the embedding g, let us define the path P9 (u, v) in H(D+D') 
between g(u) and g(v), for every edge (u,v) of B(D + D'). Without loss of generality, 
we can assume that u = u1u2 with u1 = 7u~, u2 = au~, and v = v1v2 with v1 = u~a, 
v2 = u~f3 where a,f3,/ E {0, 1}. 
Let w = u1v2 • The path P9 (u,v) is obtained as the concatenation of two paths. 
The first one is a path from g( u) = f( ut)f'( u2) tog( w) = f( u1)f'( v2) in the subhypercube 
isomorphic to H(D') obtained by making the first D coordinates equal to f(ut), a path 
isomorphic to P1•(u2, v2). 
The second one is a path from g(w) = f(u 1)f'(v2 ) to g(v) = f(vt)f'(v2 ) in the subhyper
cube isomorphic to H(D) obtained by making the last D' coordinates equal to f'(v2 ), a 
path isomorphic to P1 ( u1, v1). 

Remark: If we know two vertices from {g( u ), g( v ), g( w) }, we can determine the third one 
uniquely except if D = 1 or D' = 1. Also, given any vertex g(w) (or equivalently w since 
g is bijective) we can determine g(u) and g(v) up to the parameter a (where u2 =au~ 
and v1 = u~a). Thus, there are only two paths P9(u,v) going through g(w). 

Let us consider the load induced on any edge of H ( D + D') by all the paths P9 ( u, v). 
The edges of type (afa2 ,a1~), in a subhypercube isomorphic to H(D'), are only loaded 
by.paths PJ•(u2 , v2) for all pairs of adjacent vertices u2 and v2 of B(D'), except if D' = 1. 
In this case the load of the unique edge ( a1 0, a11) can be two. Similarly the edges of type 
(a1a 2, b1a 2), in a subhypercube isomorphic to H(D), are only loaded by paths P1(u1 , v1) 
for all pairs of adjacent vertices u1 and v1 of B(D) except if D = 1. Indeed, from the above 
remark, a given path P!'(u2 , v2) is connected to a unique path PJ(u~o v1 ) (and conversely) 
in a unique path P9 (u, v) except if D or D' equals 1. Therefore, 

econg(g) :5 max(econg(J),econg(J'),2). 

Let us now consider any vertex of H(D + D'). Since f and f' are bijective, we can 
write such a vertex as j(a1)j'(a2) (where a1, a2, is a vertex of B(D), B(D') respectively). 
Vertex f(a1)f'(a2 ) is loaded by paths PJ•(u2, v2 ) for all pairs of adjacent vertices u2 and v2 

of B(D') in the subhypercube isomorphic to H(D') having the first D coordinates equal 
to f( a1). It is also loaded by paths PJ( u1, v1) for all pairs of adjacent vertices u1 and v1 

of B(D) in the subhypercube isomorphic to H(D) having the last D' coordinates equal 
to f'(a2). Finally, f(a 1)f'(a2 ) is also loaded as the connecting vertex g(w) of two paths 
P9(u,v) for w = a1a2,·by the above remark. Therefore 

vcong(g) :5 vcong(J) + vcong(J') + 2. D 



www.manaraa.com

184 

Lemma 2.2 For 1 :5 D :5 5 there exist embeddings of the de Bruijn graph B(D) in the 
hypercube H(D) with the following parameters. 

dilation 1 2 2 2 2 
edge congestion 1 2 2 2 2 

vertex congestion 0 1 1 2 2 

Proof: Embeddings giving these values are described in the appendix. 

Notice that the dilation of embeddings of graphs in the above lemma matches the 
lower bound, but we don't know, forD;::: 4, if the congestions are optimal. 

Theorem 2.3 ForD ;::: 2, there exists an embedding of the de Bruijn graph B(D) in the 
hypercube H(D) with parameters bounded as follows. 

D I = 1 (mod 5) I = 2 or 3 (mod 5) I = 4 or 0 (mod 5) I 
dilation :5 21D/51 -1 I s 2rn151 

edge congestion =2 
vertex congestion s 4rnf5l -4 1 s 4rnf5l- 3 I s 4rnf5l- 2 

Proof: For D :5 5 we use the result of lemma 2.2. For D ;::: 6 we use inductively the 
result of proposition 2.1. H D = 5(k -1) +r, 1 :5 r :55, we embed B(D) in the cartesian 
product of (k-1) copies of B(5) and a copy of B(r). The hypercube H(D) is the cartesian 
product of (k -1) copies of H(5) and a copy of H(r). We embed each B(5) in a distinct 
copy of H(5) and B(r) in H(r). From proposition 2.1 we get immediately 

dil(B(D),H(D)) :5 (k -1)dil(B(5),H(5)) + dil(B(r),H(r)) 
:5 2(k -1) + 2 if r ;H 
:5 2(k- 1) + 1 if r = 1 

econg(B(D), H(D)) :5 max l:!ir:!>S econg(B(r), H(r)) 
:52 

vcong(B(D),H(D)) :5 (k -1)vcong(B(5),H(5)) + vcong(B(r),H(r)) + 2(k -1) 
:5 4(k -1) + vcong(B(r), H(r)) 
<4 !2 -4 ifr=1 - 5 

< 4 !2 - 3 if r = 2, 3 - 5 

:5 4 ~ - 2 if r = 4, 5. D 



www.manaraa.com

185 

3 Dilation of embeddings of shuffie-exchange graphs 
The following result was proved recently by Feldmann and Unger [7]. 

Theorem 3.1 For any D the shuffle-exchange graph S(D) is isomorphic to a subgraph 
of the binary de Bruijn graph B(D). 

So we immediately get 

Corollary 3.2 
dil(S(D), H(D)) :5 dil(B(D), H(D)) 

Therefore, using theorem 2.3 we have the following. 

Corollary 3.3 ForD ~ 2, dil(S(D),H(D)) :5 2fD/5l . If, furthermore, D = 1 
(mod 5), then dil(S(D),H(D)) :5 2fD/5l -1. 

Obviously the bounds of theorem 2.3 on the edge and vertex congestion are also valid 
for the embedding of the shuffle-exchange graph. 

However for small values of D we get better values for the parameters as showed in 
the following array. 

Lemma 3.4 For small values of D there exist embeddings of the shuffle-exchange graph 
S(D) in the hypercube H(D) with the following parameters. 

dilation 1 1 2 2 2 2 
edge congestion 1 1 1 1 1 2 

vertex congestion 0 0 1 1 1 2 

Proof: The embeddings are given in the appendix. 
Notice that for these small values of D, the parameters of the embeddings are optimal 
except possibly the edge-congestion for D = 6. 

Remark 3.5 : Using the results of the previous section we can give a direct proof of 
corollary 3.3. Indeed, let D ~ 7, D = 5(k- 1) + r, k ~ 2, 1 :5 r :5 5. Consider the 
embedding g of B(D) in H(D) described in the proof of theorem 2.3, 

g(x1x2 .. · xv)= !s(x1x2 • · · xs)fs(x6X7 .. · x1o) · · · 
fs(Xs(k-2)HXs(k-2)+2 · • • Xs(k-1J)fr(Xs(k-1)+1 • • · xv) 

where, for 1 :5 i :55, f; is an embedding of B(i) in H(i) from lemma 2.2. 
Let g' be the embedding of S(D) in H(D) such that g' = g. We will prove that 

dil(g') :5 max (4, dil(g)), which will give us an upper bound on dil(S(D),H(D)) identical 
to the upper bound on dil(g) from theorem 2.3 forD~ 7. 



www.manaraa.com

186 

Let us consider the two types of edges (u,v) of S(D). If (u,v) is a shuffie edge of S(D) 
then (u, v) is also an edge of B(D), and by the proof of theorem 2.3, we get 

dv(g'(u),g'(v)) $ dv(g(u),g(v)) $ dil(g). 

If (u,v) is an exchange edge, that is u = X1X2···xv and v = XtX2···xv_1xv with 
xv = 1- xv, then u and v are mapped into the same subhypercube H(r) of H(D), and 
we have 

dv(g'(u),g'(v)) $ d.(f.(xs(/c-1)+1' · ·xv),f.(xs(lc-l)+l' · ·xv)). 

For 1 $ r $4, since we have d.(u',v') $4 for any vertices u', v' of H(r), we obtain 

dv(g'(u),g'(v)) $4. 

For r = 5, by calculating the distances ds(fs(u').fs(v')) for any exchange edge (u', v') of 
S(5), we get 

ds (is ( u'), Is ( v')) $ 4. 

Therefore, dv(g'(u),g'(v)) $ max(4,dil(g)). 0 

Remark 3.6 We believe that a more direct proof could give better bounds for the pa
rameters of the embedding of a shuffie-exchange graph in the hypercube than for those of 
the embedding of a de Bruijn graph. 

4 Conclusion 

The dilation of embeddings of binary shuffie-like graphs in hypercubes presented in this 
paper is better forD ~ 5 than those obtained by heuristics in [3]. However, the dilation 
of our embeddings is increasing linearly with the diameter. It is still an open problem 
whether the shuffle-like graphs can be embedded in the hypercubes with expansion 1, 
dilation 0(1) and edge-congestion 0(1). 

As mentioned in [12], a de Bruijn graph can be embedded with dilation 2 into the 
shuffie-exchange graph of the same diameter, and from theorem 3.1 the shuffle-exchange 
graph is a subgraph of the de Bruijn graph. This gives 

dil(S(D), H(D)) $ dil(B(D), H(D)), and dil(B(D), H(D)) $ 2 dil(S(D), H(D)). 

Therefore it would be sufficient to find embeddings of one of these two types of graphs 
with dilation 0(1) in hypercubes, in order to find good embeddings for the other type. 

Let us notice that if we could find an embedding of S(D) in H(D) with dilation 
dil(S(D), H(D)) where the exchange edges are embedded on edges of H(D), then we 
would have 

dil(B(D), H(D)) $ dil(S(D), H(D)) + 1. 



www.manaraa.com

187 

On the other hand we think that it might be possible to construct an embedding fn+t 
of S(D + 1) in H(D + 1) by splitting each vertex x1x2 · · · xn of B(D) in two vertices 
x1x2 · · · xnO and XtX2 · · · xnl. If /n is an embedding of B(D) in H(D) of minimum 
dilation, the set of any two vertices x1x2 · · · xnO and x1x2 · · · xn1 is embedded by /];,+1 
on the set of the two vertices /n(x1x2 · · · xn)O and /n(x1x2 · · · xn)l. If that is the case 
(as obtained forD :55 in the appendix 5.2), we would get 

dil(S(D + 1),H(D + 1)) :5 dil(B(D),H(D)). 

Clearly, whenever we find an embedding of a de Bruijn graph G of fixed diameter 
D ~ 6 in the hypercube H(D), whose dilation is smaller than the one from theorem 2.3, 
we can use G in the proof of the theorem, and improve the results of the theorem 2.3 and 
corollary 3.3 appropriately. However, the bound on the dilation would remain linearly 
proportional to the diameter of the graph. Thus, any attempt to show that the dilation 
of the embeddings of shuffle-like graphs is 0(1) must use a method different from ours. 

5 Appendix: embeddings for small values of the di
ameter 

We give here embeddings for B(D) and S(D) for D :56. 
Any vertex of each of the graphs considered is specified by the integer whose binary 
representation is the corresponding word of B(D), S(D), or H(D). In the right column 
we give a vertex u of B(D), S(D), respectively, and in the left column we give the image 
of u in H(D). 

5.1 Embeddings of B(D) 
For D = 1, B(1) and H(1) are isomorphic and we take the identity function as the 
embedding. 

We give in the following table embeddings /n of B(D) in H(D). 



www.manaraa.com

188 

H(2) B(2) H(3) B(3) H(4) B(4) HJ5l B(~ 
0 0 0 0 0 3 0 17 
1 1 1 1 1 1 1 3 
2 2 2 4 2 9 2 12 
3 3 3 2 3 8 3 6 

4 7 4 2 4 2 
5 3 5 0 5 1 
6 6 6 4 6 5 
7 5 7 10 7 0 

8 6 8 24 
9 7 9 20 
10 12 10 18 
11 14 11 9 
12 11 12 8 
13 5 13 16 
14 13 14 4 
15 15 15 10 

16 14 
17 7 
18 25 
19 19 
20 23 
21 15 
22 11 
23 31 
24 28 
25 26 
26 22 
27 13 
28 29 
29 30 
-30 27 
31 21 

Table 1: Embeddings fv of B(D) in H(D) with dilation 2. 

Although it does not show in the tables, the given embeddings have "some" symetry, 
but we have not found a general rule for it. 
We have explored three directions to find these em beddings, hoping to find a general pat
tern. The first one is by computer, but it gives embedding without any regularity. The 
second one is by trying to find symetries based on the binary representation of the vertices; 
this is the case for Jv, D $ 4. In the third one, we try to first optimize the dilation of the 
embeddings of the cycles of B(D) of the form (x1x2 · · · xv, X2X3 · · · xvx1, · · · , xvx1 · · · xv_t) 
in H(D). We obtained f 5 in that way (the first embedding of B(5) in H(5) with dilation 
2 was found by computer). 



www.manaraa.com

189 

5.2 Embeddings of S{D) 
For D = 1, 8(1) and H(1) are isomorphic and we take the identity function as the 
embedding. 

We give in the following table embeddings /1 of S(D) in H(D) for 2 ~ D ~ 6. 

Hl21 -s-(2} H(3) S(3) H(4) 8(4) H(5) 8151 H{6} -s-(6} H(6) S(6) 
0 0 0 0 0 1 0 6 0 34 32 48 
1 3 1 1 1 2 1 7 1 6 33 40 
2 1 2 5 2 0 2 18 2 35 34 49 
3 2 3 4 3 3 3 19 3 7 35 41 

4 3 4 14 4 3 4 5 36 17 
5 2 5 7 5 2 5 3 37 33 
6 6 6 15 6 17 6 4 38 16 
7 7 7 6 7 16 7 2 39 32 

8 8 8 12 8 24 40 36 
9 4 9 13 9 12 41 18 
10 9 10 24 10 25 42 37 
11 5 11 25 11 13 43 19 
12 13 12 15 12 10 44 9 
13 11 13 14 13 0 45 20 
14 12 14 29 14 11 46 8 
15 10 15 28 15 1 47 21 

16 5 16 29 48 57 
17 4 17 15 49 53 
18 9 18 28 50 56 
19 8 19 14 51 52 
20 0 20 46 52 58 
21 1 21 30 53 60 
22 20 22 47 54 59 
23 21 23 31 55 61 
24 23 24 51 56 45 
25 22 25 39 57 27 
26 27 26 50 58 44 
27 26 27 38 59 26 
28 10 28 23 60 54 
29 11 29 63 61 43 
30 30 30 22 62 55 
31 31 31 62 63 42 

Table 2: Embeddings fh of S(D) in H(D) with dilation 2 for 3 ~ D ~ 6. 

The embeddings /1+1' for 1 ~ D ~ 5, are obtained from the embeddings fv of B(D) 
in H(D) by splitting every vertex x1x2 • • • xv of B(D) in two vertices XtX2 • • • xvO 
and x1x2 • • • xv1 of S(D + 1) which are mapped on adjacent vertices of H(D + 1). 



www.manaraa.com

190 

Furthermore for each D 5 5 we have dil(Jh+l) 5 dil(Jn). It would be interesting to 
know if this construction is always possible, for it would give dil(S(D + 1), H(D + 1)) 5 
dil(11(D),H(D)). 

References 

[1] J.-C. Bermond and C. Peyrat. de Bruijn and Kautz networks: a competitor for the 
hypercube? Proceedings of the 1st European Workshop on Hypercubes and Distributed 
Computers, Rennes, North Holland, F.Andre and J.P. Verjus ed., pages 279-293, 
1989. 

[2] S. Bhatt, F. Chung, T. Leighton, and A. Rosenberg. Optimal simulations of tree 
machines. IEEE, pages 274-282, 1986. 

[3] M. Bouabdallah and J.-C. Konig. Embedding de Bruijn networks in the hypercube. 
Preprint, 1990. 

[4] M. Chan. Embedding of d-dimensional grids into optimal hypercubes. 1st ACM 
Symposium on Parallel Algorithms and Architectures, pages 52-57, 1989. 

[5] 0. Collins, S. Dolinar, R. McEliece, and F. Pollara. A VLSI decomposition of the de 
Bruijn graph. Preprint, 1989. 

[6] N. de Bruijn. A combinatorical problem. Koninklijke Nederlandsche Akademie van 
Wetenschappen Proc., A 49:758-764, 1946. 

[7] R. Feldmann and W. Unger. The cube connected cycle network is a subgraph of the 
butterfly network. Technical report, University of Paderborn, 1991. 

[8] D. Greenberg and S. Bhatt. Routing multiple paths in hypercubes. Proceedings of 
SPAA, pages 45-54, 1990. 

[9] D. S. Greenberg, L. S. Heath, and A. Rosenberg. Optimal embeddings of butterfly
like graphs in the hypercube. Mathematical Systems Theory, 23:61-77, 1990. 

[10] C.-T. Ho and S. L. Johnson. Embedding meshes in boolean cubes by graph decom
position. Journal of Parallel and Distributed Computing, 8:325-339, 1990. 

[11] R. Koch, T. Leighton, B. Maggs, S. Rao, and A. Rosenberg. Work-preserving emu
lations of fixed-connection networks. Preprint. 

(12] B. Monien and H. Sudborough. Comparing interconnection networks. Preprint, 1988. 

[13] E. J. Schwabe. On the computational equivalence of hypercube-derived networks. 
2nd Symposium on Parallel Algorithms and Architectures, pages 388-397, 1990. 

[14] P. M. Winkler. The metric structure of graphs. Surveys in Combinatorics, (C. 
Whitehead, ed.), London Math. Soc. Lecture Notes Series, 123:197-221, 1987. 



www.manaraa.com

MAPPING UNIFORM RECURRENCES 
ONTO SMALL SIZE ARRAYS 

Vincent Van Dongen 
Philips Research Laboratory 

4 Av. Albert Einstein, B-1348 Louvain-la-Neuve, Belgium 
e-mail: vvd@prlb.philips.be 

Abstract 

Given a regular application described by a system of uniform recurrence equations, systolic 
arrays are commonly derived by means of an affine transformation; an affine schedule determines 
when the computations are performed and an affine processor allocation where they are per
formed. Circuit transformations are then applied on the resulting circuit when the application 
needs to be mapped onto a smaller size array. This method is in two steps and thus can hardly 
be optimized globally. 

We hereafter present a different method for designing small size arrays. We derive them in 
one step by means of an affine schedule and a near-affine processor allocation. By doing so, we 
can generalize the optimization technique for affine mapping to be applicable here. The method 
is illustrated on the band-matrix multiplication and on the convolution algorithms. 



www.manaraa.com

192 

1 Introduction 
Systolic arrays are particular circuits made of identical processing elements connected 
in a local and regular manner; a high throughput is achieved by making extensive use 
of parallelism and pipelining. The regularity and locality of their connections make 
them ideally suited for a VLSI implementation. Such arrays are applicable to problems 
in signal processing, numerical computing, graph theory and other areas [KL78]. 

Given an application described by a system of uniform recurrence equations, systolic 
arrays are derived when using affine space-time transformations; an affine schedule de
termines when the computations are performed and an affine processor allocation where 
they are performed [Qui84,Rao85]. This space-time mapping technique is generalized 
in this paper to derive small size arrays, i.e. arrays containing fewer cells than the ones 
obtained when using affine mappings. 

The problem of realizing automatically small size arrays is important; its applications 
can be classified as follows: 

1. Software compilation for general-purpose arrays. 
The problem is encountered in the mapping of applications, here systems of URE's, 
on fixed size general-purpose arrays, e.g, a number of Transputers [The89] or the 
Warp [AAG*87]. 

2. Hardware compilation. 
Small size circuits may be required due to area constraints. 

The co=on approach for deriving small systolic arrays consists in two steps 
[Bu90,Cla90,ND88,DI88,GN89]. An array is first derived by means of an affine space
time mapping. This array usually contains too many processors. The schedule is then 
slowed down so that less parallelism is achieved, and the processor allocation is modified 
correspondingly. This second step is a particular circuit transformation. 

Our approach is different. we derive small size arrays directly from the behavioral 
description by means of a unique space-time mapping, as shown in figure 1. The advan
tage of this direct approach is that it can be optimized. Its drawback is that it only works 
with a particular partitioning strategy known as the Locally Sequential Globally Parallel 
(LSGP) partitioning scheme [Bu90,ND88,Kun87,GN89]. But this scheme is ideal when 
using a general-purpose processor array as an array of Transputers [The89,Bra90]. 

In the next section, systems of uniform recurrences are introduced. Then, in section 
3, near-affine mappings are defined. In particular, it is shown that these mappings can 
be viewed as a set of affine transformations defined on lattices of the index space. In 
section 4, constraints for dealing with these mappings are derived. In section 5, we recall 
how an affine schedule can be optimized. In section 6, we generalize the optimization 
method to deal with near-affine mappings. We summarize the complete methodology 
in section 7, and we conclude in section 8. 



www.manaraa.com

193 

Behavioral description using URE 

affine processor 
allocation 

affine schedule ( 
systolic array 

circuit \ 
transformation ~ 

small size 
systolic array 

near-affine 
processor allocation 

affine schedule 

Figure 1: The common approach for deriving small systolic arrays consists in two steps. 
In this paper, small size arrays are derived directly from the behavioral description by 
means of a unique space-time mapping. 

2 Uniform recurrence equations 

We follow the suggestion given by Karp, et. al. [KMW67] of describing "regular" 
algorithms (for which systolic arrays are suited) using uniform recurrence equations 
(URE). Quinton was first in recognizing that such a description can be used in the 
sYn.thesis of systolic arrays [Qui84]. 

Definition 2.1 A system of uniform recurrences is a set of m recurrences of the form 

z E 'D, -t Ot(z) = /1( Ot, (z - '11t,t), Ot2 (z- '112,t), ... , Ot,, (z- '11i,,t)) 
z E 'D, -t 02(z) = /2( 02, (z- '11t,2), 022 (z- '112,2), ... , 02,2 (z- '11,.,2)) 

(1) 

where 
Vv E [1, m], Vu E (1, l,] -t Du,v E ze I (2) 

and 'D, is a convex polyhedron of ze parameterized with s (the number of operands of 
f., is noted l,). o 

The vectors Du,v will be called the dependence vectors of (1), and O,(z) will be called 
an instance of the variable 0,. 

Example 2.1 The convolution algorithm (for FIR filtering) can be implemented with 
the following system of URE: 



www.manaraa.com

194 

i ~ 1, 1 $ k $ N --. y(i,k) = y(i,k -1) +p(i,k) 
i ~ 1, 1 $ k $ N --. p(i,k) = w(i,k) x z(i,k) 
i~1,1$k$N--. w(i,k)=w(i-1,k) 
i~1, 1$k$N --. z(i,k)=z(i-1,k-1) 

(3) 

The values of z(i, 0) are initialized with the input signal zi, and the outputs are 
Yi = y(i,N). 

0 

Example 2.2 The band-matrix multiplication can be computed with the following 
system of URE: 

C(i,j,k) = C(i,j,k -1) + A(i,j,k) x B(i,j,k) 
A(i,j,k) = A(i -1,j,k) 
B(i,j,k) = B(i,j -1,k) 

The index domain is defined by the following constraints: 

(4) 

The domain is a polyhedron having 16 vertices. The size parameters w1 and w2 repre
sent half band widths; A is of band width 2.w1 + 1 and B is of band width 2.w2 + 1. 

0 

3 Space-time mapping 

We suggest to use space-time mappings of the form 

ze - ze : ( z, v) -

t(z, v) 
Pl(z,v) 
P2(z,v) 

=T.z+a., 
= (P1.z + f3v,l) div d1 
= (P2.z + f3v,2) div d2 

Pe-l(z,v) = (Pe-l•Z + f3v,e-1) div de-l 
v' =v 

(6) 

where " div " denotes the integer division, and d, E N 0 , Vl E [1, e- 1]. In matricial 
form, the mapping is written (we omit v' = v ): 

( t(z,v) ) ( T.z+a., ) 
p(z,v) = (P.z+f3.,)divdp, (7) 

where p E ze-l X ze I {3., E ze-t, dp = ( dl! d2, ... , d .. - 1) E N~-l and "div" represents 
the component wise integer division. By definition, the processor allocation p( z, v) of 



www.manaraa.com

195 

(7} is near-affine, a sub-class of quasi-affine mappings [Van91] .. The schedule t(z,v) is 
affine. Note that when dt = d2 = ... =de-l = 1, the mapping (6) is affine. 

With affine mappings, the computations that are processed by the same processor 
are on a line perpendicular to P 1 , P 2 , etc. The hyperplane perpendicular toP, contains 
all the computations performed by the processors with the same lth component. With a 
near-affine allocation, the computations performed by the processors with the same lth 
component are on d, consecutive hyperplanes perpendicular toP,. Thus, "bands" of in
dexed points are mapped onto the same processor. Within each band, the computations 
are performed in sequence by making use of the local memory of the processor. 

Example 2.1 (cont'd) With the mapping 

( t(i,k,v)) _ ( 2.i+k) 
p(i,k,v) - k div 2 ' 

(8) 

one maps the uniform recurrences {3) with N = 6 onto the circuit shown in figure 2. It 
works as follows. Each input to the combinational logic is a two-input switch. Every 
clock cycle, the switches change of input. This is achieved with a control signal whose 
value alternates from one to zero. The control signal can either be broadcasted or it can 
be pipelined through the array as shown in figure 2. The signal values can be generated 
on line by a simple circuit that initializes its values when the reset is on. This part 
of the circuit is called the control signal generator in figure 2. The rate of the circuit 
is.one-half; every two clock cycles, a new input signal enters the array, and an output 
value is being produced. 

This can be easily generalized as follows. With the affine schedule 

t(i,k,v) = R.i + k, 

and the processor allocation 
p(i,k,v) = k div R. 

where R ~ 2, one maps the uniform recurrences (3) onto an array of M = fN/Rl 
processors. Every R clock cycles, a new input value enters the array, and a new output 
is produced; the I/0 rate of the array is 1/ R. Each processor contains one latch for y, 
and R +I latches for :z:. The number of switches is one for :z:, and one for y. Note that 
in the complete array, the total number of latches is N + M for :z:; it is proportional to 
N for any value of M. When R ~ N, the architecture is sequential. 

The processors communicate .with their neighbours once every R clock cycles only; 
they are loosely coupled which is ideal when using a general-purpose fixed size array 
with expensive inter-processor communication. 

0 

We now show that the near-affine mapping (7) transforms the system of URE (1) 
into a finite set of systems of URE defined on lattices of (t,p) E z•. Let the rational 
approzimant of (7) be: 

( t(z,v) ) ( T.z + O:v ) 

p(z,v) = (P.z + f3v)/d11 , 
(9) 



www.manaraa.com

196 

Figure 2: LSGP partitioning: the circuit is a systolic array that uses some internal 
memory and a simple control mechanism. 

The mapping (7) can be written as: 

with 
rp = (P.z + .Bv) mod dp. (11) 

The components of rp are (r1 1 r,, ••• ,re-1), and for alll E [1, e - 1], r1 E [0, d1 - 1]. So, 
rp has d1 X d, X ••• X de-l distinct values. For each value of rp,. the mapping (10) is 
affine over the lattice of z defined by (11). Thus, a near-affine mapping is a finite set of 
affine mappings defined over lattices of z. More precisely, it is a rational affine mapping 
followed by a translation that depends on a lattice of z; the rational approximant is 
followed by a perturbation function. 

The inverse of a near-affine mapping is a finite set of affine mappings defined over 
lattices of (t,p). The latter lattices can be computed as follows. The inverse of (10) is: 

z = ! . adj ( ~ ) . ( dp X ~-=-Pv + rp ) (12) 

= ! · adj ( ~ ) · ( dp ~ -p ': .Bv ) + ! · adj ( ~ ) · ( ~ ) , 

where a is the determinant of ( ~ ) and adj ( ~ ) denotes the adjoint matrix of 

( ~ ) . The index z is in ze if and only if 



www.manaraa.com

197 

For a fixed value of rp, (12) is an affine mapping and (13) defines a lattice of ( t, p ). More 
precisely, it is a rational affine transformation followed by a translation that depends 
on the lattice of (t,p). 

Example 2.1 (cont'd) The mapping (8) can be rewritten as: 

( t(i,k,v)) ( 2.i+k ) 
p(i,k,v) = (k- r)/2 ' 

where r = k mod 2. This mapping consists of two affine mappings defined on lattices 
of (i, k). Figures 3(a0) and 3(b0) show the first lattice and the result of the associated 
transformation. Figures 3( a1) and 3(b1) show the second lattice and the result of the 
associated transformation. 

The inverse of (8) is: 

( i ) 1 ( 1 -1 ) ( t ) 
k = 2 · 0 2 · 2.p + r · (14) 

The two lattices in ( t, p) are defined by ( t - 2.p- r) mod 2 = 0. 
0 

Because of this, each uniform recurrence of (1) is transformed into a set of uniform 
recurrences, one for each lattice of (t,p). Furthermore, the domain 'D, is a convex 
polyhedron of z·, and the image of v. becomes the union of polyhedrons defined on 
lattices of (t, p ). 

Finally, let us consider the control that must be added to the circuit to take into 
account the changes in the connections upon the lattices of ( t, p ). It can be verified 
that any hyperplane Zi = c, where Zi is the i1h component of z and c is some constant, 
becomes 

Li . ( t -(3 au ) = c.a, 
p- u +rp 

where Li is the i1h line of adj ( ! ) . This hyperplane of ( t, p) is exactly the one used to 

define the lattice in (13). Thus, a control signal can run along it to specify this lattice. 
At most e control signals will be required in the final array, one per axis. 

Example 2.1 (cont'd) Consider the recurrence x(i,k) = x((i,k)- (1, 1)) of (3). 
When k mod 2 = 0, ( i, k) is in the first lattice and ( ( i, k) - (1, 1)) is in the second one. 
The application of the corresponding affine transformations gives: 

:v(2.i + k,k/2) = :v(2.(i -1) + (k -1),((k -1) -1)/2) which is equivalent to: 
x(t,p) = x(t- 3,p- 1). On the other hand, when k mod 2 = 1, we obtain: 
:v(2.i + k, (k- 1)/2) = x(2.(i- 1) + (k- 1), (k- 1)/2) which is equivalent to: 
x(t,p) = x(t- 3,p). Figure 4 shows these two cases. 
Furthermore, the image of D. is the union of polyhedrons defined on lattices of ( t, p ). 

Consider the inequality i ;::: 0 defining a boundary of the domain of (3). For the first 



www.manaraa.com

lc 

(aO) 

lc 

(al) 

t=2.i + lc 

p: (lc - 0)/2 

(le - O) mod 2 =0 

t =2.i+lc 

p-= ( lc- I) /2 

(lc -I) mod2: 0 

198 

p 

p 

i = ( t - 2.p - 0) /2 

lc=2.p + O 

( t - 2.p - 0) mod 2 = 0 

(bO) 

i = ( t- 2.p- I) /2 

lc = 2.p + 1 

(t-2.p-1) mod2=0 

(bl) 

Figure 3: A near-affine mapping is a finite set of affine mappings: on the lattice shown in 
(aO), the first affine transformation gives the lattice shown in {bO), while on the lattke 
shown in (al), the second transformation gives the lattice shown in (bl). It can also be 
obtained with a rational affine transformation followed by a translation that depends 
on a lattice of z; the result of the rational transformation is shown in dash in (bl ). 

lattice of (t, p), i = (t-Z.p-0)/2 , and the condition becomes: (t - 2.p- 0)/2 ~ 0. For the 
second lattice of (t, p), i : (t- 2.p-1)/2, and the condition becomes: (t-2.p- 1)/2 ~ 0. 
Figure 4 shows the two resulting boundaries in ( t, p ). 

For the control, the hyperplane i : 0 becomes t - 2.p - r = 0. A control signal can 
run along it, i.e. along (t,p): (2,1). (See figure 2.) The hyperplane 1c = 0 becomes 
2.p + r = 0. No control signal is needed along that plane since it does not define the 
lattices. (See figure 3.) 

D 

4 Constraints 

The LSGP partitioning scheme is achieved with an affine schedule. The basic constraints 
on the schedule are [Qui84]: 



www.manaraa.com

199 

k p 

(a) (b) 

Figure 4: A near-affine mapping transforms a uniform recurrence into a finite set of 
uniform recurrences defined on lattices of ( t, p ). It transforms a linear constraint of V. 
into a finite set of linear constraints in (t, p ). 

Vv E (1, m], Vu E (1, l,] -+ T · ,,.,. +a. -a.. ;:: 1, 

Vv E [1,m] -+ a.;:: -minv.e:P.(T.V~,), 
(15) 
(16) 

where the V 1. 's are the vertices of V •. Furthermore, if the domain is semi-infinite along 
a ray R, the schedule is subject to the additional constraint: 

T·R;:: 1. (17) 

On the other hand, the constraint on the processor allocation, when the domain is 
semi-infinite along R, is 

Vl E (1,e -1]-+ P1 · R = 0. (18) 
This must be satisfied with both affine and near-affine processor allocations. 

Any two different instances of 0., that are computed in parallel must be performed 
on distinct processors. In other words, the mapping (6) must be one-to-one, We now 
consider this problem. 

Let "w" denote the number of d1's that are equal to one; w E (0, e -1]. When w = 0, 
all d1's are different from one, while when w = e- 1, the mapping is affine. In the 
following, let us assume that d1 = ~ = ... = d, = 1 and that d,+h d,+2, ... , d.-t are 
different from one. (One can always order the e- 1 axes of the processor allocation 
so that it is verified.) Furthermore, let 91 denote the greatest common divisor of the 
components of P1 (i.e. 91 = gcd(P1) ), and P; = P,j 91· Also, we define 9t as 9cd(T) and 
T' as T' = T/9t· Thus, T' and P; are integral vectors whose components are relatively 
prime. Let us summarize the results given in [Van91]. 

• The values 9to 91 , ••• , 9, have no effect on the condition for having a one-to-one 
mapping. 



www.manaraa.com

200 

• For the mapping (6) to be one-to-one, the absolute value of the determinant of 
(T', P~, ... , P!.,,P,+1 , ... ,P._1 ) must be greater than Tii;: dz. 

• When e = 2, the mapping (7) is one-to-one if and only if 

II;: II~ dl. (19) 

• When e ~ 3 and w = 1, a systematic method polynomial withe can be used to 
check that the mapping is one-to-one. check that the mapping is one-to-one when 
only one value of d1 is different from one. 

• In the general case, the mapping (7) is one-to-one if and only if, Vv E [1, m], there 
exists no pair of points in some reduced domains 'R.v that have the same image. 

Because a near-affine mapping is a set of affine transformations on lattices of z, 
another method for checking that it is one-to-one consists in verifying that the images 
of these lattices do not intersect. First, one can compute the non-empty lattices defined 
by (13), by solving systems of diophantine equations. Second, one can check that any 
pair of non-empty mappings do not intersect. This is simple to check since two lattices 
defined by (13) and characterized by rp = r and rp = r' do not intersect if and only if 
the following system of diophantine equations of vector variable k is empty: 

A.(r- r') = k.a, 

where A is the e x ( e -1) matrix formed with the e -1last columns of adj ( ; ) 1 and 

a is a vector whose e entries are equal to a. 

Example 2.1 (cont'd) Consider the near-affine mapping (8) and its inverse (14). 

Here, A = ( -;_1 ) . Its two lattices do not intersect if and only if the system 

( -;_1 ) .(0 -1) = ( :~ ) .(2) 

has no solution, which is the case since 1 = 2.k1 has no solution. 
0 

Unidirectional arrays have specific properties. In particular, the so-called Locally 
. Parallel Globally Sequential (LPGS) partitioning scheme is directly applicable on such 
arrays. Its advantage is to use the external memory instead of the local memory as with 
the LSGP scheme (Kun87,Mol83]. Unidirectional arrays can be automatically realized, 
by means of additional constraints. For example, the Ith component of Cu,v is positive if 
and only if 



www.manaraa.com

201 

5 Optimization of the schedule 
In a system of URE, the index domain 'D. is parameterized with s. Let 'V denote an 
instance of 'D. when s has a given value. Given a finite dependence graph and an affine 
schedule, the latency, which will be noted Llt, is 

Llt = maxze'D(t(z))- minze'D(t(z)) + 1 

with 

= max;e[l,h](T.V;)- min;e[l,hj(T.V;) + maxve[l,m](a,)- minue[l,mj(au) + 1 
= tl.T + max,e[l,m](~ .. )- minue[I,m](au) 

tl.T = max;e[I,hj(T.V;)- min;e[I,hJ(T.V;) + 1 

For large computation domains 'D, the minilnization of tl.T leads to a minimal value of 
Llt. 

The problem of minimizing tl.T can be solved by means of integer programming. 
Let D;,; be the set of all non-null vectors X such that 

Vz E 'V-+ X.V; ~ X.z ~ X.V3• 

The later condition is equivalent to the following set of linear constraints: 

{ Va E (1, h;j -+ (V;4 - V;).X ;:::: 0 
Vb E (1,h;]-+ (V;- V;.).X;:::: 0 ' 

where Y;4 and V;. denote the vertices of'D connected respectively to V; and to V;. By 
definition of D;,; it comes: 

VT ED;,;-+ tl.T = T.(V;- V;) + 1. (20) 

Thus, the optimization can be achieved for any possible pair of vertices (Vi, Vj) of 'V, 
and the global minimum will simply be the minimum of the local solutions. 

Example 2.2 (cont'd) Assume that all Llu,,'s are one. It can be shown that the only 
pair of vertices whose D;,; gives a solution is (V;, V;) = ((0, O, 0), (N -1,N -1,N -1)). 
The optimal schedule is found by minimizing 

T.(1,1,1) 

under the constraints T.(1,0,0);:::: 1, T.(0,1,0);:::: 1, and T.(0,0,1);:::: 1. The solution 
is given by: 

t(i,j,k) = i + j + k +a,, (21) 
with a A = aB = 0 and ac = 1. The associated number of time steps is 3.( N - 1) + 1. 

D 
Instead of looking forT that minimizes tl.T, one may want to find T that minimizes 

some other cost function. This can easily be achieved when the solution space of T is 



www.manaraa.com

202 

bounded. In that case, one can compute all possible solutions, and find the one that 
minimizes the cost. 

The solution space of T can be bounded by imposing !lT to be in a given range. 
Let [llT", !lT"] denote this range. Because of (20), any slope T of Di.; has its llT in 
that range if and only if: 

(22) 

Example 2.2 (cont'd) Let us for example compute all the slopes T whose !lT E 
(30,40), when N = 8. The set of solutions is: 

{(1,1,3),(1,2,2),(1,3,1),(2,1,2),(2,2,1),(3,1,1)}. (23) 

0 

The same technique is also applicable to infinite computation domains. Yet, in that 
case, the quantity 

maa::ze:z,(t(z))- minze:z,(t(z)) + 1 

is always infinite. Hence, it cannot be used for minimizing the schedule. Given an 
infinite domain 'D of vertices V 11 V 2 , ••• , Vh, and of ray R, we define 'D' as the finite 
convex domain of vertices V~c and Vh+lc = V~c + R, k E [1,h). The edges of 'D' are 
the edges of 'D, plus the edges between V 1c and V h+lc• phis the edges between V h+i and 
VhH whenever there is an edge between Vi and V;. 

The value of !lt can be defined on this restricted domain as 

According to this definition, !lt is now a finite quantity which can be used in the 
comparison of different schedules of infinite dependence graphs. 

Example 2.1 (cont'd) The restricted domain 'D' is here a rectangle of vertices 
(1,1), (1,N), (2,N) and (2,1). Let us assume that all flu,v's are one. The only pair of 
vertices which lead to a valid schedule is (Vi, V;) = ((1, 1 ), (2, N)). The schedule that 
minimizes !lT is found by minimizing T.(1,N -1) under the constraints T.(1,0);?: 1, 
T.(O, 1);?: 1, and T.(1, 1);?: 1. The solution is given by: 

t(i,k)=i+k+a,, 

with a,. = a,., = -2, ap = -1 and a 11 = 0. 

0 



www.manaraa.com

203 

6 Processor allocation optimization 
Let us define D.P, as follows: 

D.P, = r ma:vze:v(Pz.z)-;inze:v(Pz.z) + 11· (24) 

When the components of P 1 are relatively prime, D.Pz represents the number of cells 
along l, for each value of v. Else, it is a good approximation of the number of cells. The 
value of Pz that minimizes 

ma:Vze:v(Pz.z)- minze:v(Pz.z) + 1 (25) 

clearly minimizes (24). Thus, when dz is fixed, the optimization of D.Pz becomes similar 
to the one of D.T. For a given D;,;, we have: 

This later quantity can be minimized by means of integer programming. 

Example 2.2 (cont'd) Assume again that s = (N,wt.w2 ) = (8,2,3). In that 
case, 'D has 16 vertices as shown in figure 4. Consider the pair (V;, V;) = ((O,w1 + 
w2 , w 1 ), ( w1 + w 2 , O, w 2)). The associated integer programming problem is to minimize 

under the constraints 

(5, -5, 1).Pz ~ 1 (to avoid Pz = 0), (1, 1, 1).Pz ~ O, (0, -1, O).Pz ~ O, 
(0,-1,-1).P1 ~ O, (-1,-1,-1).P1 ~ 0,(1,0,0).P1 ~ 0, (1,0,1).P1 ~ 0. 

The optimal slope is Pz = (1,0,-1). The associated D.P, is 2.w1 + 1 = 5. The optimal 
rational solution is therefore Pz/dz = (1, 0, -1)/dz. It can be shown that this solution 
is a global optimum; no other pair of vertices can yield to a better solution. (There is 
only one equivalent solution which is ( -1,0, 1)/dz.) 

D 
It is also possible to find all the slopes P 1 such that D.P, is in a given range. Let 

[D.P,U, .1-~v] denote this range. It can be verified that any slope Pz E D;,; has its 
associated D.P1 in that range if and only if: 

(26) 

This is direct generalization of what was done on the schedule, and an application of: 

ra/bl ~ c '¢:::::::>a~ b.(c -1) + 1 
ra/bl :::; c '¢:::::::>a:::; b.c 

The constraint (26) bounds the solution space of P 1• 



www.manaraa.com

204 

Example 2.2 (cont'd) Consider the problem of finding all the slopes Pz such that 
ll.P1 is in [5, 10] and dz = 1. When fixing (V;, V;) to ({0, W1 + w2, w1), (w1 + w2, O,w2)), 
the set of solutions is: 

{(1, o, -1), {0, -1, 1), {2, o, -2)}. 

When considering all pair of vertices, the complete set of solutions for Pz is: 

{±{1, o, -1), ±(o, -1, 1), ±(2, o, -2), ±(1, o, o), ±(o, 1, o), ±(o, o, 1)}. (27) 

D 

7 Design methodology 

The problem is to find a mapping of the form (6) that verifies a particular number of 
design constraints. As explained in the previous sections, a set of slopes T that verifies 
a number of constraints and that minimizes ll.T can be found by means of integer 
programming. Also, the set of slopes whose ll.T is in a given range can be found with a 
similar technique. The same applies on each axis of the processor allocation separately 
(for each Pz). 

Once a set of solutions has been found for T and for each P z, the mappings of the form 
{6) can be found by simply combining the different solutions. For each combination, one 
can verify that the mapping is one-to-one, as explained in section 4; only the one-to-one 
mappings should be kept. If no compatible solution exists, one can either modify the 
value of one dz or modify one range of values, and restart the process. The search for 
one-to-one mappings is clearly an iterative process. 

Finally, a cost function can be evaluated on every one-to-one mapping to select the 
optimal solutions. The methodology is summarized in figure 5. It has been implemented 
with success in the design tool Presage [VP90]. 

Example 2.2 (cont'd) The minimal value of ll.T is 22. It is acllleved with T = 
{1, 1, 1). When d1 = d2 = 1, the minimal value of ll.Pz is 5; Pz = ±(1, O, -1). Yet, the 
mapping such that T = (1,1,1), P 1 = (1,0,-1) and P 2 = (-1,0,1) is not one-to-one. 
(The corresponding value of a' is zero.) 

A first solution consists in relaxing the admissible range for ll.P2. For example, if 
this range is [5, 10], the set of solutions for P 2 is given by (27). Out of all combinations, 
four mappings only are one-to-one; they are all equivalent and given by 



www.manaraa.com

205 

Constraints on T Constraints on P1 Constraints on Pe-l 

range for! 
ll.T 

range for! d 

ll.P1 /1 

range for! d 

ll.Pe-l / e-1 

Sol. for T Sol. for P1 Sol. for~-l 

~~ 
One-to-one mappings cost 

1~ 
Optimal solutions 

Figure 5: The main structure of the adopted methodology. 

with CtA = CtB = 0 and ac = 1. All solutions lead to the same well-known systolic array 
presented by Kung and Leiserson in [MC80]. 

0 

Example 2.2 (cont'd) The value of a' corresponding to the previous solution is 3, 
while d1 .t4 = 1; each processor works once every three steps only. An implementation 
that requires a third of the cells can be achieved with d1 = 3, e.g. with the mapping: 

( ~ ) = ( ~~t.:1\r~~~k) div 3) 
p2 (0, 1, -1).(t,J, k) 

It can be verified that this mapping is indeed one-to-one. When w1 = 2 and w2 = 3, 
the number of cells is ((2.2 + 1) div 3) x (2.3 + 1). 

0 

Example 2.2 (cont'd) The value of a' corresponding to the previous solution is 3, 
while d1 .t4 = 1; each processor works once every three steps only. An implementation 
that requires a third of the cells can be achieved with d1 = 3, e.g. with the mapping: 

( :1) = ( ~~t.=~1~0k) div 3) 
p2 (0,1,-1).(t,J,k) 

It can be verified that this mapping is indeed one-to-one. When w1 = 2 and w2 = 3, 
the number of cells is ((2.2 + 1) div 3) X (2.3 + 1). 

0 



www.manaraa.com

206 

Example 2.2 (cont'd) In the previous example, an array of 2 X 7 cells is used. 
Assume that the problem is to be mapped on an array of size 8. One can either use 
an array of size 2 x 4 or a linear (i.e. one-D) array. In the first case, we can keep 
d1 = 3 and p1(i,j,k) = (1,0,-1).(i,j,k) which give tlP1 = 2. We can use d2 = 2 and 
p 2(i,j,k) = (0,1,-1).(i,j,k) div 2 to obtain tlP2 = 4. The schedule that minimizes the 
latency can then be found as follows. 

First, one can try with the minimal schedule (21), but the corresponding mapping is 
not one-to-one. One can then use a range for tlT. The minimal value being 8.3-2 = 22, 
one can first try with the range [23, 30]. It can be shown that the associated set of 
solutions is: 

{(1,1,2),(1,2,1),(2,1,1)}. 

But still, none of these solutions yield to a one-to-one mapping. One can then try with 
the range [31, 40]; the set of solutions for T is given by (23). Still, no schedule gives a 
one-to-one mapping. One can then try with the range [41, 45] whose set of solutions is: 

{(1,1,4),(1,2,3),(2,1,3),(1,3,2),(2,2,2),(3,1,2),(1,4,1),(2,3,1),(3,2,1),(4,1,1)}. 

It can be verified that the any slope of T in the set: 

{(4,1,1),(1,3,2),(2,1,3),(2,3,1).} 

gives a one-to-one mapping. 
For a linear array, one can use d1 = 5 and d2 = 1. In that case, 

P1 =(1,0,-1).(i,j,k)div5 
P2 = (i,j,k).(0,1,-1) (28) 

The same iterative process can be used to find a compatible schedule. It can be 
verified that any slope Tin (23) yields to a one-to-one mapping. 

0 

8 Conclusion 

Given a regular application described by a system of uniform recurrence equations, 
systolic arrays are commonly derived by means of an affine space-time mapping. In 
this paper, we generalized the associated methodology to design small size arrays, by 
using an affine schedule and a near-affine processor allocation, a sub-class of quasi-affine 
mappings [Van91]. We showed that a near-affine processor allocation that uses a given 
number of processors can be automatically derived; the optimization method is a direct 
extension to the one using affine mappings. 

In the proposed approach, the schedule and each component of the processor alloca
tion are found independently. Ranges for the number of time steps and for the number 



www.manaraa.com

207 

of processors are given by the user to delimit each solution space. Compatible solutions, 
i.e. one-to-one mappings, are then found by exhaustive search. A cost function finally 
selects the optimal solutions. 

The associated partitioning method is the well-known Locally Sequential Globally 
Parallel scheme [ND88,GN89,Kun87]. This method requires large local memories for 
the processing elements. Other partitioning techniques are known, buth these cannot 
be found directly with our space-time mapping technique. Yet the advantage of our 
approach compared to the common one where circuit transformations are applied on 
systolic arrays derived with affine mappings is that optimal solutions can be found 
automatically. 

As a particular case, we can optimally map e-D (i.e. e-dimensional) recurrences onto 
E-D arrays, where E is any value between 0 and e - 1. One simply needs to fix the 
number of coordinates to 1 along e - E - 1 axes of the processor allocation, and find 
a valid near-affine mapping. This method is to be compared with the multiprojection 
technique introduced in [WD85], which consists in applying an affine mapping k times to 
reduce the dimension of the array to e- k. Again, an optimal global solution can hardly 
be found with the latter technique, while it can when doing the space-time mapping in 
one pass. 

Most of the theory presented in this paper has been implemented with success in 
the tool named "Presage" [VP90]. In fact, the illustrative mappings were derived with 
its use. 

References 

[AAG*87] M. Annaratone, E. Arnould, T. Gross, H.T. Kung, M. Lam, 0. Menzilcioglu, 
and J .A. Webb. The warp computer : architecture, implementation, and 
performance. IEEE Trans. on Computers, C-36(12):1523-1538, December 
1987. 

[Bra90] H. Brarns. Adaptation du logiciel Presage a la generation de reseauz sya
toliques implementables sur un reseau de Transputer&. Technical Report RR 
90-23, Universite Catholique de Louvain, Novembre 1990. 

[Bu90] J. Bu. Systematic Design of Regular VLSI Processor Arrays. PhD thesis, 
Delft University of Technology, May 1990. 

[Cla90] P. Clauss. Synthese d'Algorithmes Systoliques et Implantation Optimale en 
Place sur Reseauz de Processeurs Synchrones. PhD thesis, Universite de 
Franche-Comte, 1990. 

[DI88] J.-M. Delosme and I.C.F. Ipsen. Sage and condense: a two-phase approach 
for the implementation of recurrence equations on multiprocessors architec
tures. In L.W. Hoevel, editor, 21st Annual Hawai Int. Conf. on System 
Sciences, pages 126-130, 1988. 



www.manaraa.com

[GN89] 

(KL78J 

208 

M. Garcia and J. Navarro. Systematic hardware adaptation of systolic algo
rithms. In IEEE, editor, The )6th Annual Int. Symp. on Comp. Architecture, 
pages 96-104, Computer Society Press, 1989. 

H.T. Kung and C.E. Leiserson. Systolic arrays (for VLSI). In Sparse Matriz 
Proc. 1978, pages 256-282, Society for Industrial and Applied Mathematics, 

1978. 

[KMW67] R.M. Karp, R.E. Miller, and S. Winograd. The organization of computations 
for uniform recurrence equations. Journal of the ACM, 1967. 

[Kun87] S.Y. Kung. VLSI array processors. Signal and Image Processing Institute, 

1987. 

[MC80] C. Mead and L. Conway. Introduction to VLSI Systems, chapter 8, Highly 
Concurrent Systems, pages 263-332. Addison-Wesley Series in Computer 
Science, 1980. 

[Mol83] D.I. Moldovan. On the design of algorithms for VLSI systolic arrays. IEEE 
Proceedings, 1983. 

[ND88] H. Nelis and E. Deprettere. Automatic design and partitioning of sys
tolic/wavefront arrays for vlsi. Circuits Systems and Signal Processing, Vol. 
7(2):235-252, 1988. 

[Qui84] P. Quinton. Automatic synthesis of systolic arrays from uniform recurrent 
equations. In Proc. IEEE 11-th Int. Sym. on Computer Architecture, 1984. 

[Rao85] S.K. Rao. Regular iterative algorithms and their implementations on pro
cessor arrays. PhD thesis, Information Systems lab., Standford University, 
1985. 

[The89] The transputer databook. 2nd ed. Inmos, Bristol, 1989. 

[Van91] V. Van Dongen. From Systolic to Periodic Array Design. PhD thesis, Uni
versite Catholique de Louvain, January 1991. 

[VP90] V. Van Dongen and M. Petit. Presage: a tool for the parallelization of nested 

loop progran1s. In L. Claesen (ed.), editor, Formal VLSI SpecificatiC?n and 
Synthesis (VLSI Design Methods-!), pages 341-359, North-Holland, 1990. 

[WD85J Y. Wong and J.M. Delosme. Optimal systolic implementations of n

dimensional recurrences. In IEEE Int. Con/. on Computer Design: VLSI 
in Computers, pages 618-621, Oct. 7-10 1985. 



www.manaraa.com

AREA COMPLEXITY OF MULTILECTIVE MERGING 

PAVEL FERIANC 

ONDREJ SYKORA 

Computing Centre, Slovak Academy of Sciences, Dubravska 9 
842 35 Bratislava, Czecho-Slovakia 

Abstract. Lower bounds on the area A(n,m,k,r) required for merging of two sorted se
quences of k-bit numbers with length n and rn respectively, when the inputs can be repli
cated up to r times (r ~ n), are given: 

A(n,m,k,r) = 
n (m ((log~)+ 1)) for 2i" ~~and~~ m 

(~") n( m( (log!:)+1)) for~~ m and~~ 2i" and 2 8 ,_, ~ m 

where K ~ 0 is the constant 

INTRODUCTION 

The paper analyzes the following problem: let m, n E N and m :5 n, let Dn = 
{(xll···,xn)lxl :5 ... :5 xn;x;(i = 1, ... ,n) consist ofk bits} and let Dm = {(zl,•··•zm)l 
z1 :5 ... :5 zm;z;(i = 1, ... ,m) consist ofk bits}. The merging problem can be charac
terized by the function 

f : Dn X Dm ~ Dn+m• such that f(xb ... ,Xn,Zh···•zm) = (Yb···•Yn+m), where 
X= {xh···,xn} 
E Dn, Z = {zb···,zm} E Dm, Y = {Yh···1 Yn+m} E Dn+m (Dn+m = {(Yb··· 1 Yn+m)l 
Y1 :5 · · · :5 Yn+mi y;(i = 1, ... , n + m) consist of k bits } ) and each y;(1 :5 i :5 n + m) 
satisfies either y; E X or y; E Z. Without loss of generality let us assume that m, n, r, k 
be powers of 2. 

The memory of our circuit consists of square units of area (each one with area .>.2 

(>. > 0)) and at most one bit can be stored per unit of area. The i/o schedule is assumed 
to be when- and where-determinate. Determinate schedules, which require prespecified 
times and locations for the input and output of each bit, are discussed in [UJ. Tight 
lower bounds on the area required for merging with semelective inputs (each data is read 
once) were shown in [PSVJ. Our area bounds are proved for r-multilective input; i.e. 
data can be read more than once but at most r-times. All computations and temporary 
storage of data, however, must be done within the merging device. According to [Si] we 
can assume w.l.o.g. that in a time unit t at most one input bit is supplied or at most 
one output bit is delivered and only one input or output event occurs. 



www.manaraa.com

210 

The motivation for the study of the multilective circuits is that it leads either towards 
more general techniques for searching area bounds or it brings more general results. It is 
evident that multilectivity enables substantially diminished area of circuit. For example, 
in the work [G], a language with the following property is described. The area required 
for its recognition is n( .Jri), but if allow each input to be read twice, then the area for 
its recognition is 0(1). 

According to our knowledge until now there were proven only two results about 
nontrivial area lower bounds for concrete multilective problems. The area A(n, k, r) = 
Q(logn+2/clog r2L) for 2/c :5 ;; A(n,k,r) = Q(logn+;log r 2:+1 )for; :52" :5 nO(l) 

for sorting n k-bit numbers is showed in [Si] and the area A= Q(~) for the matrix 
product of n x n matrices is shown in [Sa]. 

Now we give a brief introduction to the technique of our proofs( a similar technique 
was used in [Si]). A time· interval r of the entire time of computation is chosen. Call 
the inputs (outputs) which are read (delivered to output) during the interval r r-inputs 
(r-outputs) and the inputs (outputs) for which no copy is read during the interval r as 
non-r-inputs (non-r-outputs). Set the r-inputs in a proper way so that the r-outputs 
are dependent on the non-r-inputs. The number of all various vectors of r-outputs 
is equal to the number of all various vectors of corresponding non-r-inputs, which is 
also the number of possible circuit states. The lower bound on the required area is the 
logarithm of the number of the circuit states. 

LOWER BOUNDS 

THEOREM 1. If 2k;:: ~ and n;:: m;:: ~ 1 then A(n,m,k,r) = Q(;). 

To prove this theorem we need the next lemma. 

LEMMA. Let "'- ... b,, where t is even, be a string of zeros and ones such that the number 
of zeros is equal to the number of ones. Then a.rbitrazy s :5 t satisfies: there exists j 
(0 :5 j :5 t- s) such that substring bj+I ... bi+• contains at least LtsJ ones. 

PROOF OF LEMMA: Three cases are possible: 

(1) r ltl ;:: s > !t 
If there are at least lis J ones in the substring b6+1 ... b1 then j = t- s. Otherwise 
the substring b1 ... b. must contain at least ~- (L!sJ -1) > LisJ ones. 

(2) t ;:: s > r~tl 
Lett= s+i. Hence i < Lis J. Let us assume the substring bs+l· .. bt contains only 
ones (it means i ones). Then the string b1 ... b, must contain at least !f -i > llsJ 
ones. 

(3) s :5 tt 
Let us divide the string b1 ... b1 to three substrings so that two substrings of them 
have the length s and the last one has the length i. Let in each of these substrings 
be at most (LtsJ -1) ones i.e. 3(lisJ -1) ones together. However, in the whole 
string b1 ... bt there must be ¥ ones. Since 3(LisJ -1) < ¥ there exists one 
substring, which contains at least lisJ ones. I 



www.manaraa.com

211 

PROOF OF THEOREM 1: W.l.o.g. assume that n;:: 12r. Let us divide the time interval 
<·0, T >,where Tis the time of the computation, into 2r intervals so that in each of 
them exactly :[,: least significant bits of variables Yv+I, Yv+2• ... , Yv+ f are delivered to 
output, where v ;::: !f- and v + t ~ n. There exists an interval T such that during T 

at most T copies of the least significant bits of the variables z1 , ... , z ~ are read. This 
implies that at least T least significant bits of variables z1, ... , z~ are non-r-inputs. Let 
z;,,ki ... ;z;,_,,., where j,_ ~ T andj1 < ... < j,_, be these bits. Let us indicate the least 
significant bits of variables Yv+b Yv+2 1 ... , Yu+f, delivered to output during the interval 
r {r-outputs) as Yi,,/c; ... ;y;f.:,/c' where i 1 < ... <it,:. 

Now assign 
Xt,l: = ... = Xn,k = 0 

Zl,k = 0 for l E {l, ... ,m}- {j}, ... ,jz:.}. 

We are going to set so the bits z;,1; ... ;z;,k-1 fori= l, ... ,m and x;,1; ... ;x;,1c-1 for 
j = 1, ... , n that as many input bits z;, lei ... ; Zjm. 1: as possible are delivered to the 

' 4 ' 

output as Yi11ki ... ;y;f;: ,k· So, if Zt,k fort E {it,h, ... ,j_,} is delivered to output as y,,,. 

for s E {it, i2, ... , i..!!..} then: ... 
if Zt,k = 0 then y,,,. = 0 

and 

if Zt,k = 1 then y,,,. = 1. 

By lemma 1 there exists j {0 ~ j ~ !f- - :[,:) such that the string Zj+t,ki ... ; Zj+f;,k 

contains lt:f.:J = Lt;rJ bits from the set {z;.,fc; ... ;z;,_,k}· Let us indicate these bits 
by Zq1 lei ... ; Zq[...ll...J ,., where ql < ... < ql..!I...J. Now we must find a setting for bits 

' 12r ' 12r 

Zi,li ... ;zi,k-1 where i = 1, ... , m and for the bits x;,ti ... ;x;,k-t where j = 1, ... ,n such 
that 

Zj+l,k is delivered to the output as y;1 ,k 

z;H,k is delivered to the output as y;2 ,k 

Zj+ t; ,k is delivered to the output as Yit; ,k 

and the bits {z9,,1c; ... ; z9L ft:J ,k} C {zi+11 ... , zi+t;} are non-r-inputs, whereby the bit 

zg,,k is delivered to the output as y;41 ,k 

z92 ,k is delivered to the output as y;42 ,k 

z9L ........ J ,A: is delivered to the output as y;4 ...ll... ,1: 
12• L 12.J 

for dt < d2 < ... < dlit.:J and {dt,dz, ... ,dl~J} C {1, ... ,f,:}. Hence the bits 
Yidt ,,., ••• I 



www.manaraa.com

212 

y;d 1c depend on the values of the bits Zq1 lei ... ; Zql-"-J 1c which means that if the 
L]jrJ' ' 12" ' 

value Zq; ,k is changed then the value of y;d1 ,k is changed too. Let w;,1i w;,2i ... ; w;,t-1 
be the bits of the k bit variable w; where w;,1 is the most significant bit. We indicate 
the expression w;,12"-2 + w;,22/c-a + · · · + Wi,lc-t2° as Hw;· Now we assign to the bits 
Zi,li···iZi,k-1 fori= 1, ... ,m and to the bits x;,ti···ix;,r.-1 for j = 11 ••• 1 n such 
values that the following is fulfiled: 

Hz; = 0 fori= 11 ... ,q1 

Hx; = 0 for j = 1, ... ,id1 - q1 

Hz;= 1 fori= q1 + 1, ... 1 q2 

H.,1 = 1 for j = id, - q1 + 1, ... , id 2 - q2 

Hz;= 2 fori= q2 + 1, ... ,qa 

Hx; = 2 for j = id 2 - q2 + 1, ... 1 id3 - qa 

Hz; = ( l1;rJ -1) fori= ql'd;J-1 + 1, ... , qlit.:J 

H,.1 = (l 1;rJ -1) for j = idLtt.:J-I- ql'd;J-t + 1, ... ,idlrlrJ -n'd;J 

Hz;= l1;rJ fori= ql,;.J + 1, ... ,m 
Hx; = l1;rJ for j = idlt't.:J -qlit.:J + l, ... ,n 

and we set zt,lc = Ofor l E {j11 ... ,j":jL}-{q11 ... ,ql'd;J}· Thevector(zq,,lc; ... ;z9Lt't.:J•") 

can attain 2LW.d different values. So, various non-T-inputs cause various T-outputs and 
each ofT-inputs is set. This implies at least 2l'd;J various states for the circuit and 
therefore the area is at least log2L'd;J. Hence: A(n, m, k, r) = 0(1;). I 

REMARK 1. The theorem 1 holds for n ~ m ~ fr too. This means that for ~ ~ m ~ fr 
it is A( n, m, k, r) = 0( m ). The constant does not play a role at all. Evidently for 
.; ;::: m;::: !lr where K > 1 is an arbitrary constant A(n, m, k, r) = f!(m) = n(;). 

THEOREM 2. If2i" ~ ~ ~ m;::: 8, then A(n, m,k,r) = fl(m((log~) + 1)). 

PROOF OF THEOREM 2: W.l.o.g. assume that fr ~ m. Divide the time of computation 
into 8r time intervals so that in each of them either l ntrm J or rntrml least significant 
bits of variables y1, ••• , Yn+m are delivered to the output. Among these 8r intervals 
there exists an interval r such that during r at most (k-;rr = (1:-;)m of the k - 1 
most significant bits of variables z1 1 ••• , Zm are input. This means at least fm( k- 1) of 
these bits are non-T-inputs. There are at least 1f variables Zft, ..• 1 Zfm. from Zt, ••• , Zm 

' 2 
such that at least fHk- l)l = ik bits of their k- 1 most significant bits are non-
T-inputs. If there were 1f + 1 variables whose tk of the k - 1 most significant bits 

were r-inputs, then during interval T there were read (1f + 1)tk > (lc-;)m bits, which 
contradicts the definition of the interval T. Let us indicate the least significant bits 



www.manaraa.com

213 

which are r-outputs as: y;1 1:; ••• ; y; >!±!'> 1: where it < · · · < i l.!!.±.!!!.J". We set l k most 
' L .,-;;---J ' Br 

significant bits of variables Zt. .•• , Zm in the following way( see Fig. 1.). We assign: 

H; = z; t2fk-t + z; 22fA:-2 + · · · + z. aL2° = i- 1 
I I t, 8 fti' 

fori= 1, ... ,m. Thisassignmentensuresthat: Zt < ··· < Zm. At least f!{k-1)1-ik = 
ik bits among the bits:zi,fk+ti ... ; Zi,k-t fori E {It, ... , 1-'f} are such that they are non
r-inputs and whatever choice their values maintains relation: z11 < · · · < Zl't. Further 

we set the bits Zi,j fori= 1, ... , m and j = ik + 1, ... , kin the following way 

Zt,k = """ = Zm,k = 1 

Zi,j = 0 

fori E {1, ... ,m}- {1t, ... ,1lf} and for j = ik + 1, ... ,k -1. Let us indicate by 
Zi,/;1 , ••• , Zi,f; a. for i E {1t. ... , 1't} those bits from the bits zi,fk+l; •.. ; Zi,k-t which 

8 

are non-r-inputs. Then we set Zi,; = 0 for i E {111 ••• , 1-'¥-} and for j e {ik + 1, ... , 
k -1}- {fit, ... , J;1.}. Let us indicate by H: the following numbers: 

There exist 2fk possible values for H; depending on the values of the variables Zi,J;1 ; 

••. ; Zi,f;i•. Now consider the output Y: Yt ~ y2 ~ • · · ~ Ym+n· Let us divide it to 

m (not necessary equally long) parts: Ot = {yl! ... , Yi.1 }, 02 = {Yi.1 +11 ... , Yi.2 }, • • ·, 

Om= {Yi•m-l+t·····Yi.m} where 1 < ... < icl < ... < ic2 < ... < iCm! icm = n+m 
and U~t O; = Y so, that each part of them contains at least L ~;::: J variables from 
Yi1 , ••• , Yi !!±m where it < · · · < il.!!.±.!!!.J (see Fig. 1.) and so that the variables 

L ""l!r J Sr 

Yi1 , ••• , Yi ,.+,. belong to the 0 t, the variables Yi >!±!'> , ••• , Yi >!±!'> belong to the 
LsrmJ LsrmJ+t 2 LsrmJ 

02 etc. and the variables Yi .!!.±.!!!. , ... , Yi .!!.±.!!!. belong to the Om. We proceed 
(m-l)(L Srm J)+t Lm( Srm )J 

by the assignment of values to variables Xt, ••• ,xn as follows( see Fig. 1.): Let us also 
divide Xt, ... , Xn into m parts so that the h-th part (for h = 1, ... , m) consists of 
x(E::;(IC,j-l))+l , .. ·, x(E:=t (IC,j-t)) where 1091 is the number of elements of the set 

0 9 • So the h-th part corresponds to the set Oh in the output Y. This latter set contains 
at least l ~;:;: J output in T variables: 

The assignment to the bits of the h-thpart (for h = 1, ... ,m) of the variables Xt, ... ,xn 
is the following. The i k most significant bits of all variables in the h-th part are assigned 
the values so that Xi,ti ... ;xi,fA: fulfill the equality: 

Xi t2fi:-t +Xi 22fi:-2 + • • • +X· l!L2° = h -1. , ' ., 8 fti' 



www.manaraa.com

Y: 
A 

X .LXI X ~IX X IX X D< 

v v /,F,./../ v / 
// /!/f-t/ / 1/ I/ I 1// 

J v v / f2(/ v / 
L/ // :,i~L v /' . ·I· . // 

.. ·l· . .v / /l.f-2~~ t:.. t:.. 
IL/ 

ll/ ~t¥ ~ / // 

214 

:;,. 

D< X X IX 
/V // 

/I/F3~v v /I/ 
1 // /V 

// :;~/ / // 
.. ·I· . VI'" /V 

vv ac{~f L~ 

.A 

lXlX X 
F~t' / 
r4 

/ 

[,f"~ / v 
:f. . 

!'l"j/V v 
(1, lc 

/ / 

1/ v 

/ 1/ 

LSB 

If 
-i-k 
bi!s 

181 -lhtZ. b;t Jczliv.flrtld to Huz. ouf~ut during "t" 

X: 
00 

~ ~ 

~ t7 . 
7 7 
,f 4 

00 
\, 

Z: 

OOIC 00 00 

/ v 
t:.. F;.,:v / / 

~ r z ~ 
/ f-4{V v / . . 
f~·(~Jc)~ ·7 2 

~ ~-1 ..f223 3 -4 

00 00 OIO ~.., 

"' 

01010 .., " 00 00 00 00 00 001010 0-1 -t L SB 
_l / 

l/..h~~t:.. ~ 
II /V / f:.4L. t:.. It 

Zf21~1L IL l v 
·1·1· . /V / F3{ t.. ~ IL· 

':t2(i-k)!: L . ·I· . •/ 
77 t;f3ft!cJZ 

2233 3 "" l.f 2 2. :~ ~ ~0 
, .f 11 42 l2. 22 2.2. l~ 

A A 

v v ~ffl// 

I 1 
/ / vf~ri_/V 

.l.j. . 
/ / f"'ik)~ 
0 -l .f233 

// 

V/ 

~~ 

'13-

r"' -fhtlSfl. 
wt1urzs ar.(l 
giv~ 

by tJ,q. bl'fs 
nclica.te.d I 

by t21 (o·Huzr 

3~ j3 33 33 • 
b; 

bits 
Clt"tl 0} 

, 

a.rbi/:rary 
chosctni ihtly are i11put 
otrf:siJ~ of tt" 
(a..c.ft.la11r .... e choo•f! 
-lhfl.se biis only in w./2 
va.t"icahl«s from Z 1 

;,., tltc. oth&r s 1:/,tz s e 
bits are Fi)Cecl 1 btZ.c:.a.wstl 
-IJ..cr ma.y b(l reo.d clw..W.., 
cr) 

Fig. 1. The assignment to the inputs from X and Z for m = 4, ; = 16, n = 32. 



www.manaraa.com

215 

Let us define: 
h-1 

dift = i(h-1)~+j- L(ICql)l difg = 1. 
q=1 

Let the positions fh 1 1 ... 1 !hi• be corresponding to the positions /i1 1 ... 1 /;I• fori= h 

in the variable Zh(h = 11 ... 1m). Let us assign the values to the fk bits on these 
positions so that: 

for j = 11 .. 'I l ns~: J it holds 

x; 1 2ik-1 + x; , 2ik-2 + · · · + x; , 2° = .; - 1 
I ht IIA2 IIIII• J 

h-1 h-1 

where i = (L(IC9 j-1)) + difl-1 1 ... 1 (L(IC9I- 1)) + dif~- 1 
q=I q=1 

and it holds llk-1 llk-2 o ln + mJ x; 1 2s + x; 1 2s + · · · + x; 1 2 = -- - 1 •ht •h• •hi• 8rm 
h-1 h 

where i = (L(ICqj- 1)) + dif~ 1 ... , L(IC9 j-1). 
q=1 q=1 

The assignment to the least significant bits of the h-th part is the following 

Xj,k = 0 
h-1 h-1 

l.!!.±.!!!. J 
for j = (~)ICqj-1)) + 1, • • • 1 (L(ICqj-1)) + difh Brm -1 

q=1 q=1 

and 
Xj,k = 1 

h-1 h 
l.!!.±.!!!. J for j = (L(ICqj-1)) + difh Srm 1 • • • 1 L(ICqj-1). 

q=1 q=1 

The other bit11 are set to 0. For j = 1, ... , ~ we have: To variable Zlj we assign 
a value H;j E {0, 1, ... 1 l ~'t,:' J - 1}. Then we get the following outputs. Let L; = 
(l; -1)(l ~;: J) and H;j = u. Then it holds: 

There are l ~;,:' J different assignments of a value H;. for j E {1, ... , ~ }. It means there 
m J 

are l ~'t.:' J 2 various assignments for H; , H; , ... , H; m. in summary and this implies the 
1 2 2 

same number of different outputs. So, the circuit should differentiate among at least 

l ~tffi' J 't various states. Therefore A(n, m, k1 r) ~ ~log l ~;,:' J. 
According to Remark 1 we can write 

A(n1 m, k, r) = n ( m ((log r';J + 1)) . I 



www.manaraa.com

216 

REMARK 2. One can prove in a similar way that A( n, m, k, r) = n (log ~) also for 
m<8. 

l!.k 2ft 
THEOREM 3. If~~ 2s ~ m, then A(n,m,k,r) = f!(m((logm-) + 1)). 

PROOF OF THEOREM 3: The proof is analogous to the proof of Theorem 2. The 
difference is in consideration of only 2ik (from l "trm J bits) least significant bits which 
are r-outputs. 

The groups C; for i = 1, ... , m (see the proof of Theorem 2 ) of variables Y1, ... , Yn+m 
lit 

are such that each of them contains 2.':. variables (from the considered ones) that their 
least significant bits are r-outputs. Therefore: 

Similarly as in Theorem 2, we have: 

CoROLLARY 1. If~~ 2ik and ~<::r~; k ~ logm where K ~ 0 then: 

PROOF OF COROLLARY 1: ff ~<:Zt: k ~ log m then there exists c > 0 such that 

em log ;;, :5 m log 2 !t . Let us take c = ~. The inequality ~<:Zt:~: k ~ log m holds if 
and only if 



www.manaraa.com

217 

CONCLUSION 

Figure 2. contains the survey of the results of the paper and shows the open questions 
about the multilective merging. 

where K ~ 0 
is constant 

A= n(m ((log :)+1)) 

Fig. 2. 

? 

Our conjecture is that if n ~ m ~ -;- ~ 2k then A = fl(2k((log ~) + 1)) and if 
-; ~ m ~ 2k then A= fl(2k((log;:) + 1)). 

We hope we could prove all our lower bounds tight by using similar techniques as 
they are used for semelective merging [PSV). 

Acknowledgment 

The second author thanks Professor Kurt Mehlhorn, Max-Planck-Institut fiir Infor
matik, Saarbriicken and Alexander von Humboldt Foundation, Bonn, Germany who 
partly supported this research. 



www.manaraa.com

218 

REFERENCES 

[UJ Ullman,J .D., Computational Aapecta of VLSI, Computer Science Press, Rockville, 
Md. 1983. 

[Sa] Savage,J.E., The Performance of Mu.ltilective VLSI Algorithma, in "Journal of 
Computer and System Sciences Vol. 29, No. 2, October 1984," Academic Press, 
New York and London. 

[Si] Siegel,A., Tight Area Bou.nda and Provably Good AT2 Bounda for Sorting Cir
cuits. TR, CS Dept.,New York University, New York 1984. 

[GJ Gubas,X., Cloae propertiea of the communication and the area complexity of VLSI 
circuita {in Slovak), Maater theaia, Comenius University, Bratislava 1988. 

[PSVJ Palko,V., Sykora,O., Vrto,l., Area complexity of merging, In: MFCS' 89, 
Springer Verlag 1989, 390-396. 



www.manaraa.com

Deriving Fully Efficient Systolic Arrays 
by Quasi-Linear Allocation Functions* 

Xiaoxiong Zhong and Sanjay Rajopadhye 
[xzhong, sanjay]@cs.uoregon.edu 
Computer Science Department 

University of Oregon 
Eugene, Oregon 97 403-1202 

Abstract 

We address the problem of deriving systolic arrays in wltich the processor utiliza
tion is 100%. We first address this problem in the context of synthesis from Uniform 
Recurrence Equations (UREs), and then genera.lize our result to dea.l with arbitrary 
systolic arrays (outside the context of synthesis). We show that in a systolic array, 
it is a.lways possible to merge a para.llelepiped of neighboring processors which are 
active a.t different clock cycles. The new array is fully efficient and its processors 
have a.lmost the same cost as the origina.l one. Such merging corresponds exactly to 
the transformation by a. quasi-linear function. When the origina.l array is derived 
by integra.! linear projections of systems of UREs, we give a method to mechanica.lly 
determine the quasi-linear a.llocation function which yields the efficient array. The 
technique can a.lso be extended to any (piece-wise) systolic array to derive a fully 
efficient array by "post-processing" it with a (piece-wise) quasi-linear function. 

1 Introduction 

In the past few years, a relatively mature synthesis technique for systolic arrays has 
emerged [Rao85, Qui87, Mol83]. The specification is a system of Uniform Recurrence 
Equations (UREs) [KMW67] (or Affine Recurrence Equations, AREs*). The standard 
technique is to transform these UREs into a systolic algorithm which has a direct cor
respondence to a systolic array implementation. Typically, one uses an integral linear 
transformation [CS84, Mol83, Qui87], and can be described as follows: specify the al
gorithm as a system of UREs; determine a linear schedule (represented by its norm 

*Supported by NSF grant MIP-8802454 
*It has been shown (RF90] that even if one starts from AREs, it is essentia.l to localize the data de

pendencies and convert the ARE into a URE. Hence we assume that the specification has been processed 
in this manner. 



www.manaraa.com

220 

>.); determine an allocation function (represented by an integral projection vector u) 
which does not conflict with the timing function (i.e. satisfies the constraint >.u '# 0). 

To evaluate the derived arrays, there are three common criteria-the computation 
time, the number of processors and the efficiency. The efficiency of the array derived from 
the above technique is 7J = 1/6 where 6 = p,tul. The problem of finding optimal timing 
functions, under some standard assumptions, can be reduced to a linear programming 
problem [LW85, Qui87, Mol83]. Also, the problem of finding linear allocation functions 
which can yield minimum number of processors has been studied [WD89, ZWR90]. The 
third criterion, namely the efficiency of a systolic array, however, has not received much 
attention. 

In this paper, we address the problem of deriving efficient systolic arrays. We first 
show that for any systolic array which is derived by the conventional linear transforma
tions, it is always possible to merge every 6 neighboring processors which are active 
at different time units to derive a new array. These 6 processors form a parallelepiped 
which can be constructed by a new basis of the processor space. The efficiency of the 
new array is 100%. It has the same computation time as the original one and has only 
1/6 number of processors. Furthermore, the cost of the processor in the new array r&
mains the same, except for a few additional registers and wires (no additional functional 
units are required). This method is equivalent to using allocation functions that are not 
integral but rational matrices, and then obtaining integral processor labels by using the 
floor function. Such functions are called quasi-affine functions by Quinton [Qui87]. 

Based on the ~tandard view of the systolic array, we also show that the above math
ematical technique can be applied to any systolic array to derive a fully efficient systolic 
array. This can also be easily generalized to transform piec&-wise systolic arrays [Thi89] 
to fully efficient ones, by applying a piece-wise quasi-affine function. 

The rest of this paper is arranged as follows. After a preliminary discussion of the 
standard synthesis methods and its constraints we prove a standard result about the 
efficiency of synthesized systolic arrays (Sec. 3). In Sec. 4, we will show that one can 
always "postprocess" the array derived by the conventional linear transformation to 
yield a new array which has less processors and is fully efficient. We will also show this 
corresponds exactly to an array derived by a quasi-linear allocation function applied to 
the original UREs. We extend these results to arbitrary systolic arrays in Sec 5, and 
conclude with a discussion and comparison. 

2 Preliminaries 

A systolic array consists of identical processors which are connected locally. Processors 
process data from input channels and send out the output through output channels to 
other processors at every clock cycle. To synchronize the data flow, it is possible that a 
processor has to be idle during some clock cycles. This leads to the concept of extl'insic 



www.manaraa.com

221 

iteration interval [Rao85] which is defined as follows: 

Definition 1 The extrinsic iteration interval of a systolic array is defined to be 6 
if every processor is active at exactly one out of every 6 consecutive clock cycles. The 
efficiency 17 of the array defined as 17 = 1/6. 

For example, in the Kung-Leiserson systolic array for banded matrix multiplication 
[KLSO] (see Figure 1), the processors are active once every 3 clock cycles. Therefore, 
6 = 3 and 17 = 1/3. 

Definition 2 Am x n matrix U (m::::; n) is said to bee-unimodular (for extended 
unimodular) if the gcd of the determinants of all its m x m submatrices is 1. 

It is well known [Sch88] (pp. 47, Cor 4.1c), that a system of diophantine equations 
Uz = I has an integral solution for any integral vector I, iff U is e-unimodular. One 
of the useful properties of e-unimodular matrices is that the column Hermite form of an 
e-unimodular m x n matrix, A, is• [Em 0]. We say that a vector is a normalized vector 
if it is e-unimodular (i.e. the gcd of all its components is 1). 

Throughout this paper, we will assume that the UREs are defined on an n-dimension 
integral domain 'D. The standard linear transformation technique to synthesize systolic 
arrays from UREs involves in the two linear transformations, namely, the timing function 
(represented by its norm >.) and the allocation function (represented by a normalized 
projection vector u or an integral (n -1) x n matrix A (satisfying Au= 0, and u is the 
basis of the right null space of A). The following constraints must be satisfied. 

• Causality of the timing function: If, evaluating f(I +d) needs value /(I), then 
>.td > o. 

• Non-conflict: The allocation function does not conflict with the timing function, 
i.e. no two points are mapped to the same processor at the same time. This is 
equivalent to >.tu '# 0. 

• Dense array The derived array must be dense i.e. every integral point in the 
processor space must be the image of an integral point in the index space of the 
problem. This is equivalent to the constraint that A should bee-unimodular. 

Besides the above constraints, we can make the following assumptions without any 
loss of generality. 

• >. is a normalized vector. This is because if >. is not a normalized vector, it can be 
written as s>.' for some positive integer, s and normalized vector, >.'. It is easy to 
verify that >..' still represents a valid timing function (see [RF90]) and it yields a 
faster schedule than >.. 

• E; denotes the i X i identity matrix. 



www.manaraa.com

222 

, 
824 

b42 

' , 
8 1l bll , ' bl2 82l , 

ll:sl 
bll 

, 

' , 
b23 

8 l2 

, 
b12 

ell 
e21 e12 

ell ell 

e41 c22 e14 
e32 c23 

e42 e24 

es2 C;s:s e2s 

Figure 1: Kung-Leiserson Band Matrix Multiplication 



www.manaraa.com

223 

• The dependency graph of the computation is connected. (Otherwise, the com
putation consists of more than one totally independent computation, and we can 
rewrite them as separate UREs). This constraint is satisfied iff the dependency 
matrix (D1 ..• D,.) where D1. .. . , D,. are all dependency vectors is e-unimodular 
(see [ZWR90]). 

Geometrically, the timing and allocation functions can be unified as a single trans
formation from the computation domain V to the processor-time domain T. This can 

be described by an n x n matrix T = ( ~ ) . We denote the processor space (i.e. the 

first n -1 dimensions ofT) as 1'. Furthermore, we say a processor-time point (Pt)' E T 
is active if it is the image of a computation point, i.e. there exists an I E V such that 
TI = (P t)'. Otherwise, (P t)t is said inactive (or "hole"). Intuitively, a processor-time 
point (P t)t is active iff the processor in the location P is active at timet. 

3 Efficiency of Synthesized Arrays 

We will now prove that the extrinsic iteration interval of the systolic array is l>•'ul. Al
though this is well known, it is necessary to prove this in our formal setting. Furthermore, 
our proof establishes certain lemmata that are useful later. 

The active points in a derived array can be characterized by certain properties ofT. 
Let C = (C1C2 ... C,.) be ann X n unimodular matrix such that AC = (En-l 0) (since 
A is e-unimodular, its column Hermite form is (En-1 0)). Let v' = >.'(C1 ••• C,._1) and 
k = >.'C,. (thus, >.'C = (v' k)). Note that since AC = (En-1 0), we have AC,. = 0, i.e. 
C,. is a right null vector of A. Moreover, since Cis unimodular, C,. must be normalized. 
Therefore, C,. = ±u and k = >.'C,. = ±>.'u. The following lemma gives an important 
characterization of active points. 

Lemma 1 A processor-time point (P t)' e T is active iff the following equation has an 
integral solution j. 

(1) 

Proof: Consider transformation matrix T. We have 

T-(A)_ ( (En-10)C-1 ) _ ( En-10) c-1 
- >.' - >.' - >.'C 

So 

(2) 



www.manaraa.com

224 

Now, a processor-time point (P t)t E T is active iff there exists I E .zn such that 

Let J = c- 1I. This defines a bijection .zn "'""zn because C (and hence, c-1) 

is unimodular. Hence the above system of equations has an integral solution I iff 
the following system has an integral solution J. 

( En-1 0 ) J = ( P ) 
vt k t 

Letting J = (il ... in-1 j)t, we see that the solution for (il ... in-1)' is simply 
P. Substituting this into the last equation and simplifying, yields Eqn. 1. I 

Theorem 1 The extrinsic iteration interval 6, of the systolic array derived from a URE 
is l~tuj. 

Proof: We first prove that if an processor-time point Pt0 = (Pto)' is active, then for 
any scalar integer a, the processor-time point (P to+ ak)t is also active. Since 
(P t0 )t is active, there exists an integer j 0 such that · 

v'P+iok =to 

Adding etk to both sides, 

vt P + (j0 + et)k =to+ etk 

Hence, processor P is active at to + etk, and the extrinsic iteration interval, 6, 
must be a factor of k, Le. 6jk. To show that lkl is exactly 6, we now prove that if 
processor Pis active at t1 and t 2 , then (t1 - t 2) must be a multiple of k. Indeed, 
based on Lemma 1, there exist integers i1 and i2 such that 

and 

Hence, 

and therefore, the extrinsic iteration interval, 6, is lkl = l~'uj. I 

Corollary 1 From Eqn 2, we further have det T = ±6. 



www.manaraa.com

225 

The "holes" in the processor-time space occur when Tis not bijective. This is true 
only when T is not a unimodular matrix. The above corollary conforms to this. Theo
retically, it is always possible to select an integral vector u such that >.'u = ±1. This is 
due to the following lemma. 

Lemma 2 For any normalized n-dimensional vector w', it is always possible to choose 
an (n- 1) x n integral matrix M such that the matrix (w M 1) 1 is unimodular. 

Proof: Since w1 = (w1 ... wn) is a normalized vector, there always exists an integral 
vector u such that w1u = gcd(w1 ... wn) = 1 and correspondingly we can choose 
an e-unimodular matrix M such that Mu = 0. It is easy to see that Eqn. 2 holds 
forM too. Therefore, IMI = ±w1u =±,and hence M is unimodular. I 

In practice, however, there may be other factors which prohibit the choice of such 
allocation functions. The first factor is when the computation domain 'D is infinite. In 
this situation, there is only one projection vector (the extremal ray of 'D) which yields a 
finite array, as shown by Quinton [Qui87] and this projection vector may not yield fully 
efficient array (i.e. 6 = 1). Consider banded matrix multiplication (for possibly infinitely 
large matrices), the computation domain is infinite and the only valid array derived by 
the above transformation is Kung-Leiserson array whose efficiency is only 1/3 (Figure 1). 

The second factor is related to the minimization of the number of the processors. The 
projection vectors which yield more efficient arrays may not yield the arrays with fewer 
processors. For example, if we consider banded (but bounded) matrix multiplication, one 
of the projection vector yields a fully efficient array with n2 processors while the Kung
Leiserson array uses only Wt w2 ( Wt, w2 are the bandwidths of the matrices) processors. 
Even though this array is not fully efficient, it may still be preferable to the other array. 

Therefore, it is inherently restrictive to derive a fully efficient array by merely using 
integrallinear·transformations. An obvious extension to this is to permit the allocation 
function to be rational. But to guarantee that the transformation yields a regular array, 
we have to change the locations (labels) of the processors denoted by rationals to integers. 
One of the possibilities is to use the floor function. Such functions are called quasi-linear 
functions by Quinton [Qui87] and are used as timing functions in the same paper. 

4 Synthesizing Fully Efficient Systolic Arrays 

Our main idea in "postprocessing" the systolic array obtained by the integral linear 
transformation is to try to merge as many neighboring processors as possible. In order 
not to increase the functional units in the resultant processor, only those neighboring 
processors which are active at different clock cycles will be merged. Furthermore, while 
the shape of the clusters to be merged may be arbitrary, we are particularly interested 
in merging processors that form parallelepipeds in the processor space. 



www.manaraa.com

226 

We therefore need (n -1) directions v1, ... , Vn-1 along which the parallelepipeds are 
formed. It is clear that we are only interested in those parallelepipeds of volume 6 (i.e. 
parallelepipeds with 6 integral points in them). To be more precise, we factorize 6 such 
that 6 = 61 ..• 6n_1 and these factors together with the basis vectors define a family of 
parallelepipeds. 

Definition 3 A snapshot at time to is the space {(P to)t I P E 1'}. 

Definition 4 A factorization 6 = 6162 ... 6n-1 of 6, a matrix N of (n- 1) basis vectors 
(N = (v1, ... , Vn-1), for the processor space 1', and a processor-time point (P t)t define 
a parallelepiped, denoted by Pr(N, P, t) of volume 6 as follows. 

It should be noted that the requirement that v1, v2, ... , Vn-1 is a basis for the pro
cessor space 1' is necessary. Otherwise, there may be some integral points in the par
allelepiped Pr(N, P, t) but they can not be written as l1v1 + ... + ln-1Vn-1 for some 
0 ::; h < 6; (i.e. the number of integral points in the parallelepiped may be greater 
than 6). Our main result is that such clustering into parallelepipeds is always possible, 
provided that the factors of 6 are mutually co-prime. 

Let k; = k· We will require our basis vectors to satisfy an additional constraint that• 
vtv; = gc;ki where c1, ... ,cn-1 are integers satisfyinggcd(c,,6) = 1 fori= 1, ... ,(n-1) 
and gcd(c1 , ••• , Cn-1) = 1. This constraint will be used later. Thus each v; must be a 
solution of the i-th equation in the following system of diophantine equations. 

vt:z:1 = gc1k1 
vt:z:2 = gc2k2 

As shown by Banerjee ([Ban88], Th. 5.4.2, p.81), the general solution to the'i-th 
equation is given by 

( c~i' ) :z:;= u . 

t~-2 

where tj for j = 1, ... , n-2 are arbitrary integers and U is a unimodular matrix satisfying 
Uv = (g, 0, ... , O)t. Such aU can always be found, and thus, our v;'s satisfy the desired 

"Recall that :A'C = (v' k); we let g be the gcd of all components of v. 



www.manaraa.com

227 

constraint iff the matrix 

V= ( 

c1k1 c2k2 . . . Cn-lkn-1 ) ti ti . . . t~-1 
. . . . . . . . . 

t~-2 t~-2 t~=~ 

is unimodular because (v1 ... lln-l) = UV. The following lemma gives us necessary and 
sufficient conditions for this. 

Lemma 3 V is unimodular iff gcd( 6;, Oj) = 1 for all i =f. j. 

Proof: 

If part. Let, gcd(o;, Oj) = 1, for all i =f. j. First, we prove that (k1 ... kn-1) is a 
normalized vector. Suppose pis a common prime divisor for k1 ... kn-1· Obviously, 
pik1• There exists i =/=1 such thatplo;, since k; = 61 ... 6;-16i+l· .. on-1· Similarly, 
since plk;, there exists j =f. i such that ploi. Because gcd(o;, Oj) = 1, p must be 1. 
Therefore, (k1, ... ,kn-1) is normalized. We now prove that (c1k1 ... Cn-lkk-1) 
is also normalized. Again, suppose pis a common prime divisor for all c;k;, then 
p either divides c; or k;. Since gcd( c1, ... , Cn-1) = 1 and gcd( k1, ... , kn-1) = 1, 
there exist i,j (i =f. j) such that plc;,plkj. But from gcd(c;, 6) = 1, we know 
gcd(c;,kj) = 1. Hence, p = 1. By Lemma 2, we know it is always possible to 
choose t{ 's such that V is unimodular. 

Only If Part. Without loss of generality, suppose gcd( 61, 62) = d =f. 1. dlk1 
because 62lk1. Also, dlk; for i =f. 1 because odk; for all i =f. 1. Therefore, we know 
dlc;k; for all i = 1, ... , n- 1. Hence, Vis not unimodular. I 

We now prove that any snapshot of any parallelepiped formed by the basis vectors as 
chosen above contains exactly one active point. 

Lemma 4 For any time instant t, there is exactly one active point in any parallelepiped 
Pr(N,P,t). 

Proof: First, we prove that there is at most one active point in Pr(N, P, t). Suppose 
there are two active points, say, (P1 t)' and (P2 t)' in this parallelepiped. It 
is easy to see that the point (P1 t)' - (P2 t)' is also active. This means that 
there are integers 11, 12, ... , ln-1 where 0 ~ I; < 6; for i = 1, ... , n- 1 such that 

( hvl + · · · ~ 1n- 111"-1 ) is active. From Lemma 1, we know that there is an 

integral solution to the Eqn. 1, i.e. there is an integer Jn such that 

/tv1111 + ... + 1n-1Vtlln-1 + Jnk = 0 

This can be further simplified to 



www.manaraa.com

228 

Notice that for any i -:f= j, 6dk;. Therefore, dividing both sides of the above 
equation by 6;, we have 6; lgl;c;k;. Because gcd(g, 6) = 1, hence gcd(g, 6;) = 1. 
Also, gcd(c;, 6) = 1, and hence gcd(c;, 6;) = 1. Furthermore, gcd(6;, 6;) = 1 (for 
i -:/= j), and hence gcd( 6;, k;) = 1. So 6dh. Because 0 :5 /; < 6;, /; must be 0, i.e. 
Pl is the same as Pl. 
To prove that there is at least one active point in the parallelepiped, again, consider 
Eqn. 1 which can be simplified to 

(3) 

We want to prove that there are integers lx, ... , ln-1 for 0 :5 /; < 6; and some 
integer Jn as the solution to the above equation. To prove this, we first prove 
gcd(gc1k1. ... , gcn-tkn-1, k) = 1. Consider any prime common divisor p of these 
integers, we prove p = 1. Because gcd(g, k) = 1, if pig, then we already prove 
that p = 1 (because plk too). If p is not a factor of g, we have plc;k; for every 
i = 1, ... , n- 1. Because gcd(c1k1, ... , Cn-1kn-1) = 1, p must be 1. 

Therefore, there exist integers lL ... , 1~_ 1 , J~ such that 

Denoting t - v* P as t' and multiplying both sides of the equation by t', we have 

For t'l;, we can always find two integers q; and l; where 0 :S l;, 6; such that t't; = 
q;6; + l; (i.e. l; is the remainder of dividing t'l; by 6;). Notice that 6;k; = 6 = ±k. 
The left hand side of the above equation becomes 

n-1 
(2:: /;gc;k&) + J~t'k + q1gc161k1 + ... + qn-19Cn-16n-1kn-1 

i=1 

n-1 
= <2:: l;gc;k;) + (J~t' ± (qlgcl + ... + qn-19Cn-t))k 

i=1 

Let Jn = (J~t' ± (q1gc1 + ... + qn-19Cn-d), l; and Jn together satisfy Eqn. 3. I 

Therefore, We can merge all the 6 processors in such parallelepipeds into one proces
sor. The new processor does not need to have extra processing function units (but may 
need some additional links and registers) and it will be active in the whole computation. 
This leads to the following theorem. 

Theorem 2 It is always possible to merge 6 neighboring processors which form a par
allelepiped in the processor space to derive a fully efficient array. The new array has 
the same computation time as the original one and has the same cost except for some 
additional links and registers. 



www.manaraa.com

229 

It should be clear that there is much freedom to choose the basis vectors v1, ... , Vn-1 
to form the parallelepiped. In practice, the selection of the basis vectors should try 
to minimize the number of the extra links, and the number of specialized boundary 
processors required. 

4.1 Quasi-Linear Allocation Functions 

To place the resultant array onto the integral grid, we need an explicit allocation func
tion which assigns computations to processors denoted by integral points. To find such 
a function for the resultant array, we observe that the procedure we described so far 
can be viewed as the composition of three parts: the original linear allocation function 
(represented by an (n- 1) x n e-unimodular matrix A); a basis transformation function 
which transforms the derived processor space P into another space with v1, ... , Vn-1 as 
the bases; and clustering of processors into rectangular parallelepipeds. This clustering 
is obtained by dividing the processor coordinate along the basis v; by 6; and taking the 
floor function l J. Note that we have assumed that processor 0 is always in P. If this 
were not so, we can simply add a constant to the allocation function derived here and 
we get a quasi-affine rather than a quasi-linear function. 

Because the matrix V = (v1 ... Vn-1) is the basis transformation matrix from the 
new basis vectors to the old basis vectors, v-1 is the basis transformation from the old 
basis vectors to the new basis vectors. Therefore, we define the allocation function as 
follows: 

For any IE 'D, Q(I) = LDV-1 A(I)j where• Dis an (n -1) x (n -1) diagonal matrix 
which is defined as D = diag(1/61, ... , 1/6n-1)· The following theorem states that the 
allocation function Q yields a dense array. 

Theorem 3 The allocation function Q = LDV-1 Aj yields a dense array. 

Proof: We need to show that Q is a surjective function from zn to zn-1, i.e. for 
any P = {P1 P2 ... Pn-1)t E zn-1, there is at least an IE zn such that P = QI. 
Because DP1 = P where P1 = (61P1 62P2 ... On-1Pn-1)t (actually, there are 6 
possible P1s which are mapped to P under D, but for the purpose of our proof, 
we just choose one of them). Furthermore, there is p2 = v p1 e zn-1 (because 
v-1 is unimodular) such that DV- 1 P2 = P. Now, since A is e-unimodular and 
therefore, there always exists integral solution for the equation P2 =AI (pp. 47, 
Cor 4.1c, [Sch88]), therefore, Q is surjective. I 

So far, we have shown that a particular class of quasi-linear functions (those that 
can be decomposed into the three factors above) can be used as allocation functions to 

•tM J for a matrix M is defined as taking floor for every entry in M 



www.manaraa.com

230 

obtain efficient arrays. We hypothesize that one could use general quasi-linear functions 
as allocation functions. For this to be valid, we need to show that arrays obtained by such 
functions are still regular. An informal argument supporting this is as follows. First, we 
note that any (n- 1) x n rational matrix Q can be written as ~P where dis an integer 
and Pis an (n-1) x n integral matrix. Hence, if I depends on I +Din the computation, 
then processor lQJj should have a link from processor lQI + QDJ = l~(PI) + ~(PD)J. 
Let QI = lQIJ + f(I) where f(J) is the fractional part of QI. We conjecture that f(J) 
is periodic and bounded by d, and therefore, LQJ +QDJ = lQJj + Lf(I) +QDJ. Hence, 
processor QI has at most d different links (corresponding to dependency D) and this is 
true for any I. Therefore, the resultant array is regular. Furthermore, we also expect 
that one can always factorize any valid quasi-linear allocation function into the three 
parts as above. 

5 Optimal Clustering of Arbitrary Systolic Arrays 

So far, we have addressed the problem of deriving efficient systolic arrays in the context 
of synthesis. There are, however, many systolic arrays which are not derived from UREs 
by the conventional linear transformation. To transform such arrays into efficient ones, 
we study how to apply our theory to an arbitrary systolic array. First, let us recall the 
standard points of view of a systolic array. 

By Rao and Kailath [RK86], a systolic array implements an RIA . This RIA is defined 
in a processor-time space. More precisely, suppose the processor space is defined in 
p c zn-l I then the RIA is defined in zn as follows: 

If there is a link with a delay D1 (D1 ~ 1) from processor p1 to processor Pl + D in 
the processor space, then for any timet, processor-time point (p1 + D t + D1? depends 

on (Pl t)1• Hence, there is a uniform dependency ( ~ ) . 

Generally, if D1 , .•. , Dk are all the link vectors in the processor space (we assume k ~ 
n, otherwise, the RIA can be transformed into a lower dimension space) and Df, . .. , D~ 
are the time delayed along the i-th link respectively, then the RIA implemented by the 

array is defined by the matrix D formed by the dependency vectors as ( DD! · • · DD; ) . 
1 • • • k 

It might seem straightforward to use the above technique because the array is derived 
by a projection of the RIA along the time axis. But if the array is not 100% efficient, 
then the computation dag of this RIA consists of k disconnected components in zn, 
which violates the assumption we made in Section 2. Hence our previous results cannot 
be applied directly. 

Let us examine processor-time points in zn. Some of these points correspond to 
useful computations (i.e. the processors are active) and others do not. Moreover, if the 
extrinsic iteration interval is 6, then along the time axis, there is an active processor-time 



www.manaraa.com

231 

point every 6 points. 

Basically, if we assume that the origin point (i.e. 0 E zn) is active, then any active 
point will be connected to the origin in the dag of the RIA. Thus, a processor-time point 
(Pt) 1 is active iff it can be represented by a linear combination of the dependency vectors 
of the dag. This leads to the following proposition. 

Remark 1 A processor-time point (Pt)1 is active iff there exists a k-dimensional integral 
vector J such that DJ = (P t)1. 

Let D = ( ~: ) where Dp ::::: (Dr ... Dk) and D1 ::::: (Dl ... Dl). Dp is then -l X k 

connection matrix for the processor space. To guarantee that the array is dense (i.e. 
every integral point in 'P is a valid processor), Dp must be e-unimodular (Lemma 4, in 
[ZWR90]). Moreover, it is reasonable to assume that D1 is a normalized vector because, 
otherwise, we can get a faster array by just simply replacing D1 with Di where D1 = cD: 
and Di is normalized. The matrix D is thus analogous to the transformation matrix T 
that we have studied so far, except that it is not square. 

Because Dp is e-unimodular, there exists a k X k unimodular matrix U = (U1 ... U.~:) 
such that DpU = (En-1 0). Define w1 = Dt(Ul ... Un-1) and l; = DtU; fori= n, ... , k, 
thus D1U = (w1 ln ... /.~:). We therefore have the following analogue of Lemma 1 (the 
proof is also analogous, and omitted for brevity). 

Lemma 5 A processor-time point (Pt)1 E T is an active point iff the following equation 
has an integral solution Jn, ... , h. 

(4) 

The key difference between Eqn. 1 and Eqn. 4 is that in Eqn. 4, there are ln, ... , l.~: 
instead of k in Eqn. 1. The following Lemma enables us to eliminate this difference too. 

Lemma 6 Eqn. 4 has integral solution Jn, ... , J,. iff the following equation has an inte
gral solution J 

w1P+Jl = t 
where l = gcd(ln, ... , l~c) 

Proof: Let (/n, ... , h,) = l(l~, ... , lD and gcd(l~, ... , ID = 1. It is easy to see that if 
Eqn. 4 has integral solution Jn, ... ,J.~:, then J = l~Jn + ... + lkJk is an integral 
solution to Eqn. 5. 

Conversely, suppose Eqn. 5 has an integral solution J. Because gcd(l~, ... , ID = 
1, there are integers mn, ... , mk such that mnl~ + ... + mklj, = 1. Therefore, 
Jmnl~ + ... + Jm.~:ll. = J and Eqn. 5 becomes 

w1 P + l(Jmnl~ + ... + Jm.~:lk) = t (6) 

(5) 



www.manaraa.com

232 

Therefore, Jn = Jmn, ... , Jk = Jmk is an integral solution to Eqn. 4. I 

We then have the following analogue (proof omitted for brevity) ofTh. 1 

Theorem 4 The extrinsic iter.ation interval 6 of any systolic array is l. 

We can use the technique of Th. 2 to merge 6 neighboring processors within a paral
lelepiped and derive for any systolic array a 100% efficient array. 

Matrix Multiplication Example 

For the Kung-Leiserson matrix multiplication array, 6 = 3, which is a prime number. All 
possible parallelepipeds which we can merge have a 1 X 3 aspect ratio. Furthermore, we 
have the following: 

D ~ ( f;. ) ~ ( : : ~: ) ~ ( : : ~ ) ( ~ ~ ~: ) 
Hence, we have w1 = (11), g = 1 and the following two equations. 

X+ y = CI 

x + y = 3c2 

(7) 

There are many ways to pick the basis vectors. For example, if we choose CI = c2 = 1, 
We have VI = (1 0)1 and V2 = (4 - 1) as the solutions to the above two equations 
respectively. Also is VI= (01) and v2 = ( -14). That is, we can cluster the 3 neighboring 
processors vertically or horizontally. Further, if we choose CI = 2 and c2 = 1, we get 
VI = (11) and v2 = (1 2) as a solution. VI stands for the main diagonal. It should be 
noted that (1 -1) is not a solution to the first equation, because if it were, c1 must be 0, 
hence gcd( CI, 3) = 3 which does not satisfy the condition as stated above. In fact, in the 
array, all processors along the direction (1 - 1) are active or inactive at the same time. 

6 Discussion and Conclusions 

Recently, there has been some work in the context of merging processors of systolic arrays 
derived by conventional linear transformation to yield a fully efficient systolic array as 
reported by Bu and Deprettere [BDD90] and also by Clauss et al. [CMP90]. Both of them 
adopt the same approach, namely, selecting 6 - 1 vectors AI, ... , A6-1 in the problem 
domain and merging processors po,Po + AA1, ... ,po + AA6-1 (where A is the allocation 



www.manaraa.com

233 

matrix). We call this kind of approaches "enumeration approach". Our work differs from 
these approaches in two aspects. 

First, due to the selection of vectors >.1, ... ,>.6-1 1 it is very possible that po,Po+ 
A>.1, •.. ,po + A>.6-1 don't form a parallelepiped and may form a cluster of arbitrary 
shape. Although the resultant array is still regular (because the original array is regular), 
it is difficult (if not impossible) to come up with an explicit allocation function for the 
final array. Moreover it is not clear how the dense array constraint can be satisfied. In 
contrast, our approach is constructive and guarantees that an explicit allocation function 
satisfying the dense array constraint can be found. 

Second, the enumeration approaches can only be applied to systolic arrays derived by 
the conventional linear transformation. In contrast, by studying the activation patterns 
of the RIA that is implemented by an arbitrary systolic array, our approach can be 
applied to any (pure) systolic array. Furthermore, the method can be extended to piece
wise systolic arrays as follows. A piece-wise array consists of a constant number of pieces 
of pure systolic arrays. We can thus apply our technique to each piece of the array 
and adjust the connections between boundary processors accordingly. This corresponds 
to using piece-wise quasi-linear functions, and is especially useful when dealing with 
ingenuous arrays designed by ad-hoc manner, outside a standard synthesis methodology. 
Such arrays are most likely to be piece-wise systolic, and our approach c~~:n be used to 
improve the efficiency of such arrays. 

The results presented here generalize a previous result reported elsewhere (ZR91]. In 
that paper we show that there always exist some directions along which one can always 
merge 6 neighboring processors to obtain a fully efficient array for any systolic array 
derived by the standard linear transformation. It is thus an instance of a parallelepiped, 
where the factorization of 6 is 6 = 11 ... 16 (i.e. all except one of the factors are one, and 
the last one is 6 itself). 

Our work reported here raises an interesting question regarding the cost (and hence 
optimality) of systolic arrays derived by linear transformations. Traditionally, the two 
cost measures that have been used are the computation time and the number of proces
sors. However, by using the results in this paper, one can always reduce the processor 
count by a factor of 6. Thus, the "raw" processor count by itself is not an accurate 
measure. This corresponds to the volume v of a convex polyhedron (the domain of com
putation, 'V), under the transformation to space-time, T. Except for two-dimensional 
recurrences, this is not a linear function and hence the optimal solution can be obtained 
only be enumeration. It would be interesting to investigate how such methods (WD89) 
can be adapted to use the new cost function which is vflTl. 

References 

[Ban88] Utpal Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic 



www.manaraa.com

234 

Publishers, 1988. 

[BDD90] J. Bu, E. F. Deprettere, and P. Dewilde. A design methodology for fixed-size 
systolic arrays. In S. Y. Kung and E. Swartzlander, editors, International 
Conference on Application Specific Array Processing, pages 591-602, Prince
ton, New Jersey, Sept 1990. IEEE Computer Society. 

[CMP90] P. Clauss, C. Mongenet, and G. R. Perrin. Calculus of space-optimal mappings 
of systolic algorithms on processor arrays. InS. Y. Kung and E. Swartzlander, 
editors, International Conference on Application Specific Array Processing, 
pages 4-18, Princeton, New Jersey, Sept 1990. IEEE Computer Society. 

[CS84] Peter R. Cappello and Kenneth Steiglitz. Unifying VLSI designs with linear 
transformations of space-time. Advances in Computing Research, 2:23-65, 
1984. 

[KL80] H. T. Kung and C. E. Leiserson. Algorithms for VLSI Processor Arrays, 
chapter 8.3, 'Introduction to VLSI Systems,' Mead, C. and Conway, L., pages 
271-292. Addison-Wesley, Reading, Ma, 1980. 

[KMW67] R. M. Karp, R. E. Miller, and S. Winograd. The organization of computations 
for uniform recurrence equations. JACM, 14(3):563-590, July 1967. 

[LW85] G. J. Li and B. W. Wah. Design of optimal systolic arrays. IEEE Transactions 
on Computers, C-35(1):66-77, 1985. 

[Mol83] D. I. Moldovan. On the design of algorithms for VLSI systolic arrays. Pro
ceedings of the IEEE, 71(1):113-120, January 1983. 

[Qui87] Patrice Quinton. The Systematic Design of Systolic Arrays, chapter 9, Au
tomata Networks in Computer Science, pages 229-260. Princeton University 
Press, 1987. Preliminary versions appear as IRISA Tech Reports 193 and 216, 
1983. 

[Rao85] Sailesh Rao. Regular Iterative Algorithms and their Implementations on Pro
cessor Arrays. PhD thesis, Stanford University, Information Systems Lab., 
Stanford, Ca, October 1985. 

[RF90] Sanjay V. Rajopadhye and Richard M. Fujimoto. Synthesizing systolic arrays 
from recurrence equations. Parallel Computing, 14:163-189, June 1990. 

[RK86] Sailesh Rao and Thomas Kailath. What is a systolic algorithm. In Proceedings, 
Highly Parallel Signal Processing Architectures, pages 34-48, Los Angeles, Ca, 
Jan 1986. SPIE. 

[Sch88] A. Schrijver. Theory of Integer and Linear Programming. John Wiley and 
Sons, 1988. 



www.manaraa.com

235 

[Thi89] Lothar Thiele. On the design of picecwise regular processor arrays. In Inter
national Symposium on Circuits and Systems, pages 2239-2542. IEEE CAS, 
IEEE Press, 1989. 

[WD89] Jiwan Wong and Jean-Marc Delosme. Optimization of the processor count 
for systolic arrays. Technical Report YALEU-DCS-RR-697, Computer Science 
Dept. Yale University, May 1989. 

[ZR91] Xiaoxiong Zhong and Sanjay V. Rajopadhye. Synthesizing efficient systolic ar
rays. In International Conference on Acoustics, Speech and Signal Processing, 
pages accepted, Toronto, Canada, May 1991. IEEE. 

[ZWR90] Xiaoxiong Zhong, Ivan M. Wong, and Sanjay V. Rajopadhye. Bounds on 
the solution space in systolic array design. Technical Report CIS-TR-90-10, 
University of Oregon, Computer Science Department, 120 Deschutes Hall, 
Eugene OR 97403-1202, April 1990. (submitted to Journal of VLSI Signal 
Processing; preliminary results reported in VLSI Signal Processing IV, San 
Diego CA, Nov 1990). 



www.manaraa.com

Affine Timings 
for Systems of Affine Recurrence Equations t 

C. MoNGENET 
Universite Louis Pasteur, Departement d'Informatique 
7 rue Rene Descartes, 67084 STRASBOURG, FRANCE 

Abstract. - This paper is devoted to the problem of the existence of affine timings 
for problems defined by Systems of Affine Recurrence Equations. After a first analysis, 
such problems may have no affine timing not because the problem is uncomputable but 
only because of the initial system of equations. This system can induce dependencies 
organized in an inappropiate way. We give conditions for a dependency to be well
organized in such a way that an affine timing may exist. When a dependency does 
not satisfy these conditions, we describe how to transform it in order to meet the 
conditions. A problem defined by a system of equations is analyzed by a step-by-step 
examination of its dependencies. For each dependency organized in an inappropriate 
way, a transformation is applied. The whole transformation process yields to the 
determination of a new equivalent system of equations from which an affine timing can 
usually be computed. Many practical problems need such transformations. We illustrate 
this transformation process on the Algebraic Path Problem. 

Keywords. - systems of affine recurrence equations, affine timing functions, mapping, 
systolic arrays, processor arrays. 

Introduction 

Many research efforts have focused on methods to map problems on systolic arrays 
([KUN 82]) and on processor arrays architectures ([MOL 83], [QUI 84], [DEI 85], 
[MON 85], [MOF 87], [FFW 87], [MOP 87], [YAC 88]). 

The first approaches mainly dealt with systems of Uniform Recurrence Equations 
introduced by KARP, MILLER and WINOGRAD ([KMW 67]). However this restrictive 
class of equations cannot naturally express lots of problems. So, researchers now focus 
on a larger class of equations : the Systems of Affine Recurrence Equations (SARE in 
the following) ([CLP 88], [QVD 89]). 

t This work has been supported by the Laboratoire d'Informatique de Besan'<on and 
by the French Coordinated Research Program C3 of the CNRS. 



www.manaraa.com

237 

The goal of these different methods is the same. Using the information given by the 
dependency analysis of the problem, they determine first a timing or scheduling of the 
elementary calculation points of this problem, then an allocation of these calculations 
on a set of processors. The timing is generally defined by an affine timing function. 

This paper is concerned with the problem of the affine timing determination. 

A problem defined by a given initial SARE can have no parallel solutions because 
the dependencies between the calculations are such that no possible affine scheduling 
of these calculations exists. This can be intrinsically related to the problem and the 
interdependencies between the calculations. But experience proves that in some cases, 
the lack of affine timing is not due to strong interdependencies but only to one ill
conditioned dependency. That is to say, the initial SARE is not appropriate. In such 
cases; a transformation of this initial SARE into an equivalent one can then yield to the 
existence of affine schedulings. This could be achieved by applying formal methods of 
recurrence equations transformations. 

Instead of this formal approach, our objective is to include the problem of SARE 
transformation in our method for the mapping of SARE onto regular arrays ([MCP 91]). 
We shall use its general geometrical framework to discuss the existence of affine timings 
and the necessity of dependency transformations when no such timings exist. We propose 
to analyze individually each dependency in order to determine if it is ill-conditioned. 
When it is, i.e. when no affine timing exists according to this dependency, we present 
domain transformations in order to get a timing. Since each dependency of the problem 
will be examined separately, the existence of a timing for the whole problem will not 
be known and guarantied before the complete examination of all the dependencies. In 
practice, this approach is very fruitful for lots of problems (Gauss-Jordan, Algebraic 
Path Problem, etc) where the initial SAREs contain ill-conditioned dependencies. After 
application of the process described here, a well-conditioned description of the problem, 
i.e. an equivalent SARE, is obtained from which we easily deduce an affine timing. 

We recall the different steps of our mapping method. We first define the notion of 
affine timing. We emphasize the interest of constant timing, i.e. timing independent on 
the problem size. The dependency analysis is then realized in terms of two classes of 
vectors : the generating vectors and the inductive vectors. Using this information, we 
first present the condition for an affine timing to be valid according to one dependency. 
We differentiate two validity conditions or constraints : the weak condition and the 
stronger one where broadcast is removed. When one of these validity conditions is not 
satisfied we describe how to transform the domain and the current dependency in order 
to get a valid timing according to this dependency. 

This paper is organized as follows. Section 1 presents the concept of SARE. The notion 
of affine timing and the way we realize the dependency analysis are described in section 
2. Section 3 focuses on the conditions for the existence of a valid affine timing according 
to one dependency and presents the appropriate domain transformation to be applied in 
case of non-existence of a timing. Finally section 4 illustrates these results on a classical 
problem, the Algebraic Path Problem ([ROT 87], [DEL 88], (BE-all 89]). We show why 
the initial problem specification does not yield to any affine timing. The transformations 



www.manaraa.com

238 

described in this paper are then applied on this problem and the resulting specification 
can be scheduled. 

1. Problems definition 

We consider problems that can be expressed in terms of a system of affine recurrence 
equations. Each equation of the system is of the form : 

Xu[z] = fu (. · · ,Xv[Pu,v,p(z)], · · ·) z E Du,p (E) 

where 

• Xu and Xv are variable names. Xu is a result variable (possibly an intermediary 
one) whose items Xu[z], z E Du,p, are calculated in terms of argument variables Xv 
appearing in the right part of (E). Xv is either a data or a result variable (possibly 
X,;). The variables Xu and Xv are indexed with integral indexes z and z' = Pu,v,p(z) of 
constant dimension. H Xv is a result variable it must be fully indexed, i.e. Pu,v,p(z) and 
z must be of the same dimension n. 

• Du,p C zn is a convex bounded polyhedron or a union of convex bounded polyhedra 
associated with equation (E). It is called the indez domain. It defines the set of integral 
coordinates points on which the equation (E) is defined. Each point z of Du,p corresponds 
to the calculation of one item Xu[z]. The domains of all the equations (E) of the system 
are of the same dimension. H several equations (E) define the same result variable Xu, 
their domains must be disjoint to avoid a result to be defined twice. In practice we 
have n = 2 or 3 to get by projection of the domain a linear or bidimensional array. 
We call domain of the problem the union of the Du,p· 

• p E l'l is the &ize parameter. It characterizes the bounds of the index domain Du,p· 

• fu is any function. We assume its complexity is 0(1 ). 

• the ... express that they are other arguments of the same form as Xv[Pu,v,p(z)]. 

• Pu,v,p is an affine function from zn __. zn' (n' ~ n). It is called the indez mapping. 
It defines the item of variable Xv used in equation (E) to calculate the item Xu[z]. It is 
of the form: 

Pu,v,p(z) = A(z) + B(p) + C 

The initialization of the recurrence defined by equation (E) has to be specified. This 
is done by the initialization or input equation&. There is at least one such equation 
associated with each result Xu of the problem. It is of the form: 

(Init) 

where 

• Z0 corresponds to the initial step of the recurrence. In practice the initialization 
domain Du.,p is adjacent to the calculation domain Du,p· 

• d is a data of the problem. It is either a constant or a data variable over a set of 
integral indexes. 



www.manaraa.com

239 

From such a problem definition we analyze the dependencies in order to characterize 
conditions for the existence of affine timings associated with each dependency of the 
problem. The dependency analysis is realized in terms of 2 classes of vectors : the 
generating vectors denoted <P and the inductive vectors denoted Ill. 

2. Affine timing and dependency analysis 

The dependency analysis information is used to determine the possible timing 
functions and at a later stage (not discussed in this paper) the allocation of the 
calculations to the processors. 

In this paper we only consider affine timing functions. The timing function defines, 
for any point z of the domain, its execution instant t( z) in the following way : 

DEFINITION 1. - An affine timing function associated with a problem is a function of 
the form: 

t : D C zn ---+ N 

z ---+ t(z)::;::A·z+a 

where A = (At, ... , An) and At, ... , An, a are integral constants. 

The vector A is orthogonal to hyperplanes of zn such that all the points belonging 
to one of them have the same execution instant. We call these hyperplanes the timing 
surfaces. 

We now introduce the notion of efficient timing. Let Zt and z2 be any two points of the 
domain. An efficient timing function should guaranty that the difference between their 
execution instants t(z1 )- t(z2 ) is independent on the parameter size p of the problem. 
Hence if this difference depends on p , the delay between the execution instants of z1 and 
z2 would increase when p increases. That is why the only interesting timing functions 
are the constant timings defined by : 

DEFINITION 2.- An affine timing is constant if and only if it is independent on the 
size parameter p of the problem. 

From now one we shall only consider constant affine timing functions. 

Because of the dependencies between elementary calculations of a problem, a timing 
must satisfy some conditions. We call them the causal constraints. They express that an 
elementary calculation point z1 which uses as data a result item calculated by a point 
z0 must be executed after zo. Therefore these constraints restrict the timing and are 
only associated with the result variables whose items are used as data. 

The problem also contains dependencies which are associated with data variables. 
These dependencies do not impose any causal constraints : any scheduling of all the 
calculations using a same data is valid. 

To take into account the different incidence on the timing of the result and data 
variables, we analyze their dependencies differently. 



www.manaraa.com

240 

2.1. Dependencies for a data 

A data variable X., does not impose any intrinsic causal constraint. Since a data 
variable does not need to be fully indexed we use (0 E zn' as its index. The only 
information we need to know about X., is on which subset of the domain D any given 
data item X.,[(o] is used. This set of points is called a utilization set and is defined in 
the following way : 

DEFINITION 3. - The utilization set associated with a given data item X.,[(o] that 
occurs in equation (E) defining the variable X,. is 

UtilE( X.,, (o) = {z E Du,p I Pu,v,p(z) = (o} 

Since the index mappings Pu,u,p are affine functions, the solutions of any Pu,v,p(z) = (0 

form an affine subspace of zn. utilE( X"' (o) is then the intersection of this affine 
subspace with the domain Du,p which is a convex polyhedron or a union of convex 
bounded polyhedra. Therefore we have the following property : 

PROPERTY 1.- Every utilization set UtilE( X.,, (0) is a convex polyhedron or a union 
of convex bounded polyhedra. 

We introduce the notion of generating vectors to characterize these utilization sets. 

DEFINITION 4.- We call generating vectors associated with a data variable Xv that 
occurs in equation (E) them vectors of a basis of UtilE(Xv, (o) for any (o. We denote 
them tPE,Xv,i(i = l ... m). 

Note that if for a given equation (E), the utilization set UtilE(X.,, (0 ) is of dimension 0, 
it is reduced to one point. This means that a given data item X.,((o) is used only on 
one calculation point z. Such a situation is characterized by a null generating vector 
tPE,Xv = 0. 

2.2. Dependencies for a result 

We consider now the case where the variable Xv appearing in the recurrence equation 
(E) is a result. Recall that since Xv is a result variable, it is fully indexed. We use Zo E zn 
as an index of Xv. 

The recurrence equation X,.[z] = f,.( ... ,X.,[p,.,.,,p(z)], .. . ) expresses that the com
putation of variable X,. at point z causally depends on the computation of variable Xv 
at point Pu,v,p(z}, i.e. the computation of X,. at point z must occur after the one of 
Xv at point Pu,v,p(z). For a given result item Xv[zo] with Zo = Pu,v,p(z) we need to 
characterize the set of all the points z depending causally on point zo, i.e. using the 
result provided by zo. This set is called a reception set and defined by: 



www.manaraa.com

241 

DEFINITION 5. - The reception set associated with a given result item X 11 [z0] that 
occurs in equation (E) defining the variable Xu is 

RecE(Xv,zo) = {z E Du,p I Pu,v,p(z) = zo} 

Similarly to property 1 we have : 

PROPERTY 2.- Every reception set RecE(Xv,zo) is a convex bounded polyhedron or 
a union of convex bounded polyhedra. 

These reception sets are defined in the same way as the utilization sets. However 
they have different conceptual meanings. A utilization set is associated with a data 
while a reception set is associated with a result. There is an intrinsic causal dependency 
underlying the notion of reception set which does not exist in the notion of utilization set. 
We will represent this causal dependency by inductive vectors defined in the following 
way: 

DEFINITION 6. - We call inductive vector associated with a result variable Xv that 
occurs in equation (E), any vector denoted by Wxu,Pu,u,,(z) and defined by: 

Ill x.,p.,.,,(z) = z- Pu,v,p(z) 

A reception set is then characterized by its basis of generating vectors (in the same way 
as a utilization set) and by the inductive vectors. These inductive vectors connect a point 
zo = Pu,v,p(z) computing a result item X 11 [zo] to all the points z, z E RecE(Xv,zo), that 
causally depend on z0 , i.e. using the result provided by z0 for their own computation. 
Notice that there are as many sets of inductive vectors associated with a given result X 11 

as there are occurrences of X 11 in the right side of any equation (E). 

All the points zo = Pu,v,p(z) which are origin of a vector of a given set of inductive 
vectors form a set. This set is called the emission set and defined by : 

DEFINITION 7. - The emission set associated with a given result variable Xv that 
occurs in equation (E) defining the variable Xu is 

EmitE(Xv) ={zoE D l3z E Du,p such that Pu,v,p(z) = zo} = Pu,v,p(Du,p) 

Since EmitE(X11 ) is the image by the affine function Pu,v,p of a convex bounded 
polyhedron or of the union of convex bounded polyhedra, we have the following 
property: 

PROPERTY 3.- Every emission set EmitE(Xv) is a convex bounded polyhedron or a 
union of convex bounded polyhedra. 

3. Validity conditions for the existence of affine timings 

We now use the data dependencies information to determine the validity conditions 
on the timing regarding to one dependency associated with a result variable. 



www.manaraa.com

242 

We distinguish two validity conditions : 
• the weak validity condition. It characterizes timings which are valid according to one 
dependency, i.e. timings that only satisfy the causal constraints. 
• the stronger validity condition. It characterizes timings which are not only valid but 
which also remove the broadcast. 

3.1. Weak validity condition and existence of constant affine timings 

PROPERTY 4. Weak validity condition. - An affine timing iJ valid according to a 
given dependency associated with a result variable if and only if it satisfies 

for all the inductive vectors W characterizing this dependency. 

DEMONSTRATION : A causal constraint expresses that the point z depending causally 
on a point z0 must be executed after z, i.e. t(z) > t(z0 ). This is equivalent to 
.\.(z-z0 ) > 0. By definition 6, z-z0 = W. The validity condition is therefore .\.w > 0. 0 

This validity condition can be satisfied or not depending on the respective organization 
of the reception and emission sets. It expresses the existence of affine timings valid 
according to one dependency. Let us now discuss this problem in the context of the only 
efficient timings: the constant ones. 

Let (S) be the affine subspace of equation Pu,v,p(z) = zo. By definition of a reception 
set, RecE(X,, z0 ) is included in (S). Two cases can occur for the corresponding emission 
point z0 ; either z0 belongs to (S) or it does not. Let us study this two cases regarding 
to the existence of constant affine timings. 

3.1.1. zo e (S) 

In this case all th~ corresponding inductive vectors Wxv,zo are colinear and belong 
to the subspace (S). These vectors associated to one point z0 can be organized in 2 
different ways : 

• either they all belong to the same open half-subspace. Therefore we have the 
following property : 

PROPERTY 5.- When an emission point z0 belongs to the subspace (S) of equation 
Pu,v,p(z) = zo and has all its inductive vectors W Xv,zo in the same open half-subspace, 
these vectors define a cone whose origin is zo. It is denoted 0(\lfxv,zo)· 

The existence of a timing for this dependency will depend on the way all the cones 
(for the different emission points zo) are organized. This situation is a particular case 
of the problem discussed in section 3.1.2. 

• or they belong to the whole subspace. In this case the validity condition .\ · W > 0 
can not be satisfied since there exist opposite inductive vectors. This situation does not 
allow any affine timing as stated by the following property. 



www.manaraa.com

243 

PROPERTY 6.- Wh.en an emission point zo belongs to the subspace (S) of equation 
P•,v,p(z) = z0 and is such that its inductive vectors lllx.,zo describe the whole subspace, 
there is no affine timing. 

This situation is characterized by the fact the reception set is divided into 2 disjoints 
subsets. By translating one of them as it is presented on figure 1, we transform the 
problem into the first situation where all the vectors 1l1 Xv,zo belong to the same open 
half-subspace. The existence of a timing will eventually be possible. Such a situation is 
illustrated on the example of the Algebraic Path Problem presented in section 4. 

xxxxxtx 
(x x x x) t ~ Rec (Zo) 

zo 
~X 
xxtxxxx 
X t X X X X X 

Figure 1 : transformation on a reception set when no affine timing ezists 

3.1.2. zo i (S) 

In this case all the inductive vectors 1l1 x. ,zo have the same origin zo and their ex
tremities belong to the union of convex bounded polyhedra RecE(Xv, zo). We therefore 
deduce the following property : 

PROPERTY 7.- Wh.en an emission point z0 does not belong to the subspace of equation 
Pu,v,p(z) = zo the set of inductive vectors lllx.,zo associated with z0 define a cone whose 
origin is Zo. It is denoted C(lllxv,zo)· 

We now consider the union of all these.cones. 

DEFINITION 8.- We call extremal cone C, associated with a dependency on the result 
variable X., the convez hull of the union of all the lll·cones C(lllxv,zo), zoE EmitE(X11 ) 

where p is the parameter size. 



www.manaraa.com

244 

PROPERTY 8. - Consider one dependency on a result variable of a problem character
ized by an eztremal cone Cp . A constant affine timing valid according to this dependency 
ezists if and only if the eztremal cone Cp is strictly included in a half-subspace of Rn. 

DEMONSTRATION : H Cp is strictly included in a half-subspace of nn' then its comple
mentary cone defined by {I-' I {t • 'Ill < 0, VIII E CP } is not empty. Since it contains the 
vectors {t such that {t ·'Ill< 0, any vector A= -{t satisfies A· 'Ill> 0, 'v''lll E Cp. Therefore 
these vectors A define affine timings. Among them, there exist constant ones. Vice versa, 
if CP is not strictly included in a half-subspace of Rn (i.e. its either the half-subspace or 
the whole subspace) its complementary cone is empty and no affine timing exists. 0 

When no constant affine timing exists, domain transformations are necessary. Trans
lations will not solve the problem. We need to apply transformations such as foldings. 
This point is not studied in this paper. We now examine the following question : When 
a constant affine timing does exist, under which conditions does a constant broadcast
removing (abbreviated BR in the following) affine timing exist? 

3.2. Stronger validity condition and existence of constant BR affine timings 

On many parallel architectures, the broadcast of data is not easily or efficiently 
implementable. We may wish to remove such a broadcast. This can be realized by 
restricting the timings to timings which do not allow broadcast. We call such timings 
the Broascast Removing timings (BR timings). They are easily characterized by the 
following property for problems whose reception sets are of dimension 1, i.e. described 
by only one generating vector <ll. In the general case, when the reception sets are of 
dimension greater than 1, a transformation is first necessary to partly remove the 
broadcast. This point is discussed in [MCP 90]. 

PROPERTY 9. Stronger validity condition. - A BR affine timing associated with a 
given dependency characterized by a set of eztremal vectors Wxv,eo:1 and one generating 
vector q, must satisfy 

A· 'llleo:1 > 0 ViE N 

A·<ll:fO 

DEMONSTRATION : Since the extremal cone Cp is characterized by a finite set of 
extremal vectors We.,1 any inductive vector 'Ill is equal to L; a;We.,1 with a; ;::: 0. 
Therefore the condition A · 'Ill > 0, 'v''lll is equivalent to A· 'Ill eo:1 > 0, 'v''lll eo:1 • Moreover 
the generating vector q, directs lines whose points use the same item of X.,. To avoid a 
broadcast, these points must belong to different timing surfaces, i.e. A · q, :f 0. 0 

PROPERTY 10. - Consider one dependency on a result variable of a problem charac
terized by an eztremal cone CP strictly included in a half-subspace of Rn. There ezists a 
constant broadcast-removing affine timing valid according to this dependency if and only 
if limp-oo Cp is strictly included in a half-subspace of Rn. 



www.manaraa.com

245 

DEMONSTRATION : Let us consider the complementary cone Cp of Cp defined by 
Cp = {p I f.' • Ill < 0, Vw E CP } . If limp-+oo CP is no~trictly included in a half-subspace 
of Rn, i.e. if it is the whole half-subspace, limp-+oo Cp is reduced to a half-subspace. Let 
us show that this half-subspace only contains timings creating broadcast. 

Since the extremal cone CP is strictly included in a half-subspace of Rn, by property 8 
there exist constant affine timings. By definition , any reception set is included in a 
subspace of zn. Therefore the set of all vectors v orthogonal to a reception set define a 
subspace of zn. These vectors are characterized by v · g} = 0 for any generating vector 
g} of the reception set. Moreover half of this subspace of vectors v is characterized 
by v · Ill > 0. Therefore these vectors v characterize affine timings. Since they satisfy 
v · g} = 0, these timings create broadcast. Hence we have the following : whenever 
affine timings exist, the half-subspace of broadcast-creating timings defines solutions. 
Therefore if limp-+oo Cp is reduced to a half-subspace, this subspace is necessarily the set 
of the broadcast-creating timings. In this case there is no broadcast-removing timings. 

Vice-versa, if limp-+oo Cp is strictly included in a half-subspace, limp-+oo Cp is not reduced 
to the half-subspace of broadcast-creating timings. Therefore in this case, there exist 
constant broadcast-removing timings in the cone limp-+oo Cp . D 

REMARK : When the extremal cone CP is strictly included in a half-subspace of Rn, 
it is characterized by a finite set of extremal vectors Ill Xv,ez;, i E N. Hence property 8 
can be expressed by the following : there exists a constant broadcast-removing affine 
timing valid according to this depen~cy if and only if every ~r of extremal vectors 
(lllezu Wez2 ) is such that limp-+oo Wezu Wez 2 < 180° where Wezu Wez 2 denotes the angle 
of the two vectors. 

When no constant BR affine timing exists, it is because the position of the emission set 
regarding to the reception set yields to a too wide extremal cone when the parameter 
size p increases. We can reduce this width by changing the relative positions of the 
emission and reception sets. This is realized by applying a transformation such as a 
translation directed by the generating vector on part of the reception set. An example 
of such a situation is presented on figure 2. This problem of non existence of a constant 
BR affine timing also occurs in the Algebraic Path Problem presented in section 4. 

4. Example: the Algebraic Path Problem 

Let us consider a weighted oriented graph G = (V, E, w) where V is a finite set of n 
vertices, E is the set of edges and w is a function which associates a weight with each 
edge. These weights are defined in ann X n matrix A associated with G. A= (a;;) is 
defined by a;; = w(i,j) if (i,j) E E, a;;= 0 otherwise. 

The Algebraic Path Problem (APP) consists in finding, for all pairs of vertices (i,j), 
the quantities d;; = EllpEM;i w(p) where M;; denotes the set of all paths from i to j. The 
weight of a path p EM;; is defined by w(p) = ®eepw(e). 



www.manaraa.com

246 

r (1,-p) 
X X X X 

ti:J:J: 2 

""'\\:\\ 
X X X X 

( l,p) 

• X X X X 

2 
2 

X X X X 

• 
Figure 2 : tran:Jjormation on a reception set when no constant BR affine timing exists 

We denote M&k) the set of all paths from i to j whose only intermediate vertices v 

are such that 1 :5 v :5 k. When computing the recurrence a~~) = EBpEMf; w(p ), we obtain 

d;j = alj). The problem is defined by the following system of recurrence equations : 

(1) 
(2) 
(3) 
(4) 

a(k,k,k) 
a(i,j,k) 
a(i,j, k) 
a(i,j,k) 

=a(k,k,k-1) 1:5k:5n 
= a(i,j, k -1) ® a(k,j, k) 1 :5 i, k :5 n, i ::f k, j = k 
= a( i, j, k - 1) ® a( i, k, k) 1 :5 j, k :5 n, j ::f k, i = k 
= a(i,j, k -1) EB a(i, k, k) l8l a(k,j, k -1) 

1:5 i,j,k :5 n, i ::f k,j ::f k 

This problem is characterized by 4 subdomains respectively associated with the 4 
equations: 

D1 = {(k,k,k) E Z3 l1 :5 k :5 n} 

D2 = {(i,k,k) E Z3 l1 :5 i,k :5 n, i ::f k} 

Da = {(k,j,k) E Z3 l1 :5j,k :5 n,j ::f k} 

D4 = {(i,j, k) E Z3 11 :5 i,j, k :5 n, i ::f k, j ::f k} 



www.manaraa.com

247 

Notice that D 1 is a convex domain while D 2 and D3 are the union of 2 convex disjoints 
subsets and D 4 the union of 4 subsets. They are presented on figure 3. 

k 

/ D 
I 

;/ D 
2 

'}l%b. D 

' 

rest of the cube D • 

Figure 9 : domain of the Algebraic Path problem 

On all four domains, we have the same dependency expressed by a constant inductive 
vector W 1 = (0, 0, 1 ). For each emission point zo = ( i0 , io, k0 ) the corresponding 
reception set is reduced to one point z = ( io, io, ko + 1 ). Its generating vector is therefore 
the null vector. 

On D2 the use of a(k,j,k) determines a reception set Rec(2) (a,z0 ) = {(i,k0 ,k0 ) I 
1 ::; i ::; n, i =/= ko} characterized by one generating vector <.P(2) = (1, 0, 0) and a set of 
inductive vectors w(2)(zo) = (i- ko,O,O) with 1::; i::; n,i =/= k0 • The emission set is 
Emit(2) = {(ko, ko, ko) 11 ::; ko ::; n} = D1. 

On Da the use of a(i,k,k) determines a reception set Rec(a) (a,zo) = {(k0 ,j,k0 ) I 
1 ::; j ::; n, j =/= k0 } characterized by one generating vector <.P(a) = (0, 1, 0) and a set of 
inductive vectors W (a)( zo) = (0, j - ko, 0) with 1 ::; j ::; n, j =/= ko. The emission set is 
Emit(a)={(ko,ko,ko)l1::; ko::; n}=D1. 

On D4 the use of a(i,k,k) determines a reception set Rec(4),1 (a,z0 ) = {(i0 ,j,ko) I 
1 ::; j ::; n, j =/= ko} characterized by one generating vector <.P(4),1 = (0, 1, 0) and a set of 
inductive vectors w(4),1(zo) = (O,j- ko, 0) with 1 ::; j::; n,j =/= k0 • The emission set is 
Emit(4),1 = {(io, ko, ko) 11 ::; io, ko ::; n, io =/= ko} = D2. 

Finally on D4 too, the use of a(k,j, k-1) determines a reception set Rec(4),2 (a, z0 ) = 
{(i,jo,io) 11::; i::; n, i =/= io} characterized by one generating vector <.P(4),2 = (1,0,0) 



www.manaraa.com

248 

and a set of inductive vectors 'l'(4),2(z0 ) = (i- io,0,1) with 1:::; i $ n,i f. i0 • The 
emission set is Emit(4),2 = {(io,io, io -1) 11 $ io,io $ n, io f. io}. 

The 3 dependencies defined by '11(2), W(a) and 'l1(4),l are characterized by the fact that 
their inductive and generating vectors are colinear. Moreover their inductive vectors 
define a line, i.e. there are opposite inductive vectors such as W (2) ( n, n, n) = (1- n, 0, 0) 
for z = (1,n,n) and 'l1(2)(1,1,1) = (n- 1,0,0) for z = (n,1,1). This situation 
corresponds to case 3.1.1 mentioned above and forbids any affine timing. Translations 
on the respective domains are necessary to transform the sets of inductive vectors into 
cones strictly included into a half-line and therefore allow eventually a timing. These 
translations are presented on figure 4. 

L ______ _ 
II 
II 

I I 
I I 

I I 
I I ,. __ \.. __ _ 

I I 
I I 
I I 
I 
I 
I 
I 
I 
I 

I 
I 
I I 
I I 
II 

---------~1 

D 
I 

D 
2 

D 
> 

restofthec:ube D • 

Figure 4 :first transformation on the domain of the APP 

The last dependency defined by '11(4),2 is characterized by a cone of inductive vectors 
associated witheachemissionpoint zo: C(w(4),2,z0 ) = {(i-i0 ,0,1) 11:::; i:::; n,i f. i0 }. 

The extremal cone CP, convex hull of the cones C('l1(4),2, z0 ), zo E Emit(4),2 is 
strictly included in a half-subspace of R3 and characterized by 2 extremal vectors 
'l1 e:r: 1 = (1- n, 0, 1) and W e:~: 2 = ( n -1, 0, 1 ). By property 8 there exists a constant affine 
timing for this dependency. However limn-+oo W ex~ e:r: 2 = 180° and by property 10 
there is no constant BR affine timing. When applying a translation on domain D4 as it 
is presented on figure 5, the angle We:~:~e:r: 2 is reduced to less than 45° and a constant 
BR affine timing now exists for this dependency. 



www.manaraa.com

249 

I< 

-----------8----------~ 

II 
II 

I I 

II 
I I 

I I 
I I 

II 
I I 

I I 

I 
I 

I I 
II 

I I 
I I I 
I I I I 
I I I I 
I I II 

. ~ u 
----------~-----------

,/ 

cJ 
-of lbo c:ubo 

Figure 5: second transformation on the domain of the APP 

o, 

D • 

D , 

D • 

After all the transformations mentioned above, the dependencies are now expressed 
by: 

Wt = (0,0, 1) 

W(2)(zo)=(i-ko,O,O) fur ko+1~i~n+ko 

W(3)(zo) = (O,j- ko, 0) fur ko + 1 ~ j ~ n + ko 

W(4),1(zo) = (O,j- ko, 0) for ko + 1 ~ j ~ n + ko 

W(4),2(zo) = (i- io,O, 1) fur io + 1 ~ i ~ n + io 

The extremal vectors are then 

W(2),ex1 = (1, 0, 0) 

W(a),ex1 = (0, 1, 0) 

W(4),1,ex1 = (0, 1, 0) 

W(4),2,ex1 = (1,0, 1) 

W(2),ex2 = (n, 0, 0) 

W(3),ex2 = (0, n, 0) 

w (4),1,ex2 = (0, n, 0) 

W(4),2,ex2 = (n,O, 1) 

The successive examination of each dependency has yield to some transformations of the 
problem. The existence of a global affine timing can now be tackled with the new values 
of the inductive vectors. Using these vectors, any affine timing >. = (>.1, >.2, .\a) must 
then verify >.~, >.2, >.a > 0. Since the generating vectors are 4.>(2) = 4.>(4),2 = (1, 0, 0) and 
4.>(3) = 4.>(4),1 = (0, 1, 0), all the affine timing are broadcast removing timings. The most 



www.manaraa.com

250 

efficient affine timing is then defined by A = (1, 1, 1). The corresponding computation 
time is 5n - 4. The initial specification of the APP did not allow any affine timing. The 
appropriate transformations on the different dependencies now yield to affine timings. 

Conclusion 

We have presented a geometrical framework to analyze the existence of affine timing 
functions for a given SARE. Using a dependency analysis in terms of generating 
and inductive vectors, we express conditions for the existence of affine timings valid 
according to one dependency. We characterize different validity conditions : the weak 
condition and the broadcast-removing condition. We emphasize the notions of constant 
and broadcast-removing timings. When these conditions are not satisfied by an ill
conditioned dependency, transformations are proposed in order to get an affine timing 
valid according to this dependency. Notice that there is not a Wlique transformation 
(for example the translation on figure 2 can be applied either on set 1 or on set 2). The 
different possibilities should be tried to give the largest chances to find an affine timing 
for the whole problem since they are not necessarily all compatible. 

The process presented here is a step-by-step method. It does not guaranty the 
existence of an affine timing for the whole problem which is not possible since the 
computability of such parameterized SAREs has been proved Wldecidable ([SAQ 90]). 

However it is very fruitful in practice where the initial SAREs of many problems often 
present ill-conditioned dependencies. The results presented here allow to determine a 
new specification of these problems without any ill-conditioned dependencies. These 
results have been illustrated on the example of the Algebraic Path Problem. 

Bibliography 

[BE-all89] BENAINI A., QUINTON P., ROBERT Y., SAOUTER Y., TOURANCHEAU B. -
Synthesis of a new Systolic Architecture for the Algebraic Path Problem, 
IRISA Research Report,No1094, 1989. 

[CLP 88] CLAUSS Ph., PERRIN G.R.- Synthesis of Process Arrays, CONPAR'88, 
Manchester, G.B., 1988. 

[DEI 85] DELOSME J.M., IPSEN I.C.F.- An Illustration of a Methodology for the 
Construction of Efficient Systolic Architectures in VLSI, Sd. Int. Symposium 
on VSLI Technology, Systems and Applications, Th.ipei, Th.iwan, R.O.C., 
1985, p. 268-273. 

[DEL 88] DELOSME J .M. - A Parallel Algorithm for the Algebraic Path Problem, Int. 
Workshop on Parallel and Distributed Algorithms, M. Cosnard et al. editors, 
North-Holland, 1988. 



www.manaraa.com

251 

[FFW 87) FoRTES J.A.B., Fu K.S., WAH B.W.- Systematic Approaches to the Design 
of Algorithmically Specified Systolic Arrays, Int. Conf. on Acoustics, Speech 
and Signal Processing, 1987. 

[KMW 67) KARP R.M., MILLER R.E., WINOGRAD S.-The Organization of Computations 
for Uniform Recurrence Equations, JACM, t. 14,3, 1967. 

[KUN 82) KuNGH.T.- Why systolic architectures?, Computer, t.15-1, 1982,p.37-46. 

[MCP 90) MoNGENETC.,CLAussPh.,PERRING.R.-GeometricalToolstomapSystems 
of Affine Recurrence Equations on Regular Arrays, Research Report, LIB, 
Universite de .Franche-Comte, 1990. 

[MCP 91) MoNGENET C., CLAUSS Ph., PERRIN G.R.- A Geometrical Cding to Compile 
Affine Recurrence Equations on Regular Arrays, Fifth Int. Parallel Processing 
Symposium, Anaheim, California, 1991. 

[MOF 86) MoLDOVAN D.l., FoRTES J.A.B.- Partitioning and Mapping Algorithms 
into Fixed Size Systolic Arrays, IEEE 'lransactions on Computers, t. 35-1, 
1986, p. 1-12. 

[MOL 83) MoLDOVAN D.l.- On the Design of Algorithms for VLSI Systolic Arrays, 
Proc IEEE con£, t. 71-1, 1983, p. 113--120. 

[MON 85) MoNGENET C.- Une Methode de Conception d'Algorithmes Systoliques, 
Resultats Theoriques et realisation, These INPL, Nancy, 1985. 

[MOP 87) MoNGENET C., PERRIN G.R.- Synthesis of Systolic Arrays for Inductive 
Problems, Conf. PARLE, LNCS 259, 1987. 

[QUI 84) QUINTON P.- Automatic Synthesis of Systolic Arrays from Uniform Recur
rence Equations, Proc. IEEE 11th Int. Symp. on Computer Architecture,Ann 
Arbor,MI, USA, 1984, p. 208-214. 

[QVD 89) QuiNTON P., VAN DONGEN V.-The Mapping of Linear Recurrence Equations 
on Regular Arrays, TheJournalofVLSISignalProcessing, t.1, 1989,p. 95-113. 

[ROT 87) RoBERT Y ., TRY STRAM D.- Systolic Solution of the Algebraic Problem, Int. 
Workshop on Systolic Arrays, Oxford, Adam-Hilger, 1987, p. 171-180. 

[SAQ 90) SAOUTER Y., QUINTON P. - Computability of Recurrence Equations, 
TR-1203, IRISA, Rennes, 1990. 

[YAC 88) YAACOBI Y., CAPPELLO P.R.- Scheduling a System of Affine Recurrence 
Equations onto a Systolic Array, Int. Conf. on Systolic Arrays, San Diego, 
USA, 1988, p. 373--382. 



www.manaraa.com

On the Computational Complexity of Optimal Sorting 

Network Verification 

Ian Parberry* 

Department of Computer Science 

The Pennsylvania State University 

Abstract 

A sorting network is a. combinational circuit for sorting, constructed from comparison

swap units. The depth of such a. circuit is a. measure of its running time. It is reasonable to 

hypothesize that only the fastest (that is, the shallowest) networks are likely to be fabricated. 

It is shown that the problem of verifying that a. given sorting network actually sorts is Co-NP 

complete even for sorting networks of depth only 4[lognl + 0(1) greater than optimal. This 

is shallower than previous depth bounds by a factor of two. 

1 Introduction 

A comparator network is a. combinational circuit constructed from comparison-swap units called 

comparators. A sorting network is a. comparator network which sorts. The size of a. comparator 

network is the number of comparators used. The depth is the number of layers of comparators, where 

each layer receives input only from the layers above it. Comparator networks can be fabricated 

relatively easily using VLSI techniques. It would be useful to be able to verify whether a. given 

sorting network actually works. It is well known that in order to test whether a given n-input 

comparator network is a sorting network, it is sufficient to check that it sorts the 2" - n - 1 

nonsorted zero-one inputs (which we will call bit-strings). This observation is called the zero-one 

principle. 

Comparator networks which sort all but a single nonsorted bit-string are known. That is, for 

all nonsorted sequences of n bits x, there exists an n-input comparator network which sorts all 

•Research supported by NSF Grant CCR.-8801659. Author's current address: Department or Computer 
Sciences, P.O. Box 13886, University or North Texas, Denton, TX. 76203-3886, U.S.A. Electronic mail: 
ian~dept.csci.unt.edu. 



www.manaraa.com

253 

bit-strings except :1:. These are called single exception sorting networks. Chung and Ravikumar [5) 

give a recursive construction of an n-input single exception sorting network of polynomial size 

and depth. They further deduce in [6) that the sorting network verification problem is Co-NP 

complete. Parberry [16) gave a non-recursive construction for a single exception sorting network 

of depth D(n -1) + 2flog(n- 1)1 + 2, where D(n) is the minimum depth of ann-input sorting 

network, and deduced, using the construction of Chung and Ravikumar [6), that the problem of 

verifying sorting networks of depth 2D(n) + 6flognl + 0(1) is Co-NP complete. We will show 

that the sorting network verification problem remains Co-NP complete even for sorting networks 

of depth D(n) + 4flognl + 0(1). 

The remainder of this paper is divided into six sections. The first section contains a more formal 

definition of a sorting network, and briefly describes some standard results. The second section 

contains a proof that a modified version of the satisfiability problem is NP complete. The third 

section contains a sketch of the reduction from that problem to the sorting network verification 

problem. The fourth section contains the details of the construction of an important component 

used in that reduction - a comparator network that sorts all except a specific set of inputs. The 

construction of this component uses the single exception sorting network of Parberry [16). A slightly 

improved single exception sorting network is given in the fifth section of this paper. The sixth section 

contains details on how to reduce the depth of the construction to give the required result. 

Let N denote the natural numbers, and B denote the Boolean set {0, 1}. MembersofB" (the set 

of n-tuples of bits) will be called bit-strings. We will use the standard regular-expression notation 

to describe certain sets of bit-strings, for example, 0"1 m denotes a single bit-string consisting of n 

ones followed by m zeros, and (00 U 11 )" denotes the set of n pairs of bits, where each pair is either 

00 or 11, that is, 

{:!:IYI···x,.y,. I :1:; = Yi E B for 1 :5 i :5 n}. 

If A and B a.re sets, A\B denotes {z I z E A, but z (/. B}. 

2 Sorting Networks 

One of the early investigations into parallel sorting concerned the Bose-Nelson sorting problem, 

named by Floyd and Knuth [9), after Bose and Nelson [4). The problem involves sorting n values 

by using a. sequence of oblivious in-situ comparison-and-swap operations; that is, a sequence of 

comparisons between the ith and jth value, where i and j are independent of the values being 

sorted. The obliviousness property allows the following elegant hardware interpretation of the 

problem. Suppose that we are given a basic unit of hardware called a compamtor. A comparator 



www.manaraa.com

254 

Figure 1: A 4-input sorting network of depth 3 and size 5. 

takes two values as input and outputs them in ascending order. A comparator network consists 

of n parallel channels, which can be thought of as wires carrying values, to which comparators 

are attached. The network is divided into a finite number of levels. Each level consists of one 

or more comparators. Each comparator is attached to two channels. At most one comparator is 

placed on any channel at each level. Channels, in our diagrams, will be drawn as vertical lines, 

and comparators as horizontal lines with heavy dots emphasizing the connection-points. Levels are 

numbered vertically from top-to-bottom, and channels are numbered horizontally from left-to-right. 

Level 0 will be used to denote the inputs. 

Let C be a comparator network. We define the value carried by channel i of C at level j on 

input :r: = (:r:1,. •• ,:r:n), written V(C,:r:,i,j), as follows. V(C,:r:,i,O) = :r:; and for j > 0: 

• If there is a comparator between channels i and k > i at level j, then 

V(C,:r:,i,j) = min(V(C,x,i,j -1), V(C,:r:,k,j -1)). 

• If there is a comparator between channels i and k < i at level j, then 

V(C,x,i,j) = max(V(C,x,i,j -1), V(C,x,k,j -1)). 

• Otherwise, V(C,x,i,j) = V(C,x,i,j -1). 

The output of an n-input, d-level comparator network C on input x is 

V(C,x) = (V(C,z,1,d), V(C,x,2,d), ... , V(C,z,n,d)). 

If for all inputs x, V(C,x) is in nondecreasing order from left to right, then Cis called a sorting 

network. 

For example, Figure 1 shows a 4-input sorting network. The comparators on the first level com

pare the values in pairs. The second layer of comparators determines the maximum and minimum 



www.manaraa.com

255 

values: the minimum of the two minima is the minimum overall, and the maximum of the two 

maxima is the maximum overall. The third layer puts the remaining two values into the correct 

order. 

Each level of a comparator network consists of a set of independent comparisons which may be 

performed in parallel. The number of levels is thus a reasonable measure of parallel time. This is 

called the depth of the network. Another resource of interest is its size, which is defined to be the 

number of comparators used. We will call an n-input sorting network optimal if it is "P-uniform 

(that is, there is an algorithm which outputs a description of the sorting network, on input n, in 

time polynomial inn), and has depth O(logn). Optimal sorting networks have size O(nlogn). 

There have been a number of recent results on optimal sorting networks. For a survey of some 

of these results, see Parberry [13, 14). Sorting networks of optimal depth are known for n $ 10 

(Parberry [15)) and with optimal size for n $ 8 (Knuth [11)). For all practical purposes, the best 

sorting networks are constructed using the recursive technique of Batcher (3], which gives depth 

O(log2 n) and size 0( n log2 n ), although some small imp)."ovement in the lower-order terms of the size 

have been made by Drysdale [7] and Van Voorhis [19] in exchange for a large increase in depth. Ajtai, 

Koml6s and Szemeredi [1, 2) have demonstrated that asymptotically optimal (logarithmic depth and 

log-linear size) sorting networks can be constructed; however their method remains impractical for 

reasonable values of n despite the efforts of Paterson [17], since the constant multiples involved are 

extremely large. 

We will make use of two standard results. Firstly, if we allow channels to be permuted obliviously 

between each layer, then the model is the same, in the sense that we can remove the permutations in 

polynomial time in a manner that affects neither the size of the network, the depth of the network, 

nor its ability to sort. This result is due to Floyd and Knuth [8]. Therefore, the sorting network 

verification problems with and without permutations allowed are polynomial-time equivalent. The 

inclusion of such permutations will simplify the presentation of our results since it will allow us 

to physically group together logically related channels. The second standard result is the zero-one 

principle, which states that a comparator network is a sorting network iff it sorts all bit-strings. In 

the light of this result, we will throughout this paper consider only zero-one inputs. These results 

are discussed at great length in Knuth [11], and Parberry [13, 16, 14]. We assume that the reader 

is familiar with the techniques and terminology of the theory of N"P completeness. The reader who 

is not should consult a standard reference, such as Garey and Johnson [10]. 

More formally, the sorting network verification problem can be stated as a decision problem as 

follows: 



www.manaraa.com

256 

Sorting Network Verification (NONSORT} 

INSTANCE: A comparator network C. 

QUESTION: Is there an input which C does not sort? 

The number of comparators in C is a reasonable measure of input size for any sorting network 

verification program. Furthermore, the number of inputs to C is a valid measure of input size for 

any program which verifies optimal sorting networks. Clearly NONSORT E N'P, since if we are 

given a comparator network C and an input x, the output of C on x can be determined in time 

polynomial in the number of comparators in C. It remains to show that NONSORT is N'P hard. 

This will imply that the original sorting network verification problem is Co-N'P complete. 

3 One-in-Three 3SAT 

The following set-theoretic problem was shown to be N'P complete by Schaefer (18]. 

One-in-Three 3SAT (T3SAT} 

INSTANCE: Sets S~o ... , Sn with IS; I ~ 3 for 1 ~ i ~ n. 

QUESTION: Does there exist a setS such that IS n S;l = 1 for 1 ~ i ~ n? 

Garey and Johnson [10]list Schaefer's result in a slightly different form which more clearly illustrates 

that it is a restricted case of the Satisfiability Problem. Define a clause over a set V to be a subset 

of V XV XV. A setS!;;;; Vis said to satisfy a clause (v~o v2, v3) iff l{i I v; E 8}1 = 1. If Cis a list 

of clauses over V, then S ~Vis said to be a satisfying assignment for C iff S satisfies all clauses in 

C. Intuitively, the elements of V are variables, and S is a set of variables to be assigned the value 

true. A clause represents a ternary Boolean function which is true iff exactly one of its inputs is 

true. A list of clauses represents the conjunction of a list of these functions. 

Modified One-in-Three 3SAT (M3SAT} 

INSTANCE: A list of clauses Cover a set V. 

QUESTION: Is there a satisfying assignment for C? 

Lemma 3.1 MSSAT is N'P complete. 

PROOF: Obviously, M3SAT E ./V'P. It is easy to show that T3SAT ~!:, M3SAT. D 

We will find it useful to consider a restricted version of M3SAT. 



www.manaraa.com

257 

Balanced One-in-Three 3SAT (B3SAT) 

INSTANCE: A set of variables V and a list of clauses C over V in which every variable 

appears exactly three times. 

QUESTION: Is there a satisfying assignment for C? 

Note that each instance of B3SAT with n clauses must have n variables. (Since there are n clauses, 

there are 3n instances of variables. Since every variable has exactly 3 instances, there must be n 

variables.) Also, every satisfiable instance of B3SAT with n clauses must have n divisible by 3. 

(Let V be a variable-set, and C = ( Ch ... , On) be a list of clauses over V. Suppose S ~ V, where 

lSI = m. Then C contains 3m instances of variables that are members of S. But if S is a satisfying 

assignment, since there are n clauses, each of which must contain exactly one instance of a variable 

inS, there must ben instances of variables that are members of S. Therefore n =3m.) 

Theorem 3.2 B9SAT is N'P complete. 

PROOF: Clearly B3SAT E N'P. By Lemma 3.1, it suffices to show that M3SAT ~l:. B3SAT. 

Suppose 0 1, ••• , Cn is an instance of M3SAT over variable-set V. The corresponding instance 

of B3SAT is constructed as follows. For every clause C;, there are three new clauses (a;,1 , a;,2, a;,3), 

(b;,t, b;,2, b;,s), (c;,t, Ci,2, c;,s) called structural enforcers. For each variable v E V, let 

X.,= {a;.;,b;.;,c;,; I vis the jth variable inC;}. 

Suppose 

for some m 5 n. Define 

If k = 1, define E., = I.,, otherwise define 

For each (p,q,r) E 1., and each (p,q,r) E E., there are three clauses (p,x,y), (q,x,y), and (r,x,y), 

called equality enforcers, where :1: and y are new variables not previously used. It is clear that this 

transformation can be computed in time polynomial in n. 

The new instance of M3SAT consisting of the structural enforcers and the equality enforcers 

is actually an instance of B3SAT, that is, that every variable appears in exactly three clauses. 



www.manaraa.com

258 

Figure 2: A variable component. 

Each of the a;,;, b;,;, and c;,; variables occurs in exactly one structural enforcer, and two equality 

enforcers (one corresponding to an element of I., and one corresponding to an element of E., for 

some variable v). The extra variables in the equality enforcers also appear in exactly three clauses, 

by construction. 

We claim that C~, . .. , Cn is satisfiable iff there is a satisfying assignment for the structural 

enforcers and the equality enforcers. Clearly if S is a satisfying assignment for C~, . .. , Cn, then 

U.esXv satisfies every structural enforcer and every equality enforcer. Conversely, suppose that S 

satisfies the structural enforcers and equality enforcers. Since the equality enforcers corresponding 

to members of I. are satisfied by S, then for all variables v E V, either X. n S = {} or X. ~ S. 

Thus if we set T = { v I x. ~ S}' then T satisfies c~, ... 'Cn. 0 

4 The Reduction 

In order to show that NONSORT is N'P complete, it is sufficient to show that B3SAT ~:;. 

NONSORT. Suppose we are given an instance of B3SAT, that is, a list of clauses C = (Ch ... , Cn) 

over a set of variables V = { v1, ••• , Vn} such that every variable in V appears exactly three times 

in C. We will construct a comparator network with 5n inputs. An input x = ( x~, . .. , Xsn) to the 

comparator network is said to correspond to assignment S for C iff for alll ~ i ~ n, x E (05 U 15)n, 

and v; E S iff Xsi-4 = 1. Our comparator network will sort only inputs that do not correspond to 

satisfying assignments for C, that is, inputs that do not correspond to any assignment, and inputs 

that correspond to nonsatisfying assignments. Therefore, it will be a sorting network iff C is not 

satisfiable. 

For each variable v E V, we have a variable component, consisting of five channels and six com

parators, of depth three (see Figure 2). For each clause C; we have a clause component, consisting 

of three channels and three comparators, of depth three (see Figure 3). These components are 

connected as follows. 



www.manaraa.com

259 

Figure 3: A clause component. 

The 5n inputs are divided into quintuples and put into n variable components, one for each 

variable. The center three outputs of each variable component are put into the inputs of the 

appropriate clause components. Specifically, suppose C; = (v;,J, v;,2, v;,3), for 1 $ i $ n where 

v;,J, v;,2, v;,3 E V. Let c(i,j) denote the number of previous occurrences of v;,; inC~, ... , C;, that is, 

c(i,j) = l{vk,rl k < i or (k= i and l <i)}l+1, for 1$ i $ n, 1 $j $3. Note that 0$ c(i,j) $2. 

Then for each clause C; = (v;,t, v;,2,Vi,3), put the (c(i, k) + 2)th output of the variable component 

corresponding to v;,k into the kth input of the clause component corresponding to C;, for 1 $ k $ 3. 

The first two outputs of the clause components are routed to the far right, and the last output 

of the clause components is routed to the far left. All of the channels are then put into a special 

component called a selector, which will sort every input except those which correspond to satisfying 

assignments. 

The centre three outputs of a variable component corresponding to variable v E V are copies of 

variable v which are to be used in the clauses in which v appears. It can be demonstrated (by case 

analysis of the 32 different input strings) that if the first and last outputs of a variable component 

are zero, then all outputs are zero, and if the first and last outputs of a variable component are one, 

then all outputs are one. Thus the centre three outputs of a variable component carry a valid truth 

assignment for the variable v if the first and last output of the variable component are identical. 

The output of a clause component is 001 iff exactly one of its input channels carries a one (since 

each clause component is actually a three-input sorting network). 

Suppose the input to the comparator network corresponds to a satisfying assignment S. Since 

there is exactly one variable from each clause in S, the first n inputs to the selector will be one, 

and the last 2n inputs to the selector will be zero. The remaining 2n inputs will consist of n pairs, 

each of which is either 00 or 11. Since variable appears in exactly three clauses, S must contain n/3 

variables. Therefore 2n/3 pairs will be 00, and n/3 pairs will be 11. That is, the input to the selector 

will be a member of the set 1 n(B~~/3 n (00 U 11 )n )02n, where Bi: = { x E Bn I x has exactly k ones}. 

Conversely, if the input to the comparator network does not correspond to satisfying assignment, 

then it is clear that the input to the selector will not be of this form. The above reduction can be 

carried out in time polynomial in n provided there exist 'P-uniform selectors. The construction of 



www.manaraa.com

260 

(X,y) -selector 

Exception- y 
sorting network 

Figure 4: An exception-X sorting network. 

the selector is the subject of the next section. 

5 Selective Sorting Networks 

The selector used in the previous section was a comparator network which selectively sorts all 

bit-strings except for members of a certain, slightly obscure set. We use the generic term selective 

sorting network for such a comparator network. If the comparator network sorts all members of 

B"\X, than it is called an exception-X sorting network. 

Comparator networks which sort all but a single bit-string are known. That is, for all nonsorted 

x E B", there exists an n-input comparator network which sorts all members of B" except x. These 

are called single exception sorting networks. Chung and Ravikumar [5] give a recursive construction 

of an n-input single exception sorting network of polynomial size and depth. Parberry (16] gives a 

non-recursive construction for a single exception sorting network of depth D( n-1 )+2 flog ( n-1 )1 + 2, 

where D(n) is the minimum depth of an optimal n-input sorting network. We wish to find a 

particular selective sorting network with 5n inputs, where n is a multiple of three, and an exception 

set of size 

If X ~ B", andy E B" is nonsorted, a comparator network Cis an (X,y)-selector iff for all 

x E B", the output of Con input xis y iff x EX. 

Theorem 5.1 If X~ B", and there exists an (X, y)-selector of depth Dx(n), then there exists an 

exception-X sorting network of depth Dx(n) + D(n) + 2flog nl + 2. 

PROOF: Suppose X~ B", and there exists a comparator network C of depth Dx(n) and nonsorted 



www.manaraa.com

261 

2n 2n 

4n/3 2n/3 

Figure 5: An X-selector. 

b c 

e f g 

Figure 6: An X-selector labelled for the proof of Theorem 5.2. 

y E Bn such that for all x E Bn, the output of G on input xis y iff x EX. Then an exception-X 

sorting network is constructed by composing G and an exception-y sorting network as in Figure 4. 

The total depth is bounded above by the depth of G plus the depth of the exception-y sorting 

network. Parberry [16] gives a construction for exception-y sorting networks for all nonsorted y of 

depth D(n) + 2[1ognl + 2. D 

The exception-set from the previous section is the set of bit-strings of the following form: n 

ones, followed by n pairs of bits, 2n/3 of which are 00 and n/3 of which are 11, followed by 2n 

zeros. That is, 

Theorem 5.2 Suppose n E N, and X = ln(B~~/3 n (00 U ll)n)o2n. There exists an exception-X 

sorting network of depth D(n) + D(5n) + 2[1og(5n)l + 3. 

PROOF: Let X= ln(Bi:13 n (00 U ll)n)o2n ~ B~:/3" By Theorem 5.1, we can build an exception-



www.manaraa.com

262 

Figure 7: A pair comparator. 

>- - >-1-

- - 1- '--

1- :---
>-1-

Figure 8: A 4-pair sorter constructed from Figure 1. 

X sorting network from an (X,y)-selector. An (X,y)-selector withy = 1n04"/312nf302" can be 

constructed as in Figure 5, by leaving the first n and the last 2n channels alone, and placing a 

2n-input pair sorter on the remaining 2n channels. A pair sorter is a comparator network which 

has an even number of inputs. The inputs are treated as bit-pairs. Each bit-pair is sorted, and the 

sorted bit-pairs are then sorted into lexicographic order, that is, the output of the pair sorter is a 

member of (00)*(01)*(11)*. We will return to the construction of the pair sorter later in this proof. 

Suppose the input to the network shown in Figure 5 is abc E B~~13 , where a E B", b, c E B2", 

and its output is defg E B~~13 , where dEB", e E B4"13, f E B 2"13 , and g E B2" (see Figure 6). 

We claim that defg = 1"04"1312"1302" iff abc EX. Suppose abc EX. then bE B~~/3 n (00 U 11)". 

Since bE (00 U 11)", the output of the pair sorter, ef, is a sorted sequence of bits. Since bE B~~13, 

ef = 04"1312"13 • Therefore, since d =a and g = c, defg = 1"04"1312"1302", as claimed. Conversely, 

suppose that abc rf. X. We claim that defg =/= 1"04"1312"1302", that is, either d =/= 1", e =/= 04"13 , 

f =/= 12"/3, or g =/= 02". Since abc rf. X, either a=/= 1", (in which case there is a zero in d), c =/= 02", 

(in which case there is a one in g), or b rf. B~~/3 n (00 U 11)". In the latter case, suppose bE B~. 

If m = 2n/3, then b rf. (00 U 11)", and so there is a one in e. If m < 2n/3, then there is a zero in f. 

If m > 2n/3, then there is a one in e. In all cases, defg =/= 1"04"/3 12"1302", as claimed. 

It is clear that the depth of our 5n-input (X,y)-selector is equal to the depth of a 2n-input 



www.manaraa.com

263 

pair sorter. This pair-sorter is constructed as follows. The pairs are sorted with a single layer of 

comparators, one per pair. A pair of pairs can be sorted into lexicographic order by comparing 

the first element of the first pair with the first element of the second pair, and simultaneously 

comparing the second element of the first pair with the second element of the second pair (see 

Figure 7). Therefore n pairs can be sorted into lexicographic using a. comparator network obtained 

from an n-input sorting network by doubling all the channels, and replacing every comparator with 

a. pair-comparator (for example, see Figure 8). Thus the depth of the pair sorter is D(n) + 1. 

Therefore by Theorem 5.1, the depth of our 15n-input exception-X sorting network is D(n) + 
D(5n) + 2flog(5n)l + 3. 0 

Theorem 5.3 NONSORT is .N'P complete even for n-input sorting networks of depth 2D(n) + 

2flognl +9. 

PROOF: The reduction is as described in Section 4, using the selector from Theorem 5.2. The 

depth of an n-input comparator network constructed using this technique is bounded above by 3 

for the variable components, plus 3 for the clause components, plus 2D( n) + 2 flog n l + 3 for the 

selector, a. total of 2D(n) + 2flognl + 9. 0 

6 Improved Single Exception Sorting Networks 

In the construction of the selector in the previous section, we used the single exception sorting 

network from Parberry (16], which has depth D(n -1) +2flog(n -1)1 + 2. It is possible to improve 

that result by a. small constant. Suppose n E N, and 1 ::; k < n. A better single exception sorting 

network with exception 1"on-l: is constructed as follows (see Figure 9). In (16], a. single exception 

sorting network with this exception is called a. canonical k-ones single exception sorting network. 

The first k inputs are put into a. min network. The leftmost output of this network is the minimum 

of its inputs. The last k - 1 outputs of this network, and the remaining n - k channels are sorted 

together. The leftmost channel, and the leftmost n- k- 1 outputs of the sorting network are 

put into an insertion network. This network takes as input a single value followed by a. sorted 

sequence, and it inserts the new value into the correct place in the sequence. It is straightforward 

to recursively construct n-input min and insertion networks of depth flog n l· 

It is easy to see that this construction gives a. single exception sorting network. Suppose the 

input to the network is 1"0"-". Then the leftmost output of the min network is 1, and the output 

of the sorting network is on-1:1 l:-1 ' and hence the output of the insertion network is on-l:-1101"-1 ' 



www.manaraa.com

264 

n-k 
~ 

Figure 9: A single exception sorting network. 

which is not sorted. Now suppose the input to the network is not 1"on-k. In particular, suppose 

it is ab #- 1"on-k, where a E Bk, bE B"-"· Then either a#- 1k orb#- on-A:. In the former case, 

the leftmost output of the min network is 0, hence the values on the channels immediately after 

the sorting network are sorted, and they remain sorted through the rest of the network. If a = 1 k 

and b #- on-.1:, then b contains at least one 1, and so the insertion network carries the 1 from the 

leftmost channel into the correct place. 

Theorem 6.1 For all n > 1 and all nonsorted bit-strings :r:, there exists an n-input comparator 

network of depth D( n - 1) + 21log n l - 1. which sorts all bit-strings except :r:. 

PROOF: If D(n) is the depth of the optimal n-input sorting network, then the depth of the 

canonical k-ones single exception sorting network shown in Figure 9 is 

D(n -1) + llogrn/211 + llogln/2Jl ~ D(n -1) + 21lognl -1. 

If :r: is an arbitrary nonsorted bit-string with k ones, then a comparator network can be constructed 

from the canonical k-ones single exception sorting network using the technique of Theorem 7 of 

(16]. D 

This new construction can be used to improve slightly on the results in [16], and to improve 



www.manaraa.com

265 

slightly on the bound in Theorem 5.3. 

Theorem 6.2 NONSORT is ./111' complete even for n-input sorting networks of depth 2D(n) + 

2nognl +6. 

PROOF: Use Theorem 6.1 in the construction of Theorem 5.3. D 

1 Improved Selectors 

The seiective sorting network described in Section 5 was developed using general techniques which 

will work for a.ny exception set of the appropriate form. However, the exception set that appears 

in the reduction of Section 4 has additional special properties which allow a. reduction in the depth 

bound. 

Let us re-draw the selector using the ca.nonica.l single exception sorting network from Section 6 

(see Figure 10). The selector consists of the pa.ir sorter of depth D(n), a. sorting network of depth 

D(5n), a.nd a. min network a.nd a.n insertion network of combined depth 2nog(5n)l - 1. Thus the 

total depth of the 5n-input selector is 2D(5n) + 2nog(5n)l - 1. We route the last 2n/3 outputs 

from the pa.ir sorter to the right of the first 4n/3 outputs, so that the exception becomes 15n/3Q1°n/3 

instead of 1 "04",312"'302". 

However, we have not used the fact that the output of the pa.ir sorter is sorted in pairs. Thus 

there is no need for the sorting network in the part of the selector corresponding to the single 

exception sorting network. If we sort the first n a.nd last 2n values in parallel with the pa.ir sorter, 

then all we need to do is merge the sorted pa.irs in two groups after the pa.ir sorter, a.nd merge these 

with the outputs of the sorters (see Figure 11). 

Parberry [12] gives a. construction for a.n n-input pa.ir merger (which is called a.n alternating 

merging network in that reference), of depth nognl- Ba.tcher [3] gives a. construction for a.n n-input 

merging network of depth nog n 1 + 1. Therefore the new 5n-input selector ha.s depth bounded above 

by D(2n) for the sorters, plus nog(4n/3)1 ~ nog(5n)l -1 for the pa.ir mergers, plus nog(5n)l + 1 

for each of two mergers, plus nog(5n)l for the inserter, giving a. total of D(2n) + 4nog(5n)l + 1. 

Therefore, we obtain the ma.in result of this paper: 

Theorem 7.1 NONSORT is ./111' complete eDen for n-input sorting networks of depth D(n) + 

4nognl +7. 

PROOF: The proof is similar to that of Theorem 5.3, substituting the more efficient selector 

described in this section. The depth in this case is bounded above by 3 for the variable components, 

3 for the clause components, plus D(2n/5) +4nognl + 1 for the selector. Cl 



www.manaraa.com

266 

n 2n 2n 

Figure 10: Details of the selector construction. 



www.manaraa.com

267 

n 2n 2n 

Figure 11: Details of the modified selector construction. 



www.manaraa.com

268 

8 Conclusion and Open Problems 

We have shown that sorting network verification is intractable even for sorting networks of depth 

D(n) +4[1ogn l + 7, where D(n) is the depth of an optimal n-input sorting network. This is smaller 

by a factor of two than previous results. Our result is fairly strong, given the current state of 

knowledge about D(n), which is that [lognl $ D(n) < 6100[1ognl (the lower bound is obvious, 

and the upper bound is from Paterson (17)). We conjecture that sorting network verification remains 

intractable even for the shallowest sorting networks, that is, sorting networks of depth D(n). 

It is also interesting to consider the depth of single exception sorting networks, since their 

existence implies an exponential time lower bound for deterministic and probabilistic verification 

algorithms based on the zero-one principle (Parberry (16)). If S(n) is the minimum depth of an 

n-input single exception sorting network, we know that D(n) -1 $ S(n) $ D(n) + 2[1ognl -1, 

where D(n) is the minimum depth of ann-input sorting network. We conjecture that S(n) = D(n). 

It should be noted that it is an open problem as to whether the result of Theorem 7.1 is better 

than that of Theorem 6.2. The former is better than the latter iff D(n) ~ 2[1ognl-1, which is 

the case for large enough n (Yao (20)). 

References 

(1] M. Ajtai, J. Koml6s, and E. Szemen!di. An O(n.logn) sorting network. Proc. 15th Ann. ACM 

Symp. on Theory of Computing, pages 1-9, April1983. 

[2] M. Ajtai, J. Koml6s, and E. Szemeredi. Sorting in clogn parallel steps. Combinatorica, 3:1-48, 

1983. 

[3] K. E. Batcher. Sorting networks and their applications. In Proc. AFIPS Spring Joint Computer 

Conference, volume 32, pages 307-314, April1968. 

(4] R. C. Bose and R. J. Nelson. A sorting problem. J. Assoc. Comput. Mach., 9:282-296, 1962. 

[5] M. Chung and B. Ravikumar. On the size of test sets for sorting and related problems. In 

Proc. 1987 International Conference on Parallel Processing. Penn State Press, August 1987. 

[6] M. J. Chung and B. Ravikumar. Strong nondeterministic Turing reduction- a technique for 

proving intractability. J. Comput. System Sci., 39(1):2-20, 1989. 

(7] R. L. Drysdale. Sorting networks which generalize hatcher's odd-even merge. Honors Paper, 

Knox College, May 1973. 



www.manaraa.com

269 

[8) R. W. Floyd and D. E. Knuth. Improved constructions for the Bose-Nelson sorting problem 

(preliminary report). Notices ofthe AMS, 14:283,1967. 

[9) R. W. Floyd and D. E. Knuth. The Bose-Nelson sorting problem. In J. N. Srivastava., editor, 

A Survey of Combinatorial Theory. North-Holland, 1973. 

[10) M. R. Ga.rey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of 

NP-Completeness. W. H. Freema.n, 1979. 

[11) D. E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Programming. Addison

Wesley, 1973. 

[12) I. Pa.rberry. The alternating sorting network. Technical Report CS-87-26, Dept. of Computer 

Science, Penn. State Univ., September 1987. 

[13) I. Pa.rberry. Parallel Complexity Theory. Resea.rch Notes in Theoretical Computer Science. 

Pitman Publishing, London, 1987. 

[14) I. Pa.rberry. Sorting networks. Technical Report CS-88-08, Dept. of Computer Science, Penn. 

State Univ., Ma.rch 1988. 

[15) I. Pa.rberry. A computer-assisted optimal depth lower bound for sorting networks with nine 

inputs. In Proceedings of Supercomputing '89, pages 152-161, 1989. 

[16) I. Pa.rberry. Single-exception sorting networks a.nd the computational complexity of optimal 

sorting network verification. Mathematical Systems Theory, 23:81-93, 1990. 

(17) M. S. Paterson. Improved sorting networks with O(logn) depth. Algorithmica, 5(4):75-92, 

1990. 

[18) T. J. Scha.efer. The complexity of satisfiability problems. In Proc. 10th Annual ACM Sympo

sium on Theory of Computing, pages 216-226. Association for Computing Machinery, 1978. 

[19] D. C. Van Voorhis. An economica.l construction for sorting networks. In Proc. AFIPS National 

Computer Conference, volume 43, pages 921-926, 1974. 

(20] A. Ya.o. Bounds on selection networks. SIAM Journal on Computing, 9, 1980. 



www.manaraa.com

Mana~ing a Parallel Heap Efficiently 

Saja.l K. Das1 and Wen-Bing Horng 

Center for Research in Parallel and Distributed Computing 
Department of Computer Science 

University of North Texas 
Denton, TX 76203-3886, USA 

Abstract 

We design a. cost-optimal algorithm for ma.na.ging a. parallel hea.p on a.n exclusive
read a.nd exclusive-write (EREW), parallel random access machine (PRAM) model. 
This is a.n improvement in spa.ce a.nd time over the one recently proposed by Deo a.nd 
Prasad [4]. Our a.pproa.ch efficiently employs p processors in the ra.nge 1 $ p $ n, 
where n is the maximum number of items in a. parallel heap. It is assumed that 
a. delete- think-insert cycle is repeatedly performed, a.nd ea.ch processor requires a.n 
arbitrary but tile sa.me amount of time (called the think time) for processing a.n 
item which in turn generates a.t most a (a. constant) new items. The time required 
for deleting p items of the highest priority from the parallel heap is 0{1), while tha.t 
for inserting a.t most ap new items is O(logn). With or without incorporating the 
think time, the speedup of our algorithm is proved to be linear, i.e. O(p). Using 
a. global, working data. structure for ea.ch level of the heap, it is shown tha.t the 
additional memory spa.ce required for our parallel heap is much less than tha.t for 
the existing one [4]. Furthermore, the proposed algorithm retains the strict priority 
ordering of a. sequential hea.p. 

Index Terms: Algorithm analysis, data. structure, EREW PRAM, heap, parallel 
algorithm, priority queue, optimal speedup. 

1 Introduction 

This paper concerning parallel heap data structure is an outcome of our research on 
parallel Branch-and-Bound (B&B) algorithms. In a B&B algorithm (6], a priority queue 
is often used to store the live nodes of a state space tree. Since the insertion and 
deletion operations on a heap can be performed efficiently, this data structure is used 
for implementing a priority queue. In the sequential version of a B&B algorithm, a 
delete-think-insert cycle (called an iteration) is repeatedly performed. At the beginning 
of each iteration, an item of the highest priority is deleted from the top of the heap 
and some processing (or thinking) is done on that item which possibly generates new 
items. These items are then inserted back into the heap. On the other hand, in a parallel 
B&B algorithm, p items (where pis the number of processors) of the highest priority 

1This work was in part supported by a Junior Faculty Summer Research Fellowship from the Uni
versity of North Texas at Denton. 



www.manaraa.com

271 

are deleted at each iteration for the think phase to start. Therefore, managing heaps in 
parallel is an important problem. 

Existing literature on parallel B&B algorithms mostly deal with upper bounds on 
the speedup or conditions for anomaly to occur [10-12, 15]. Although it is apparent 
that p items of the highest priority can be deleted from the priority queue in constant 
time, it is not clear how to efficiently insert the generated items. So various mechanisms 
have been proposed with an attempt to parallelize heaps for shared-memory parallel 
computers [2, 4, 7, 13, 14]. Table 1 summarizes the performance of these mechanisms 
on various machine models. For a comprehensive review, readers may refer to Horng 
and Das [5]. Quinn and Yoo [13] presented the software pipelining mechanism to delete 
an item from a heap in 0(1) time using flog n 1 processors, where n stands for the 
maximum number of items in the heap. Jones [7] proposed a concurrent skew heap, in 
which heap operations are performed in O(log n) amortized time. Biswas and Browne [2] 
also presented a concurrent data structure for heaps. Rao and Kumar [14] developed a 
practical mechanism by introducing a top-down insertion on a heap. Since at most 
O(log n) processors are efficiently utilized in these concurrent heaps, a maximum of 
O(logn) speedup is attainable. For increased parallelism, two other concurrent heaps
called pipelined and partitioned heaps- are proposed in [5]. 

Recently, Deo and Prasad [4] presented a new data structure, called the parallel heap, 
which achieves linear speedup for an n-item binary heap using p processors in the range 
1 ~ p ~ n. However, their approach suffers from several limitations as outlined here. 

1. The available processors are partitioned into general and maintenance processors, 
which alternatively remain idle during the insert-delete and think phases. 

2. At each delete-think-insert cycle, only r processors participate simultaneously in 
the think phase, where r < p is the number of items in a heap-node. 

3. The working memory space for managing the parallel heap is O(n), a large value. 

4. Linear speedup is not achieved if the think time is larger than O(log p). 

In this paper, we propose an efficient algorithm for managing a parallel heap on an 
exclusive-read and exclusive-write (EREW), parallel random access machine (PRAM) 
model [8]. Our approach overcomes the limitations cited above, and includes improve
ment in time and space. A parallel heap of n items is represented as a complete k-ary 
(fork ;:::: 2) tree, each node of which contains x items, for 1 ~ x ~ p. It is assumed that a 
delete-think-insert cycle is repeatedly performed, a processing item generates at most a 
constant number ( Cl) of new items, and each processor requires the same amount of think 
time, which is arbitrary. Based on the number of processors available, the algorithm is 
presented into three distinct cases by applying the variants of a single technique. In each 
of these cases, p processors (for 1 ~ p ~ n) are effectively utilized such that p items of 
the highest priority are deleted from the parallel heap in 0{1) time, and at most Clp new 
items are inserted in O(logn) time. With or without incorporating the think time, a 
linear speedup is guaranteed, and thus the heap-management algorithm is cost-optimal. 
Furthermore, the strict priority ordering of a sequential heap is retained. 

Unlike the algorithm due to Deo and Prasad [4], all p processors in our approach are 
treated as the general processors during the think phase; while during the insert-delete 



www.manaraa.com

T
ab

le
 1

: 
S

um
m

ar
y 

of
 c

on
cu

rr
en

t 
an

d 
pa

ra
ll

el
 h

ea
p 

(p
ri

or
it

y 
qu

eu
e)

 a
lg

or
it

hm
s 

R
es

ea
rc

he
rs

 
M

od
el

 
#

o
f 

P
ro

c.
 

ln
se

rt
..

l 
D

el
et

e.
.l 

N
 

D
 

ln
se

rt
.p

 
D

el
et

e.
p 

Q
ui

nn
, 

Y
oo

 
M

IM
D

-T
C

 
ll

o
g

n
l 

-
0

(1
) 

1 
1 

-
O

(p
) 

B
is

w
as

, 
B

ro
w

ne
 

M
IM

D
-T

C
 

(l
,n

) 
O

(l
o

g
n

) 
O

(l
og

n)
 

1 
1 

O
(p

+
lo

g
n

) 
O

(p
+

lo
g

n
) 

R
ao

, 
K

um
ar

 
M

IM
D

-T
C

 
(1

, n
) 

O
(l

o
g

n
) 

O
(l

og
n)

 
1 

1 
O

(p
+

lo
g

n
) 

O
(p

 +
 l

o
g

n
) 

Jo
ne

s 
M

IM
D

-T
C

 
(l

,n
) 

O
(l

og
n)

 
O

(l
og

n)
 

1 
1 

O
(p

+
 lo

g
n

) 
O

(p
 +

 l
o

g
n

) 

H
or

ng
, 

D
aa

 
M

IM
D

-T
C

 
p 

O
(n

fp
 +

 lo
gp

) 
-

1 
p 

O
(p

) 
0

(1
) 

H
om

g,
 O

M
 

M
IM

D
-T

C
 

(1
,n

) 
O

(l
o

g
n

) 
O

(l
og

n)
 

1 
p 

O
(p

+
lo

g
n

) 
O

(p
 +

 l
o

g
n

) 

D
eo

, 
P

ra
sa

d
 

E
R

E
W

 P
R

A
M

 
[l

,l
o

g
n

j 
O

(l
og

n)
 

O
(l

og
n)

 
1 

1 
O

(p
+

lo
g

n
) 

O
(p

+
lo

g
n

) 

D
eo

, 
P

ra
sa

d
 

E
R

E
W

P
R

A
M

 
(l

o
g

n
,n

) 
O

(l
o

g
r)

 
0

(1
) 

r 
r 

O
(l

og
n)

 
0

(1
) 

T
hi

s 
p

ap
er

 
E

R
E

W
P

R
A

M
 

[l
,l

o
g

n
) 

O
(l

o
g

n
) 

O
(l

og
n)

 
1 

p 
O

(l
o

g
n

) 
0

(1
) 

T
hi

s 
p

ap
er

 
E

R
E

W
P

R
A

M
 

O
o

g
n

,y
n

) 
O

(l
o

g
n

) 
0

(1
) 

q 
p 

O
(l

og
n)

 
0

(1
) 

T
hi

s 
p

ap
er

 
E

R
E

W
 P

R
A

M
 

(f
o

,n
] 

O
(l

o
g

n
) 

0
(1

) 
p 

p 
O

(l
og

n)
 

0
(1

) 

[N
ot

e]
: 

T
h

e 
nu

m
be

r 
of

 it
em

s 
in

 a
 p

ip
e l

in
ed

 h
ea

p 
is

 n
 ~
 fp

2 
fp

o
g

(p
 +

 l)
ll

· 
M

IM
D

-T
C

 :
 m

ul
ti

pl
e-

in
st

ru
ct

io
n 

st
re

am
 a

nd
 m

ul
ti

pl
e-

da
ta

 s
tr

ea
m

, 
ti

gh
tl

y 
co

up
le

d 
m

ul
ti

pr
oc

es
so

rs
 

In
se

rL
p 

: 
ti

m
e 

re
qu

ir
ed

 f
or

 i
ns

er
ti

ng
 p

 i
te

m
s 

in
to

 t
he

 h
ea

p 

D
el

et
e_

p 
: 

ti
m

e 
re

qu
ir

ed
 f

or
 d

el
et

in
g 

p 
hi

gh
es

t-
pr

io
ri

ty
 i

te
m

s 
fr

om
 t

he
 h

ea
p 

N
 :

 n
um

be
r 

of
 it

em
s 

in
 a

 h
ea

p-
no

de
 

D
 :

 n
um

be
r 

of
 it

em
s 

de
le

te
d 

at
 a

 t
im

e 
T

yp
e 

: 
cl

as
si

fi
ca

ti
on

 o
f 

th
e 

he
ap

 
L

oc
ki

ng
 :

 w
he

th
er

 e
m

pl
oy

in
g 

se
m

ap
ho

re
 o

r 
lo

ck
in

g 
m

ec
ha

ni
sm

 

T
y

p
e 

L
oc

ki
ng

 
C

on
cu

rr
en

t 
N

o 
(S

of
t w

ar
e 

P
ip

el
in

in
g)

 

C
on

cu
rr

en
t 

Y
es

 

C
on

cu
rr

en
t 

Y
es

 

C
on

cu
rr

en
t 

Y
es

 
(S

ke
w

 H
ea

p)
 

C
on

cu
rr

en
t 

Y
es

 
(P

ip
el

in
ed

 H
ea

p)
 

C
on

cu
rr

en
t 

Y
es

 
(P

ar
ti

ti
on

ed
 H

ea
p)

 
C

on
cu

rr
en

t 
Y

es
 

(s
am

e 
as

 (
14

])
 

P
ar

al
le

l 
N

o 

P
ar

al
le

l 
N

o 

P
ar

al
le

l 
N

o 

P
ar

al
le

l 
N

o 

1\
J 

-.
.j

 
1\

J 



www.manaraa.com

273 

phase, they act as the maintenance processors for maintaining the heap property at each 
level. The working memory space is reduced by exploiting the fact that at each level of a 
parallel heap, at most one heap-node is accessed at a time. Hence rather than allocating 
data fields to each node for inserted items or for book-keeping, we associate a global data 
structure with each level. 

2 Preliminaries 

A heap of n items can be represented by a complete /c-ary (for k 2:': 2) tree of depth 
d = !logk(n(k- 1) + 1)1 - 1. The root is assumed to be at level 0. The min-heap 
(respectively, max-heap) property is one where the value of the item at any node is no 
greater (respectively, less) than those of the items at each of its children. In this paper, 
a heap always means a /c-ary min-heap. For details on heap operations, refer to [2, 5). 

A heap of maximum size n can be conveniently implemented by an array HEAP[O .. 
n -1] such that the root (i.e., node 0) of the heap occupies location 0. The k children of 
node i in location i occupy consecutive locations ki + 1, ... , k( i + 1), whereas the parent 
of node i is at location f t l - 1. Associated with a heap are the data fields LAST and 
TARGET. Let u be the current size of the heap. Then LAST= (u-1) is the index of the 
last non-empty node of the heap, and TARGET= u is the index of the first empty node 
of the heap. Nodes with index being equal to LAST and TARGET are called the last 
node and the target node, respectively. The path from the root of a heap to a target node 
is called the insertion path of the target node [14]. Suppose a target node, TARGET, is 
at level t. Let F IRST(t) = (kt - 1}/(k- 1} be the index of the first (leftmost) node at 
level t, and let DP =TARGET- FIRST(t) 2:: 0. Then, as shown in Horng and Das 
[5], the insertion path I P of the target node can be represented by the sequence of digits 
obtained by representing DP in radix k. That is, DP = (IP)k = (e1e2 · · •et)k· 

An extremal case of insertion paths is that the root has its insertion path IP equal to 
NULL with the length II PI= 0. Figure 1 shows an example of 3-ary min-heap of twelve 
items with the insertion path from the root to the target node 12. In this figure a circle 
represents a node, the upper half of the circle contains the node number (or array index), 
the lower half contains the value of the item at that node, and the number outside the 
node is its path number. Here, we have lc = 3, d = 2, LAST= 11, TARGET= 12, 
FIRST= 4. The path number of the target node is 022 while the insertion path IP = 
22. Note that DP =TARGET- FIRST= 8 = (22}3 = (IP)k· 

3 Parallel Heap Algorithm 

Analogous to a sequential heap, a parallel heap of n items, with each node containing z 
(for 1 :5 z :5 p) items and thus having m = r~l nodes, can be represented by a complete 
/c-ary tree of depth d = flogk(m(/c- 1) + 1)1 - 1. The root is assumed to be at level 
0, and thus the total number of levels is d + 1. The parallel heap property is that the 
value of the items at any node of a parallel heap are no greater (or less) than those of 
the items at each of its children. 

The parallel heap algorithm proposed in this paper can effectively utilize p processors 



www.manaraa.com

274 

LAST TARGET 

Figure 1: A 3-a.ry heap of 12 items 

in the range 1 :5 p :5 n and achieves optimal speedup. The employed processors act both 
as the general and maintenance processors during different phases. For example, during 
the think phase, all p processors are treated as general processors to perform the thinking 
process, while during the insert-delete phase, they are considered as maintenance pro
cessors to maintain the heap property at each level. Each level of the heap is associated 
with fx/ logk x 1 processors for maintenance operations when x ~ 2. For the special case 
of x = 1, only one processor is associated with each level. Since the number of items 
in a node and the number of maintenance processors assigned to a level of a k-ary heap 
vary depending on the total number of processors available, we divide the algorithm into 
three distinct cases by applying appropriate variants of a single technique: 

• Case 1: (nk- n) 1/(l+logk) < p :5 n, and x = p 

• Case II: ~ogk(n(k- 1) + 1)1 :5 p :5 (nk- n)l/(l+logk), and x = q 

• Case III: 1 :5 p < ~ogk(n(k -1) + 1)1 and x = 1, 

where q is a function of n and p and 1 :5 q < p. In Case III, since the number of 
processors is less than the number of levels, each of p levels of the heap is associated 
with only one maintenance processor at any pipeline cycle (described in Section 3.2). 

3.1 Generic Parallel Heap Data Structures 

The data structures maintained by a parallel heap consist of: (i) data structures for the 
heap itself and a heap-node, (ii) data structure for a level of the heap, and (iii) other 



www.manaraa.com

275 

data fields. Figure 2 shows a layout of a parallel heap data structure with three levels. 
These data structures are elaborated in the following. 

(i) Let each node of a parallel heap contains :z: items, where 1 ::; :z: ::; p. Then the 
parallel heap of at most n items can be represented as an array PHEAP[O .. m - 1], 
where m = r;; 1 is the number of nodes, each of which is a record of the form: 

type NODE = record 
ITEM : array [0 .. :z: - 1] of item_type; /* items *I 
#ITEMS : 0 .. :z:; /* currently *I 
EXPECTED : 0 .. :z:; /* eventually *I 

end..record; 
var PHEAP : array [0 .. m- 1] of NODE; I* parallel heap *I 

The array ITEM[O .. :z: -1] stores items at a node, or the substitute items for an iteration 
of the delete-reheapification at that node. The field #ITEMS indicates how many items 
are currently in the node, and EXPECTED shows how many are eventually expected to 
be in it. An item which should be in the node but not yet available is called an expected 
item. In the following, we use #ITEMS(i) and EXPECTED(i) to denote the values 
of the fields #ITEMS and EXPECTED of node i, respectively, and use ITEM(j, i) to 
denote the value of the field ITEM[i] of node i. 

(ii) A data structure, called BLOCK, for each level of the heap is used for maintaining 
the parallel heap property. It is defined as follows. 

type BLOCK = record 
WNODE : 0 .. m- 1; /* node to be processed *I 
WTYPE: 0 .. a; 

/* 0 for delete-reheapification, 
i for the ith insert-reheapification, where 1 ::; i ::; a *I 

INSERT ..ITEM : array [0 .. :z: - 1] of item_type; /* items to be inserted *I 
LENGTH : 0 .. :z: - 1; /* number of inserted items *I 
TARGET : 0 .. m- 1; /* index of the target node *I 
INSERTION_FATH: 0 .. m- 1; /*insertion path* I 

end..record; 
var LEVEL : array [0 .. d] of BLOCK; /* d is the depth of the parallel heap *I 

Like a context block in operating systems, the data structure BLOCK for each level of 
the heap stores all the required information for a node at that level which needs to per
form an iteration of the insert- or delete-reheapification. The field WNODE is the index 
of the node to be processed at that level. If WNODE = -1, then no operations are 
performed at that level during that pipelined cycle. The field WTYPE indicates what 
kind of reheapification needs to be performed at node WNODE. If WTYPE = 0, then 
an iteration of delete-reheapification is performed. On the other hand, if WTYPE ~ 1, 
an insert-reheapification process is performed. The array INSERT..ITEM[O .. :z: -1] con
tains the items to be inserted during that insert-reheapification. LENGTH indicates how 
many items are to be inserted during that insert-reheapification, and TARGET is the 
index of the node where these items should be inserted eventually. INSERTION_FATH 
is a nonnegative integer representing the remaining path from WNODE to TARGET. 



www.manaraa.com

k+ 1 k+2 2k 2k+ 1 2k+2 3k 

276 

~Node Number 

0 

. . . 

LEVEL 

0 

2 

(a) A k-ary heap olthree levels 

liTEM [0 .. X -1) 

II ITEMS 

EXPECTED 

(b) Data Structure lor a nOde 

lREADY [0 .. p -1) 

INEW_ITEM [0 .. aop -1) 

lWANTED_BY (0 .. X•(y+1) -1) 

LAST 

(d) Other data fields 

WNODE W7YPE 

liNSERT _ITEM (o .. x -11 
LENGTH 

TARGET 

INSERTION_PATH 

(c) Data Structure lor a level 

Figure 2: Data structures of a parallel heap 



www.manaraa.com

277 

The array LEVEL contains d + 1 data structures of type BLOCK such that level l 
of the heap is associated with LEVEL[ij. In the following, WNODE(l), WTYPE(l), 
LENGTH(l), TARGET(l), and INSERTION_FATH(l) denote the values of their corre
sponding data fields at Ievell, respectively. Also INSERT.lTEM(j, l) denotes the value 
of INSERTION.lTEM[j) at Ievell. 

(iii) The remaining data fields associated with a parallel heap are three arrays READY, 
NEW.lTEM, and WANTED..BY, and an integer variable LAST. Assuming y = r;1, 
the declarations are: 

var READY : array [0 .. p- 1) of item_type; 
NEW .JTEM : array [0 .. a* p- 1] of item_type; 
WANTED..BY: array [0 .. z * (y+ 1) -1] of -1 .. p-1; 
LAST : 0 .. m- 1; /* index of the last node * / 

The array READY contains p items (if the parallel heap is not empty) of the highest 
priority since the previous think phase is complete. The array NEW .JTEM is used to 
store at most ap new items produced by the processing items of the current think phase. 
Processors access the READY array simultaneously, each P; reading the item READY[11, 
for 0 $ i $ p, in constant time for the next think phase to process. After this think 
phase is complete, processor P; puts its new generated items in consecutive locations 
ai, ai + 1, · · ·,a( i + 1) - 1 of the array NEW .lTEM. The field LAST is the index of the 
first node whose EXPECTED value is less than p. The array WANTED..BY is used by 
maintenance processors to check whether to move items from the bottom of the heap to 
the array NEW .ITEM. Initially, the field WANTED..BY[11, for 0 $ i < z(y+ 1), is set to 
-1 to indicate that no movement of items is required. The array WANTED ..BY is divided 
into y+ 1 subarrays such that the subarray WANTED..BY[z(y- i) .. z(y- i+ 1) -1] is· 
for node LAST-i, for 0 $ i $ y. If the total number, say w, of new generated items after 
a think phase is less than p, then the additional dw = p - w items (called the wanted 
items) will be moved from the bottom of the heap to the subarray NEW.lTEM[w .. 
p- 1] as follows. There are dw processors allocated, one-to-one, to the last dw items 
(including expected ones) in the parallel heap such that the last item (i.e., the item 
ITEM[EXPECTED-1) in node LAST) will be moved to the field NEW.JTEM[p-1], 
the last but one item to NEW .JTEM[p - 2], and so on. If these wanted items are 
already in their target nodes, then all of them are moved to the subarray NEW .lTEM[w 
.. p- 1] at the same time. If any one of these wanted items is still somewhere else 
along its insertion path, then its corresponding WANTED..BY fields will be set to the 
index of the subarray NEW .lTEM[w .. p- 1] indicating where it should be moved to. 
The fields #ITEMS and EXPECTED of the nodes which move wanted items and/or is 
going to move expected items to NEW .lTEM array are updated appropriately. The data 
field LAST is updated accordingly. At the next iteration of the insert-reheapification, 
the maintenance processors at each level of the heap will first check the WANTED..BY 
array. If any element WANTED..BY(i) is set to value g ::/: -1, then the corresponding 
wanted item at that level is moved to the NEW.JTEM[g], and WANTED..BYIJ1 is reset 
to -1. 



www.manaraa.com

278 

3.2 Generic Parallel Heap Operations 

The parallel heap algorithm presented in this paper is based on the framework due to Deo 
and Prasad [4]. In our approach, we also use the parallel prefix algorithm due to Ladner 
and Fischer [9] for packing the array NEW ..ITEM, the optimal parallel mergesort due 
to Cole [3] for sorting new generated items, and the adaptive bitonic merging algorithm 
due to Bilardi and Nicolau [1] for maintaining the parallel heap property at each level 
of the heap. On an EREW PRAM model, each of the parallel prefix and bitonic merge 
algorithms on input of size O(x) require O(logx) using rx/logxl processors; while Cole's 
mergesort has O(log x) time complexity for sorting O(x) items employing x processors. 

In order to maintain the parallel heap property, two generic operations - delete
reheapification and insert-reheapification - are performed. Since each iteration of the 
parallel reheapification is performed in a pipelined fashion, at most one node may violate 
the parallel heap property at each level. Such a state is called a partial parallel heap. In 
the following we briefly outline parallel reheapification procedures. 

An iteration of the parallel delete-reheapification at level/ is performed if BLOCK[ij. 
WTYPE = 0. Let i be the value of BLOCK[l].WNODE. If node i satisfies the par
allel heap property, the current reheapification terminates. Otherwise, merge the sub
stitute items in PHEAP[z1.ITEM and the items in its children, move the items in the 
merger to their appropriate places, and reset the data fields of the next lower level. A 
formal algorithm, called Parallel.Delete.Reheapification, for an iteration of the delete
reheapification is presented in [5], which uses a subprocedure ParalleLBitonic.Merge. 

An iteration of the parallel insert-reheapification at level/ is performed if BLOCK[ij. 
WTYPE ~ 1. Let i be the value of BLOCK[ij.WNODE. The procedure Parallel.lnsert 
..Reheapification first moves the wanted items to the array NEW ..ITEM, if necessary. 
Then, it merges these leftover inserted items and those in PHEAP[z1JTEM, moves items 
in the merger to their appropriate places, and resets the data fields of the next lower 
level. The details of this algorithm utilizing a subprocedure ParalleLPrefix for packing 
is presented in [5]. 

The maintenance processors at each level/ of a partial parallel heap performs either 
an iteration of the insert-reheapification or delete-reheapification on node WNODE(l), 
according to the value of WTYPE{l). One such iteration is called a pipeline cycle, which 
is described as the following procedure. 

procedure Pipeline.Cycle(l); 
begin 

if {BLOCK[ij.WTYPE = 0) then Parallel.Delete..Reheapification(l) 
else if (BLOCK[l].WTYPE ~ 1) then Parallel.lnserLReheapification(l) 

end; /* Pipeline-Cycle * / 

Analyzing the subprocedures Parallel..Bitonic.Merge and Parallel.Prefix, an iteration 
of the parallel delete-reheapification (or insert-reheapification) as well as a pipeline cycle 
require O(log x) time. It is to be noted that a pipeline cycle defined in this paper 
is different from that in [4], where one iteration of the delete-reheapification and two 
iterations of the insert-reheapification are included in one pipeline cycle. 



www.manaraa.com

279 

3.3 Case I: For p Processors, where (nk- n)1/(l+logk) < p ~ n 

As mentioned earlier, we divide our algorithm into three distinct cases based on the 
number of processors available. Since we apply variants of the same technique for these 
three cases, for brevity, we present only Cases I and II in the following. Interested readers 
may find the third case in [5]. 

In Case I, (nk-n)l/(l+logl:) < p ~ n, z = p, m = f~l. and d = flog~;(m(k-1)+1)1-1. 
Each level in the heap is associated with fp/ logpl processors. The parallel heap algo
rithm divides a delete-think-insert cycle into two phases: think phase and delete-insert 
phase as discussed in the following. 

THINK PHASE: 

During the think phase, all the, available p processors are switched to serve as general 
processors. Each processor P;, for 0 :5 i < p, performs the thinking process by accessing 
item READY[z]. After this think phase is complete, processor P; generates at most tt 
new items and places them in the subarray NEWJTEM[tti .. tt(i + 1)- 1]. There are 
at most ttp new items in the array NEW ..ITEM. 

INSERT-DELETE PHASE: 

All p processors are switched back to serve as maintenance processors during this 
phase which includes the following five steps. 

Step 1: Packing new generated items 

Since some processors may generate less than tt new items, the parallel prefix algo
rithm [9] is employed to pack these new items and to calculate the total number of such 
items produced by using the maintenance processors at level 0 {the root) of the heap. 
While packing new generated items, the maintenance processors at other levels perform 
one pipeline cycle at the same time. 

Step 2: Moving the wanted items to the array NEW JTEM, if necessary 

After the new items are packed, the maintenance processors at level 0 check whether 
the total number of new generated items, say w, is less than p. If it is the case, all p 
processors are employed in moving dw = p- w items to the subarray NEW ..ITEM[w .. 
p- 1] if they are at the bottom of the heap, or set their WANTED..BY fields if they 
are still in their insertion paths. If any field of the array WANTED..BY is set, then 
one pipeline cycle is performed on the heap to move all the wanted items to the array 
NEW ..ITEM, and w is updated to be the total number of items in NEW ..ITEM. 

Step 3: Sorting the array NEWJTEM 

If there are no items in NEW ..ITEM, the algorithm terminates. Otherwise, the p 
available processors perform Cole's (optimal) parallel mergesort on NEW ..ITEM. 

Step 4: Filling out the array READY 

After sorting the new items, all processors are switched back to serve as maintenance 
processors, and one pipeline cycle is issued at each level of the heap. Meanwhile, the 
maintenance processors at level 0 use bitonic merging algorithm to merge the items in 
the root and the first p items in NEW ..ITEM if w ~ p (or all the items in NEW ..ITEM 



www.manaraa.com

280 

if w < p). Then move the first p items of the merger to array READY and move the 
remaining ones to the root. Also both the fields WNODE and WTYPE of BLOCK[O] 
are set to 0 to indicate that heap-node 0 needs to perform an iteration of the delete
reheapification. After the current pipeline cycle is complete, one more pipeline cycle is 
issued on the heap so that, at this time the maintenance processors at level 0 perform 
an iteration of the delete-reheapification. 

Step 5: Inserting the remaining items in the array NEW JTEM 

Let g be the number of remaining items in the array NEW ..ITEM, where 0 ::5 g ::5 
p(a -1). If g = 0, no further operation is needed since the heap has satisfied the partial 
parallel heap property at the root. Otherwise, let dp = p- EXPECTED(LAST). Then 
g can be expressed as g = u + h x p + v, where 0 ::5 h < a - 1, 0 ::5 v < p, and 

-{g ifg<dp 
u - dp otherwise .. 

This means that we need one (the first) iteration of insert-reheapification for inserting 
u new items, h (if h # 0) iterations for inserting p new items each, and one (the last, 
if v # 0) iteration for inserting v new items. Thus, at most a iterations of insert
reheapification process are required at the root. That is, at most a pipeline cycles will 
be issued on the heap. During each of these iterations, the maintenance processors at 
each level (other than level 0) perform their required operations, while the maintenance 
processors for level 0 will (i) set the field INSERTIQN_pATH according to the value 
LAST (as described in Section 2), (ii) increment the field LAST by one, (iii) update 
the fields WNODE and WTYPE to 0 and its corresponding iteration i, respectively, 
(iv) merge the items in the root and those in the array NEW ..ITEM required by its 
corresponding iteration, and (v) follow the usual operation of an insert-reheapification 
process. After all such iterations are complete, the heap satisfies the partial parallel heap 
property and it starts the next think phase. 

3.3.1 Time Complexity 

Recall that one pipeline cycle requires O(logp) time in this case. Step 1 uses a parallel 
prefix algorithm to pack new items which requires T1 = O(logp) time. In Step 2, the 
time required to move the wanted items from the bottom of the heap to the array 
NEW ..ITEM and/or to set the fields WANTED..BY, and to perform one more pipeline 
cycle to move the wanted items to the array NEW ..ITEM (if necessary) is given by 
T2 = 0(1) + O(logp). Step 3 performs parallel mergesort on the array NEW ..ITEM in 
T3 = O(logp) time. In Step 4, the time required by the root to merge the items in the 
subarray NEW..ITEM[O .. (3 -1] and those in the root, to move items to READY and 
the root, and to perform one pipeline cycle is T4 = 4 x O(logp). In Step 5, at most 
a pipeline cycles are issued for the root to perform an insert-reheapification process 
and the worst-case time is Ts = ax O(logp) time. Therefore, the overall (parallel) 
time for an insert-delete phase to delete p items and to insert at most ap items is 
Tpar = T1 +T2+Ta+n +Ts = O(logp), since a is a constant. Thus, the speedup in this 
case is Tu9/Tpar = O(p), where T649 = O(plogn) is the time required for performing 
O(p) sequential heap operations, and logp = O{logn), for (nk- n)l/(l+logl:) < p ::5 n. 

Assuming the time required for performing a think phase to be Tihinl:, the total time 



www.manaraa.com

281 

for a delete-think-insert cycle is O(Jogp) + 1hinl:· Obviously, the speedup for this case 
is also O(p). Therefore, with or without incorporating the think time, our parallel heap 
algorithm for Case I achieves linear speedup (within a constant factor). 

3.3.2 Space Complexity 

The memory space required for the data structure PHEAP is m(p + 2) = r~ 1 (p + 2), 
that for LEVEL is (d + 1)(p + 5) = [log"'(m(k -1) + 1)l(p + 5), and that for other data 
fields is {cr + 2)p + 1. Thus, the additional memory space {other than that required for 
storing the heap) is approximately 2(nfp) + (p+5)log~:(nfp)+ (cr + 3)p. For the special 
case when k = cr = 2, the number p of processors can be represented as p = n(, where 
1/2 < e < 1. Then the additional memory space in our algorithm is approximately 
O(n'log n), whereas that required in [4] is O(n). In general, since pis much less than n, 
it is clear that our algorithm can save much more additional memory space than that in 
[4]. 

3.4 Case II: For p Processors, where flog~:(n(k- 1) + 1)1 ~ p ~ 
(nk _ n)l/(I+logk) 

In this case, X= q, m = r~1' and d = [log"'{m(k -1)+ 1)1-1, where q is a function of n 
and p, and 1 $ q < p. Each level is associated with rqflogq1 (or 1 if q = 1) processors. 
Thus the inequality p ~ (d + l)fgflogq1 must hold, which yields q ~ (plog q)f(d + 1). 
The algorithm for this case is similar to that in Case I except that there are at most 
r~l iterations of the delete-reheapification for filling out the READY array and at most 
r< Q- 1 )pf q 1 + 1 iterations of the insert-reheapification for inserting the remaining items 
in the NEWJTEM array to the heap. Since the think phase and Steps 1, 2, and 3 of 
the insert-delete phase are similar to those in Case I, in the following we describe only 
Steps 4 and 5 of the insert-delete phase. 

INSERT-DELETE PHASE: 

Step 4: Filling out the array READY 

Let mw = min(p,w) and mw = u X q + v, where 0 $ u < rmw/'11 and 0 $ v < q. 
This indicates that there are u iterations of moving q items and one {the last, if v -:f. 0) 
iteration of moving v items from NEW ..ITEM to READY. Each of these iterations is 
performed as follows. At iteration i, for 1 $ i $ u, the maintenance processors at the root 
use bitonic merging algorithm to merge the items in the root and those in the subarray 
NEW..ITEM[(i-1)q .. iq-1]. At the same time, one pipeline cycle is performed at other 
levels of the heap. Then, move the first q items out of the merger to READY[(i- 1)q .. 
iq -1], and move the remaining items to the root. Also, update WNODE and WTYPE 
of level 0 to zero to indicate that node 0 needs to perform an iteration of the delete
reheapification. After the current pipeline cycle is complete, one more such cycle is 
issued to the heap so that the root performs the delete-reheapification at this time. If 
v -:f. 0, the (u + 1)-st iteration is performed as follows. While the maintenance processors 
at other levels of the heap perform one pipeline cycle, the v items in NEWJTEM[uq .. 
mw -1] are merged with those in the root. Out of the merger, the first v items are placed 



www.manaraa.com

282 

into the subarray READY(uq .. mw - 1], the remaining items are moved to the root, 
and WNODE and WTYPE of level 0 are set to zero. After the current pipeline cycle is 
complete, one more pipeline cycle is issued to the heap as in the previous iteration. 

Step 5: Inserting the remaining items in the array NEW JTEM 

If w ::; p, no insert-reheapification is needed since at this point, no items are left in 
NEW JTEM. Otherwise, let g = w-p be the number of remaining items in NEW JTEM, 
where 0::; g::; (a-1)p. Denoting u = q-EXPECTED(LAST), we get g = u+h x q+v, 
where 0 < u::; q, 0::; h < f(a -1)pfql, and 0::; v < q. Then follow the same method as 
in Case I to perform at most h + 2 iterations of the insert-reheapifi.cation and start the 
next think phase. 

3.4.1 Time Complexity 

In this case, one pipeline cycle requires O(log q) time. Therefore, the time required for 
each of Steps 1 and 3 is O(logp), and that required for Step 2 is O(logq). Step 4requires 
2(u + 1) x O(log q) = O(pfq) X O(log q) = O(log n) time. Step 5 performs at most h + 2 
pipeline cycles and it requires (h + 2) x O(logq) = O(pfq) x O(logq) = O(logn) time. 
Therefore, the overall (parallel) time for an insert-delete phase to delete p items and to 
insert at most ap items is O(log n). Following the same approach as in Case I, with or 
without incorporating the think time, the speedup for this range of processors is still 
O(p). 

3.4.2 Space Complexity 

The memory space required for data structure PHEAP is m(q + 2} = f!!.l(q + 2}, that 
• g 

for LEVEL IS (d + 1}(q + 5) = flogk(m(k - 1) + 1)l(q + 5}, and that for other data 
fields is (a+ 2)p+ 1. Therefore, the additional memory space is approximately 2(nfq) + 
(q + 5) logk(n/q) + q +(a+ 2)p. For the special case when k = a= 2, the number of 
processors pis in the range flog(n + 1)1 $ p::; Vfi. Then the additional memory space 
in our algorithm is O((nfq) + q log(nfq) + p). Clearly, on an average, our algorithm for 
this range of processors saves much more additional memory space than that required in 
(4], which is always O(n). 

3.4.3 Calculation of q 

As mentioned earlier, each node of the heap in Case II contains q items, where q is a 
function of n and p. According to Section 3.4, the following inequality holds: 

p!:: fqflogql x flogk(m{k -1) + 1)1, 

from which an approximate equation can be derived: 

q ~ plog qfflog~:(m(k- 1) + 1)l 

Now the approximate value of q can be calculated by the following algorithm. 



www.manaraa.com

283 

Table 2: Performance of parallel binary heaps 

Researchers Das & Horng Deo & Prasad 

Complexity Space 
Case I O(n'logn), t < < < 1 
Case II O(p + ; + q log ; ) 

Case III O(log n) 

Algorithm: Computing the value of q 
Input: n, p, and k. 
Output: q. 

1. q' +- k; 

Time Space Time 
O(T+logn) O(n) O(~(T+ logr)) 
O(T+ logn) O(n) O(~(T +log r)) 
O(T + logn) O(n) O(T+logn) 

repeat q +- q'; q' +- plogq/flogk(m(k -1) + 1)1 untillq'- ql < 1; 
q +- r q'l; 

2. m = fn/ql; l +- flogk(m(k -1) + l)l; s +- fqjlogql; 
if s x I ~ p then return(q); 

3. s +- fp/ll j 
repeat q +- q'; q1 +-slog q untillq'- ql < 1; 
q+-fq'-ll; 
goto Step 2. 

3.5 Case III: For p Processors, where 1:::; p < ~ogk(n(k -1) + l)l 
For the number of processors in this range, each node of the parallel heap contains only 
one item. Consequently, m = n, and d = flog.<(n(k- 1) + 1)1 - 1. Also, the data 
structures of the parallel heap and an iteration of the insert- or delete-reheapification 
can be simplified. Since p ~ d, instead of statically allocating a certain number of 
processors to each level as in the previous cases, each of p processors is dynamically 
assigned to a level of the parallel heap as the maintenance processor which performs 
the insert- or delete-reheapification. Due to space limitation, the details are omitted 
here and readers may refer to [5]. The performance of our algorithm for this case are 
summarized below. One pipeline cycle requires 0(1) time, and a linear speedup is 
achieved with or without incorporating the think time. The additional memory space 
required is approximately 5logk n + (a+ 2)p. For the special case when k = a = 2, p is 
in the range 1 ~ p < flog(n + l)l and the additional space required by our algorithm is 
5log n + 4p = O(log n) while that space in [4] or [14] is 2n +log n = 0( n ). 

Table 2 provides a comparison of a special case of our algorithm on binary heaps (i.e., 
for k = a = 2) with the approach due to Deo and Prasad. In this table, T stands for 
1ihinl:, the quantity q is the number of items in a node for Case II of our algorithm, and 
r is the number of items in a node in Cases I and II of [4]. 



www.manaraa.com

284 

4 Proofs of Correctness 

It can be shown that our parallel heap algorithm is deadlock-free, starvation-free, and 
provides mutual exclusion on each heap-node [5]. The correctness of the proposed algo
rithm is presented in Theorem 1. Before proving it, we establish four lemmas which can 
be proved from the generic parallel heap operations. As mentioned, a partial parallel 
heap stands for a k-ary partial heap with each node containing :z: items, where 1 $ :z: $ p. 

Lemma 1: For a partial parallel heap, the items in each node of the heap and those in 
INSERT.lTEM at each level are in sorted order. 

Lemma 2: For a partial parallel heap, after an iteration of the insert-reheapification on 
a node i at level/, node i still satisfies the parallel heap property. 

Lemma 3: For a partial parallel heap, after an iteration of an iteration of the delete
reheapification on a node i is complete, the child which is not a leaf node and has the 
smaller last item among the children of node i may violate the parallel heap property, 
while nodes i and the other children still satisfy this property. 

Lemma 4: For a partial parallel heap, only those nodes which need to perform the 
delete-reheapification may violate the parallel heap property. 

Theorem 1: After each insert-delete phase in a partial parallel heap, the values of the 
items in the root are less than or equal to those of the items in its descendants, and the 
items in the array READY are in sorted order with the values of these items being less 
than or equal to those of the items in the root of the heap. 
Proof (by induction): The induction parameter s in this theorem is the iteration 
number of delete-think-insert cycle applied so far. 

Induction Basis: At the beginning of the first insert-delete phase (i.e., s = 1), only 
one item is in the heap. After this phase is complete, the item is moved to the array 
READY and the heap becomes empty. Clearly, the theorem holds for this case. 

Induction Hypothesis: Assume that at the end of i-th iteration (i.e., s = i) of 
delete-think-insert cycle, the theorem holds true. 

Induction Step: Now, let us consider the beginning of the (i + 1)-th iteration of 
insert-delete phase. By definition, before an iteration of the delete-reheapification is 
introduced, the first :z: items of the smallest values from the merger of items in array 
NEW JTEM and those in the root, are moved to array READY. Thus, after performing 
all delete-reheapification iterations in an insert-delete phase on the root, the items in 
READY are in sorted order; and their values are no more than those of the items in 
the heap and the remaining ones in NEW JTEM. Essentially, we have a partial parallel 
heap with the root-node satisfying the parallel heap property, thereby implying that the 
items in the root contain the smallest values of the entire heap. 0 

Example: Let us illustrate the performance of our algorithm and compare it with Deo
and-Prasad's algorithm for n = 232 and p = 213 • Note that the given values of n and p 
correspond to Case II of our approach. The results are given in Table 3. 

We observe the following facts from Table 3: (i) the number of items in a node in 
our algorithm is almost 1.7 times larger than that in a node in the algorithm due to Deo 
and Prasad, and (ii) in our algorithm 8180 processors are allocated as the maintenance 
processors during the insert-delete phase and all of 8192 processors are switched back 



www.manaraa.com

285 

Table 3: Comparison of two algorithms when n = 232 and p = 213 

Algorithm #items #nodes #levels #processors #maintenance #general 
per node in heap of heap per level processors processors 

Das and Horng 5029 854041 20 409 8180 8192 
Deo and Prasad 2951 1455480 21 257 5397 2951 

to serve as the general processors during the think phase. However, in the algorithm 
presented in (4], only 5397 processors are dedicated to serve as the maintenance processors 
and 2951 processors act as the general processors. Therefore, approximately 66% and 
34% of the available processors are idle during the think phase and insert-delete phase, 
respectively. 

5 Concluding Remarks 

The contribution of this paper is to develop a cost-optimal algorithm for managing a 
parallel heap, which is also an improvement over the parallel (binary) heap proposed in 
(4], for an EREW PRAM model. Our algorithm efficiently employs p processors in the 
range 1 ~ p ~ n. We represent a parallel heap as a complete k-ary tree with each node 
containing :s: items (for 1 ~ x ~ p) depending on the number of processors available. 
A delete-think-insert cycle is repeatedly performed, assuming that the think time is 
identical for each processor. Also, it is assumed that each processing item generates at 
most a (a constant) new items. The proposed algorithm is divided into three distinct 
cases, each of which utilizes an appropriate variant of a single strategy. The p processors 
are efficiently utilized such that the time required for deleting p items with the highest 
priority from the heap is 0(1), while that for inserting at most ap new items is O(log n). 
Though our algorithm originates from the idea developed by Deo and Prasad (4], the 
design strategy and data structures differ in several ways. Some of the salient features 
and major advantages of our approach are highlighted below. 

1. At each delete-think-insert cycle, p items are deleted for the think phase to start. 

2. Rather than partitioning p processors into two disjoint sets for distinct usages, 
namely general and maintenance processors for the think and insert-delete phases, 
we use all of them efficiently for both purposes. 

3. Unlike in (4], where all the working data structures are stored in each heap-node, 
we propose a global data structure associated with each level of the heap. This 
leads to a reduction of extra memory space for implementing our algorithm. 

4. Variants of the same algorithmic strategy are applied for three different ranges 
of available processors between 1 and n, whereas the authors in [4] apply the 
mechanism proposed in [14) for the number of processors in the range 1 ~ p ~ log n. 

5. With or without incorporating arbitrary think time, our algorithm is proved to 
achieve optimal speedup. 



www.manaraa.com

286 

6. The number of items stored in a heap-node is greater than or equal to that in [4], 
and it depends on the available range of processors. 

As part of future work, we intend to implement the parallel heap algorithm on com
mercial shared memory parallel computers, in order to verify how closely its actual 
performance follows the theoretical analyses developed here. Since this algorithm allows 
simultaneous deletion of p items from the heap, we are currently investigating how to ap
ply it for estimating the speedup of parallel algorithms based on the branch-and-bound 
strategy. Our preliminary observations are encouraging, which will be reported in a 
forthcoming paper. 

References 

[1] G. Bilardi and A. Nicolau, "Adaptive Bitonic Sorting: An Optimal Algorithm for 
Shared-Memory Machines," SIAM J. Comput., vol. 18, no. 2, pp. 216-228, Apr. 
1989. 

(2] J. Biswas and J. C. Browne, "Simultaneous Update of Priority Structures," Proc. 
Int. Conf. Parallel Process., 1987, pp. 124-131. 

(3] R. Cole, "Parallel Merge Sort," SIAM J. Comput., vol. 17., no. 4, pp. 770-785, Aug. 
1988. 

(4] N. Deo and S. Prasad, "Parallel Heap," Proc. Int. Conf. Parallel Process., vol. III, 
1990, pp. 169-172. 

(5] W.-B. Horng and S. K. Das, Heaps - Concurrency and Parallelism, Tech. Rep. 
#N-90-003, Dept. Comput. Sci., Univ. North Texas, Denton, Mar. 1990. 

[6] E. Horowitz and S. Salmi, Fundamentals of Computer Algorithms, Computer Science 
Press, Rockville, Maryland, 1978. 

[7] D. W. Jones, "Concurrent Operations on Priority Queues," Commun. ACM, vol. 
32, no. 1, pp. 132-137, Jan. 1989. 

(8] R. M. Karp and V. Ramachandran, "Parallel Algorithms for Shared-Memory Ma
chines," in Handbook of Theoretical Computer Science, Volume A: Algorithms and 
Complexity (J. van Leeuwen, Ed.), MIT Press, Cambridge, MA, 1990, pp. 869-941. 

(9] R. E. Ladner and M. J. Fischer, "Parallel Prefix Computation," J. ACM, vol. 27, 
no. 4, pp. 831-838, Oct. 1980. 

(10] T.-W. Lai and S. Sahni, "Anomalies in Parallel Branch-and-Bound Algorithms," 
Commun. ACM, vol. 27, no. 6, pp. 594-602, June 1984. 

(11] T.-W. Lai and A. Sprague, "Performance of Parallel Branch-and-Bound Algo
rithms," IEEE Trans. Comput., vol. C-34, no. 10, pp. 962-964, Oct. 1985. 

(12] G.-J. Li and B. W. Wah, "Coping with Anomalies in Parallel Branch-and-Bound 
Algorithms," IEEE Trans. Comput., vol. C-35, no. 6, pp. 568-573, June 1986. 



www.manaraa.com

287 

[13] M. J. Quinn andY. B. Yoo, "Data Structures for the Efficient Solution of Graph 
Theoretic Problems on Tightly-Coupled MIMD Computers," Proc. Int. Con/. Par
allel Process., 1984, pp. 431-438. 

[14] V. N. Rao and V. Kumar, "Concurrent Access of Priority Queues," IEEE Trans. 
Comput., vol. 37, no. 12, pp. 1657-1665, Dec. 1988. 

[15] B. Wah and Y. Ma, "MANIP - A Parallel Computer System for Implementing 
Branch-and-Bound Algorithm," Proc. 8th Annu. Symp. Comput. Archi., 1982, pp. 
239-262. 



www.manaraa.com

Parallel complexity 
in the design and analysis of concurrent systems 

Carme Alvarez* Jose L. Balcazar* Joaquim Gabarr6* 

Dep. de Llenguatges i Sistemes Informatics 
Universitat Politecnica de Catalunya 

Pau Gargallo 5, 08028 Barcelona 
Spain 

Miklos Santha+ 

CNRS- LRI 
Universite Paris-Sud 

91405 Orsay 
France 

Keywords: Petri nets; partially commutative monoids; CCS; PRAM algorithms; 
boolean circuits; P-completeness. 

Abstract: We study the parallel complexity of three problems on concurrency: 
decision of firing sequences for Petri nets, trace equivalence for partially commutative 
monoids, and strong bisimilarity in finite transition systems. We show that the first 
two problems can be efficiently parallelized, allowing logarithmic time Parallel RAM 
algorithms and even constant time unbounded fan-in circuits with threshold gates. 
However, lower bounds imply that they cannot be solved in constant time by a PRAM 
algorithm. On the other hand, strong bisimilarity in finite labelled transition systems 
can be classified as P -complete; as a consequence, algorithms for automated analysis 
of finite state systems based on bisimulation seem to be inherently sequential in the 
following sense: the design of an efficient parallel algorithm to solve any of these 
problems will require an exceedingly hard algorithmic breakthrough. 

1. Introduction 

Given the intrinsic difficulty of designing large software systems, it is natural that 
software tools would be designed to help in performing this task. The possibility of 
formalizing both specifications and implementations in the same, or in a closely related, 
formal language yields the potential of automated analysis, allowing for early checking 
of correctness and provably correct prototypes. 

The design of correct concurrent programs is even more difficult than in the sequential 
case, and their verification using formal systems may give rise to formidable computa
tional problems. For instance, the study of the correctness and liveness properties of 
mutual exclusion algorithms for just two processes already requires resorting to com
puterized analysis [27]; if more processes are considered, the state space soon becomes 
intractable. 

One reason to develop concurrent programs stems from the fact that important advan
tages can be gained from the use of massive parallelism. In view of the large number of 

* Research supported by the ESPRIT ll Basic Research Actions Program of the EC under 
contract No. 3075 (project ALCOM). 

+ Research supported by the Programme MERCURE of the DCSTD of the Ministere 
Franc.;ais des Afi'aires Etrangeres and the DGICYT of the Ministerio de Edueaci6n y Cien
cia de Espaiia. This research was performed while visiting the Dep. de Llenguatges i Sistemes 
Informatica of the Universitat Politecnica de Catalunya. 



www.manaraa.com

289 

parallel algorithms discovered in recent years (see [10] and [16]), it might be hoped that 
one such application would be the study of concurrent systems, and that algorithms run
ning on highly parallel machines could perform automated analysis of large concurrent 
programs substantially faster than sequential algorithms. Such a behaviour corresponds 
to a running time roughly logarithmic in the size of the state space (assumed finite); 
and being able to tackle problems of relevant size corresponds to algorithms that use a 
large but feasible number of processors (cf. the definition of the class NC below). 

One of the first models issued to study concurrent systems was the Petri net model. A 
Petri net consists of two different kinds of objects: places and transitions. Places serve 
to model pre and post conditions and transitions model events. A transition needs to 
satisfy some conditions to be fired, and its firing changes the valuations on the places 
(see below for exact definitions). The net evolves firing transitions sequentially and the 
behaviour of the whole system is described by the set of all possible firing sequences. 

For each fixed Petri net, we exhibit an NC algorithm to decide very efficiently in parallel 
whether a given sequence of transitions is a firing sequence. We also discuss some lower 
bounds on the parallel time necessary to solve this problem. 

In a monoprocessor environment, a concurrent system is fully described by the set of all 
sequential evolutions. A possible evolution of the system is described by a finite word 
called trace. Let us consider with more attention the sequencing of two events z and y 
in a trace w = · · · zy · · ·• Let w' = · · · yz · · · be the trace obtained from w by commuting 
the order of the events z and y. We have two different possibilities: 

• The events z, yare independent from each other. In this case the order of execution 
is irrelevant and z, y commute. Then the traces w and w 1 correspond to the same 
parallel behaviour. 

• The execution of z modifies the environment of y. Then these events are in conflict. 
The trace w' represents a behaviour different from w. 

A basic question is: given two traces, do they model the same concurrent behaviour? 
A way to deal with this approach is to consider partially commutative monoids. This 
framework has been fully developed by Mazurkiewicz [18]. A mathematical characteri
zation of trace equivalence was found in [8], and it can be used to find a fast sequential 
algorithm. Here we prove the existence of an NC algorithm, and discuss also some lower 
bounds. 

A capability that seems natural to expect from software tools for aiding the design 
of concurrent systems is to be able to decide some form of equivalence of finite state 
systems. Indeed, this problem plays a fundamental role in the study of concurrent 
systems, and has been widely studied both from theoretical and practical points of 
view. Milner specifies in [21] a complete set of axioms for proving equivalence of finite 
state agents. Kanellakis and Smolka consider in [15] efficient sequential algorithms 
to solve this problem. On the more practical side, the prototype named Concurrency 
Workbench, implemented in Standard ML, has been used by Walker [27] for undertaking 
the automated analysis of mutual exclusion algorithms via finite state systems, using 
the fact that the state space of all these algorithms is finite. 



www.manaraa.com

290 

Until now, the analysis of concurrent systems by means of bisimulation techniques has 
been based on sequential algorithms. A natural question to ask is: do the automatic 
bisimulation techniques admit fast parallel algorithms? 

In this paper we give a strong evidence that unfortunately the answer to the above 
question is negative. More precisely, we prove that deciding bisimulation in finite tran
sition systems is a P-complete problem. P-complete problems have efficient sequential 
algorithms but it is widely believed that they do not admit fast parallel ones. 

In fact, this concept plays a role analogous to the notion of NP-complete problems. 
These are problems that can be solved by an exponentially slow exhaustive search, and 
they inherently seem to require superpolynomial time algorithms. The NP-completeness 
of a problem implies that success in designing a polynomial time sequential algorithm 
for it is highly unlikely. 

Analogously, P-complete problems are identified as inherently sequential problems: if 
there are any problems in P that do not admit efficient parallel algorithms, then all P
complete problems are among them. Conversely stated, if a parallel algorithm is found 
for a P-complete problem which uses a feasible (e.g. polynomial) amount of hardware 
and runs in polylogarithmic time, then all problems solvable in polynomial time have 
also such feasible and very fast parallel algorithms. However, strong research in the area 
during several years has failed to produce such an algorithm for any of the well studied 
P-complete problems. Thus, the design of a parallel algorithm with these characteristics 
for a P-complete problem would require a breakthrough in Algorithmics. Actually the 
conjecture of many researchers in the field is that such an algorithm does not exist at 
all. Surveys of P-complete problems have appeared in [13) and [22). 

2. Preliminaries 

!.1 Sequential and parallel complezity cla31e.s. For the formal study of the possible 
existence of parallel algorithms we will consider two main complexity classes: P and 
NC. We will mention also some interesting subclasses of NC. The class P models 
problems with efficient .sequential algorithm•; the class NC models problems with fa.st 
parallel algorithm1, using a feasible number of processors. Each of these classes has 
many characterizations that support this description. 

• By definition, the class P contains the problems for which a polynomial time se
quential algorithm exists. This can be formalized by considering an abstract model 
of sequential computation for which "time" is a well-defined notion. Polynomial time 
RAM algorithms (a model quite close to a real computer [1)), polynomial time Turing 
machines ( [1), [4)), or even polynomial size uniform circuits (see below) are all suitable 
for this purpose, and give equivalent definitions of the class P. 

• The class NC formalizes the concept of efficiently parallelizable problems: it con
tains those problems for which a parallel algorithm can be designed that runs in polylog
arithmic parallel time and uses a feasible (i.e. polynomial) amount of hardware. There 
are many characterizations of this class. Consider for instance Parallel RAM (PRAM) 
machines, which are one of the basic abstract models of parallel computers [26). NC can 
be defined as the class of all the problems that can be solved in a PRAM within O(logk n) 
time for constant k and using polynomially many processors. 



www.manaraa.com

291 

For theoretical analysis sometimes unbounded fan-in boolean circuit" are preferable [7]. 
A boolean circuit is a directed, acyclic, labelled graph in which the nodes of indegree 
zero are the inputs, the nodes of indegree 1 compute boolean negation, and the nodes of 
indegree 2 or more compute either boolean conjunction or disjunction of all their inputs, 
according to their respective label. The nodes of outdegree zero are the output nodes. 
The "ize of a circuit is the number of its nodes; the depth is the length of the longest 
path from an input to an output. The nodes in a circuit are called also gate8. A boolean 
circuit computes a boolean function by substituting values for the inputs, evaluating all 
the nodes, and collecting values at the output nodes. Binary inputs and outputs might 
be binary encodings of other objects assuming some simple coding scheme. 

To use boolean circuits to solve problems, we have to select a different circuit for each 
input length; but such a selection might be very hard to compute. Here we will ex
plicitly rule out those families of circuits for which this selection is indeed hard, and 
will restrict ourselves to uniform families. A family of circuits is uniform if basic facts 
about the connection of the gates can be answered in deterministic logarithmic time, 
or equivalently can be expressed in an extended version of first order logic (see [6] for 
precise definitions). 

It is well known that in many aspects PRAMs and uniform unbounded fan-in circuits 
are equivalent [26], with bounds on number of processors corresponding to bounds on 
the size of the circuit, and bounds on the PRAM time corresponding to bounds on the 
depth of the circuit. Thus NC is formed by the problems solvable by polylogarithmic 
depth, polynomial size uniform circuits. 

NC has some interesting subclasses. In particular, A C0 contains the problems solvable 
by unbounded fan-in uniform circuits of constant depth and polynomial size, or equiva
lently solvable by a PRAM in constant time with a feasible (i.e. polynomial) number of 
processors; and A C1 contains the problems solved by unbounded fan-in uniform circuits 
of logarithmic depth and polynomial size, which corresponds to logarithmic time in a 
PRAM with again a feasible number of processors. A C0 contains some problems with 
long history, for instance the addition of two integer numbers. 

Lying between A C0 and A C1 is the class TC0 ' defined by uniform constant depth poly
nomial size circuits that are allowed to use threshold gates. This class can be motivated 
by the growing of a complexity theory of neural networks [23], and is important for 
tight analysis of the complexity of certain problems; it also contains very natural and 
interesting problems such as the multiplication of two integer numbers [7]. 

Since threshold gates can simulate AND and OR gates we have that A C° C TC0 , but 
these two classes do not coincide: Ajtai [2] and Furst, Saxe and Sipser [9] proved that 
the inclusion was strict. This was shown by proving that the majority problem, coded 
as the set MAJ ={wE (0 + 1)* J Jwh;::: JwJo}, cannot be solved by a constant depth 
polynomial size circuit having only AND and OR gates. The proof does not require any 
uniformity condition on the A C0 circuits. 

To compare and classify problems in P we use the con,tant depth reducibility [7]. A 
function f is constant depth reducible tog, denoted here as f $.cd g, ifthere is a family 
of circuits which compute f with polynomial size, constant depth, and oracle gates for 
g. The cost and depth of an oracle gate is 1. It can be easily shown that A C0 1 TC0 , 



www.manaraa.com

292 

A 0 1 ' and A a are closed under this reducibility; e.g., if g E TC 0 and f ~cd g, then 
f E TC0 • 

A problem Sis P-complete under ~cd reductions if S E P and every problem in P is 
~cd-reducible to S. It can be shown that this reducibility is transitive, and therefore to 
prove that a problem in P is P -complete, it is enough to prove that some other complete 
problem in Pis reducible to it. There are several standard P-complete problems which 
are natural candidates for the reduction. One of these is the Circuit Value Problem CVP. 
The input to this problem is pair formed by a circuit and an input to the circuit. The 
problem consists of computing the output of the circuit on the given input. When 
suitable additional hypotheses are assumed on the given circuit, we obtain variants of 
this problem that still are P-complete. In order to prove our results we consider one of 
these variants: the evaluation problem for monotone alternating circuitA. Such a circuit 
is divided into levels, so that the inputs to a gate at a given level are all outputs of gates 
from the immediately preceeding level. The circuit does not contain negation gates; 
instead it receives each input together with its negation. All gates in the same level are 
of the same type, and the levels alternate between AND and OR levels. Figure 1 gives 
us an example of a monotone alternating circuit. 

0 0 0 

Fig. 1 A monotone alternating boolean circuit C 

The following is known (13]: 



www.manaraa.com

293 

Theorem 1: The Monotone Alternating Circuit Value Problem MA CVPis P-complete. 

Input: An encoding of a monotone alternating circuit c with one output, together with 
boolean input values :z:h lif11 ••• , :Z:n, Zn· 

Output: The value of c on these input values. 

Let us end here our complexity-theoretic notions and go on to introduce the problems 
whose complexity will be classified. The notations introduced here will be necessary for 
later description of parallel algorithms. 

!.! Petri net&. The Petri net model was one of the first models introduced to describe 
concurrent processes with distributed control [25). Formally a Petri net is a tuple 
N = (P,T,F,Mo) where: 

1. The set P = {Ph ... 1Pr} is called the &et of place&. During the evolution of the 
net, a place p contains a number of tokens denoted as M(p) and called its marking. 
Such a marking models some local aspect of the system with global state M = 
(M(pt), ... M(pr)). 

2. The &et of tran&ition& is T = {t1, ... , t 8 }. Transitions model the events of N and 
every sequential behaviour is represented by a word w E T*. 

3. The flow function F : {(P X T) U (T x P)} -+IN connects between them places and 
transitions. The value of F fixes the precondition to be fulfilled in order to fire a 
transition tin a marking M. The firing rule is: 

'Vp E P : M(p) ~ F(p, t). 

Additionally, F gives us the new marking M' reached after the firing oft in M, 
denoted as M[t)M', and defined by: 

'Vp E P: M'(p) = M(p)- F(p,t) + F(t,p). 

4. M 0 : P -+ IN is the initial marking. 

We denote by D.(p, t) the variation on the number of tokens in a place p when t is 
fired, D.(p, t) = F(t,p)- F(p, t). Then M'(p) = M(p) + D.(p, t). The firing rule can be 
extended from transitions to words w E T* as usual and the whole sequential behaviour 
of the net N is described by the set of firing &equence& which is: 

SN(Mo) = {w E T* 13M: Mo[w)M}. 

Our first main result in the next section will classify the problem for Petri nets defined 
as follows: 



www.manaraa.com

294 

Problem 2: Fixed a Petri net N = (P,T,F,Mo), the membership problem for firing 
sequences on this net N, denoted as N-PETRI-FIRING is: 

Input: w E T*. 

Que8tion: wE SN(Mo)?. 

!.3 Partially commutative monoid.!. Another way to model concurrent systems is with 
concurrent alphabets and partially commutative monoids [18]. We call concurrent al
phabet a pair (E,"') where E = {zt, ... z,} is a finite alphabet denoting the set of 
events and "' is a symmetric and irreflexive binary relation on E called the commuta
tion relation. The complementary notion is also useful: the conflict relation is defined 
as E X E\ "'· To describe equivalent behaviours in E* we introduce the congruence 
generated by the commutation relations (i.e. if z and y commute we consider the re
lation zy "' yz) and we denote as w ~ w' the equivalence given by this congruence. 
The quotient monoid E* / "' is called partially commutative monoid and its elements 
are called traceJ. If wand w' are equivalent then they model two sequential evolutions 
corresponding to a unique parallel behaviour. To study this equivalence we need the 
projection function over a subset A of E denoted as 7r A : E* --... A*. This function is 
defined as 7rA(z) = :1: if z E A and 7rA(z) =A otherwise. The trace equivalence w ~ w' 
has been characterized in [8] in the following way: 

1. for every event :z: in Ewe have 'lr{z}(w) = '~~"{zJ(w') and 

2. for every pair (z,y) of different events in conflict we have '~~"{z,11 J(w) = '~~"{z, 11 J(w'). 
In our main results we will consider the following problem: 

Problem 3: Fixed a concurrent alphabet (E, "'), the trace equivalence problem, de
noted as (E, "')- TRACE-EQUIVALENCE, is 

Input: A string w$w' where w, w' E E* and $ r/. E. 

Quedion: It is true that w ~ w'?. 

2.4 Finite trano~ition 1yJtem1. Concurrent systems can be analyzed also by means of 
transition systems [17]. Recall that a finite labelled trano~ition 1yltem (FLTS for short) 
is a triple M = {Q,E,T), where Q is a finite set of states (or processes), Eisa finite 
alphabet of actions and T ~ Q x Ex Q is the set of transitions. A transition (q, z, q') E T 
has label :z: and is denoted by q ....=.... q1• Given two states p and q, the idea of having the 
same behaviour is formalized by the notion of strong bisimulation [24] (see also [20]). 

A relation S ~ Q X Q is a drong bio~imulation if (p, q) E S implies, for all :z: E E, the 
following bisimilarity conditions: 

(i) whenever p ....=.... y, then for some q', q ....=.... q' and (p',q') E S, 

(ii) whenever q ....=.... q1, then for some p1, p ....=.... p1 and (p', q') E S. 
The drong biJimilarity relation "' is defined as the union of all strong bisimulations, 
that is 

"' = U{ s 1 s is a strong bisimulation } 

Notice that the strong bisimilarity relation is also a strong bisimulation. 



www.manaraa.com

295 

Other relationships such as bisimulation and observational equivalence can be defined 
in similar ways, using "invisible actions" [20]. It is not difficult to see that the decisional 
problems for these notions are equivalent to the decision of strong bisimulations. 

We will prove the P-completeness of the the following problem: 

Problem 4: The problem STRONG-BISIMILARITYis 
Input: An encoding of a finite transition system with two selected states p* and q*. 
Quedion: Are p* and q* strongly bisimilar?. 

3. Main results 

9.1 Petri net firing. Fixed a Petri net N = {P, T, F, Mo} we would like to study the 
complexity of N-PETRI-FIRINGproblem. We start with an intuitive massivellyparallel 
algorithm able to solve this problem. After, we will consider some tight bounds. 

Proposition 5: Given a Petri net N, the decision problem N-PETRI-FIRING belongs 
to NC. 

Proof. Given a Petri net N and a sequence of transitions w = :1:1 ••• a:; ... Zn it is easy 
to prove that w is a firing sequence iff the following holds: 

• To fire the transition a:1 the following property has to be satisfied: 

Vp E P: Mo(P);::: F(p,a:l). 

• To fire the transition z; (1 < i :5 n) it is necessary to fulfil two conditions. First 
the prefix :1:1 ••• Zi-1 is a firing sequence. And second, all the places have to contain 
enough tokens to enable z;. Both conditions can be expressed together as 

'r/1 < i :5 n Vp E P: Mo(P) + l: A(p, t) ·lz1 ••• Zi-llt ;::: F(p, a:;). 
tET 

These conditions can be easily verified in parallel. To do this we associate a processor 
to every transition z; of the input string. The processor i will operate fundamentally 
with transition z;. The NC program solving this problem is given in the program 
"N-Petri-Firing". • 

To obtain a tight upper bound we can express the N-P ETRI-FIRING problem in terms 
of first order logic enlarged with majority quantifiers [3]. Considering Immerman's work 
[14], this formalism can be transformed into parallel programs running over PRAM ma
chines enlarged with threshold operations. In our case these programs have constant 
time. We also give a lower bound by showing that N-P ETRI-FIRING problem is equiv
alent to the MAJ problem under constant depth reductions. Hence this problem cannot 
be solved in constant time by a standard PRAM with a polynomial number of proces
sors. 



www.manaraa.com

for 1 ~ i ~ n do in parallel 

for 1 ~j ~ s do 

296 

(* by prefix sum techniques processor i compute count;[i] *) 
count;[i] := llllt .•. lll;Jt; 

end for; 

for 1 ~ k ~ r do 

delta;[k] :=count;[!)· .6.(pk, t 1) + ... + count;[s]· .6.(pk, t.); 
end for; 

ifi = 0 

then enabled;:= 1\ (Mo[k];:: F(pk 1 lll;)) 

else enabled; := 1\ (Mo[k] + delta;-1 [k) ;:: F(pk, lll;)) 
t=:;;k=:;;r 

end if; 

end parallel for; 

(* by recursive foiding all the processors help to compute the result *) 

N-Petri-Firing := 1\ enabled; 
t=:;;i=:;;n 

Program. N-Petri-Firing 

Proposition 6: The N-P ETRI-FIRING problem belongs to TC0 • Moreover, a lower 
bound complexity is fixed by the following two assertions: 

1. Fixed a Petri net N we have N-PETRI-FIRING~cd MAJ. 

2. There exists a Petri net N such that MAJ ~cd N-PETRI-FIRING. 
From 1 and 2 we conclude that fixed a Petri net N the firing cannot solved in constant 
time by a PRAM with a polynomial number of processors. 

For a detailed proof of this proposition see [3). 

3 .! Trace equivalence. Fixed a concurrent alphabet (~, "") we would like to study the 
complexity of the(~, ;..._)-TRACE-EQUIVALENCE problem. As we have done above, 
first we will propose an intuitive massively parallel algorithm to solve this problem, and 
second we will consider s6me tight bounds. 



www.manaraa.com

297 

Proposition 7: Given a concurrent alphabet (:E, ~ ), the decision problem (:E, ~ )
TRACE-EQUIVALENCEbelongs to NC. 

Proof. Given w and w' it is easy to prove that w ..!:. w' iff the two conditions given by [8] 
are satisfied. These conditions can be verified in parallel. 

For the first condition, i.e., every letter :z: of the alphabet :E appears in w and in w' the 
same number of times, we use masking and prefix sum techniques as we propose in the 
program "Equal-Length". And for the second one, the letters of every pair in conflict 
appear in w and in w' following the same order, is verified also using masking and 
prefix sum techniques and as many processors as max{iwl, lw'l}. For every pair (:z:,y) 
in conflict, the processor i verifies that the ith letter of II{z,y}(w) is equal to Il{z,y}(w'). 
The program "Equal-Conflicts" verifies this condition. • 

equal-length:= TRUE; 

for :z: E :E do 

(* by masking and prefix sum techniques compute *) 

11 := III.,(w)l; 

12 := III.,(w')l; 

equal-length:= equal-length A (h = l2); 

end do 

Program Equal-Length 

We can obtain a tight upper bound on the complexity of(:E,rv)-TRACE-EQUIVALENCE 
by expressing it in terms of first order logic enlarged with majority quantifiers. We also 
havealowerboundofthis problem. It can be seen that (:E, rv)-TRACE-EQUIVALENCE 
cannot be solved by a PRAM in constant time because it is equivalent to the MAJ prob
lem under a constant depth reduction which increases the computation time only with 
a constant. 

Proposition 8: The (:E,rv)-TRACE-EQUIVALENCEproblem belongs to TC0 • More
over, a lower bound complexity is fixed by the following two assertions: 

1. Fixed a concurrent alphabet (:E, "') we have 

(:E,"')-TRACE-EQUIVALENCE$ MAJ. 

2. There exists a concurrent alphabet (:E, "') such that 

MAJ $ (:E,rv)-TRACE-EQUIVALENCE. 

From 1 and 2 we conclude that the trace equivalence on the partially commutative 
monoid generated by (:E, "') cannot be solved in constant time by a PRAM with a 
polynomial number of processors. 



www.manaraa.com

298 

equal-conflicts := TRUE; 

for every pair ( z, y) in conflict do 

(* by masking and prefix sum techniques compute *) 

k1 := ill{o:,11}(w}l;k2 := ITI{o:,11 J(w')l; 

if kl = k2 
then 

for 1 :5 i :5 k1 do in parallel 

1£ :=letter ith of n{z,l/}(w};v :=letter ith of n{z,l/}(w'}; 

test; := (u = v) 

end parallel for; 

(* by prefix sum techniques *) 

equal-conflicts := equal-conflicts/\ A test; 
l::;i:=;k. 

else 

equal-conflicts := FALSE 

end if 

end for 

Program Equal-Conflicts 

For a detailed proof of this proposition see [3]. 

S.S Bisimulationa. In contrast with these problems allowing very fast and feasible 
parallel algorithms we prove next that the STRONG-BISIMILARITYproblem is P
complete 

It is well known that strong bisimilarity in a LFTS is a polynomial time decidable 
property [20]. To see this, it suffices to construct "' as intersection of the sequence of 
relations =o, ::1, ... 1 which are defined by induction as follows: 

(i) For every (p1 q) E Q X Q, p =o q1 

(ii) p =i+l q if for every z E ~~ 

whenever p ~ y, then for some q1, q ~ q' and p1 :=; q1 ; 

whenever q ~ q' 1 then for some p' 1 p ~ p1 and p1 :=; q1• 

It is easy to see that these relations can be constructed in polynomial time. This is 
because "' coincides with =k where k is the number of states in the finite transition 
system. More efficient algorithms to solve this problem have been considered in [15]. 
The P completeness of the STRONG-BISIMILARITYproblem will follow from the 
following lemma. A more detailed proof appears in [5]. 



www.manaraa.com

299 

Lemma 9: MA GVP can be reduced to STRONG-BISIMILARITY. 

Proof. We will transform an arbitrary instance of the circuit value problem for monotone 
alternating circuits MAGVP into an instance of STRONG-BISIMILARITY in three 
steps. 

• We define the k-alternating pattern Ak. Figure 2 shows A4 • This is a circuit of height 
k, where every level has two gates, one valuated to 0 and other valuated to 1. It is easy 
to check then that in Ak the following two conditions are satisfied: 

- every OR gate has an input valuated to 0, 

- every AND gate has an input valuated to 1. 

0-0utput !-Output 

Level 4 

Level 3 

Level 2 

Level 1 

Fig. 2 The 4-alternating pattern A4 

• We couple the k-alternating pattern Ak with the circuit C to get a new circuit C'. 
Figure 3 shows the circuit C' constructed from the example of Figure 1. The circuit C' 
satisfies the following three properties: 

- every OR gate has at least an input valuated to 0, 

- every AND gate has at least an input valuated to 1, 

- every gate of C' evaluates to the same value as the corresponding gate in Ak or C. 
• We now transform the circuit C' into a FLTS M over a one letter alphabet. M 
contains a state corresponding to each gate of C'. These states are called ordinary 
1tate1. In addition M contains n + 1 att.Ziliary 1tate1, associated with the n + 1 inputs 
of C' which evaluate to 1 (then inputs of C of value 1, and the constant 1 input of Ak)
We say that these auxiliary states are on level 0. Figure 4 shows M in our example. 

By induction it can be shown that the circuit C evaluates to 1 with the given input 
values if and only if states p* and q* in Mare strongly bisimilar. 

As a consequence of the precedent lemma we obtain our announced result. 



www.manaraa.com

300 

C' 

Fig. 3 The coupling of C and ~ into C' 

Theorem 10: The STRONG-BISIMILARITYproblem is P-complete. 

Other results related to this one can be obtained by the same proof idea. The properties 
named Observation Equivalence and Observation Congruence are defined in [19]. We 
can state: 

Theorem 11: The problem of deciding Observation Equivalence and the problem of 
deciding Observation Congruence of two states in a LFTS are both P-complete. 

4. Extensions 

We have presented a quite precise classification of three problems on concurrency. These 
were the decision of firing sequences for Petri nets, the trace equivalence for partially 
commutative monoids, and the strong bisimulation decision problem for finite transition 
systems. These classifications give us hints about the complexity of massively parallel 
algorithms to solve them: the first two have such algorithms but however the third one 
cannot have such an algorithm unless all problems in P do. 

Now we want to complete the discussion by raising some questions. For the bisimulation 
problem, our version of the statement requires the system to be part of the input. This 



www.manaraa.com

Ordinary 
States 

Auxiliary 
States 

M 

301 

Level4 

Fig. 4 The transition system M corresponding to C' 

is necessary since, the system being finite, if we fix it then we obtain only a finite number 
of possible pairs of states, and therefore the problem can be solved in constant time. 

On the contrary, in our first two problems the devices (i.e. Petri nets and concurrent 
alphabets) are independent of the input, and the proofs rely strongly of this fact. It is 
interesting to see what happens when the description of the device is added as a part 
of the input. For comparison, recall that context-free parsing can be done efficiently in 
parallel [16]; however when a coding of the grammar is added as a part of the input the 
complexity grows up substantially, becoming P-complete [11]. Let us briefly describe 
the properties of our first two problems assuming that the devices are part of the input. 
No proofs will be provided here. 



www.manaraa.com

302 

Let us consider first the problem of general trace equivalence for partially commutative 
monoids. Inputs are a concurrent alphabet (:E, "'), and words w and w' in :E*; the 
problem is to decide whether wand w' are equivalent. Using more complex arguments, 
we can prove that this problem is in uniform TC0 , and thus has the same complexity 
as the problem for fixed monoid; it therefore can be solved by fast parallel algorithms. 

In the same way we can consider a more general version of membership for Petri net 
firing sequences, where the net is a part of the input. Our way of computing the 
variation of tokens in each place due to a prefix of the trace relies on the fact that the 
net is fixed, and therefore the numbers of places and transitions are constants. But if 
the net is part of the input, these expressions are sums of nonconstant numbers, and we 
must resort to a multiple addition. It is known that this problem belongs to a uniform 
version of TC0 [6]. Thus we obtain that the problem belongs to uniform TC0 • 

Finally, let us present some additional considerations regarding the bisimulation prob
lem. Since it is so relevant to the design of concurrent systems, our negative P
completeness result calls for new concepts of equivalence that might be of practical 
value, yet testable by fast parallel algorithms. On the other hand, from the standpoint 
of a developer of a concurrent system, another relevant issue is whether interaction with 
a software tool might be more efficient than completely automatic equivalence testing. 

It is well known from the study of NP problems that in many cases "verifying" is easier 
than "computing". This is also true in our case; indeed, the problem of whether a given 
relation is a bisimulation is in NC. This opens a possible way to partially overcome 
the P-completeness obstacle. The idea would be to design concurrent systems in an 
interactive way through a sequence of stepwise refinements, e.g. in the line of [12], in 
such a way that at every step the designer keeps direct intuition of how to transform 
the precedent bisimulation to obtain a new one. He then can guess the result and verify 
it. Perhaps only in some rare cases the designer will need to compute the whole bisimu
lation, and if this case is infrequent ·enough he would accept such a long computational 
process. 

References 

[1] Aho, A., Hopcroft, J., Ullman, J.: The De1ign and Analy1i1 of Computer Algorithm~. 
Addison-Wesley (1975). 

[2] Ajtai, M.: :El-formulae on finite structures. Ann. Pure Appl. Logic 24, 1-48 (1983). 

[3] Alvarez, C., Gabarr61 J.: The parallel complexity of two problems on concurrency. To 
appear at IPL. 

[4] Balc&zar, J.L., Diaz, J., Gabarr6, J.: Structural Complezity I. Springer Verlag EATCS 
Monographs in Theoretical Computer Science, v. 11 (1988). 

[5] Balcazar, J., Gabarr6, J., Santha, M.: Deciding bisimilarity is P-complete. Report LSI-
90-25, Universitat Politecnica de Catalunya. Submitted for publication. 

[6] Barrington, D.M., Immerman, N., Straubing, H.: On uniformity within NC1• J. Comp. 
Syd. Sci. 41,274-306 (1990). 

[7] Chandra, A.K., Stockmeyer, L., Vishkin, U.: Constant depth reducibility. SIAM J. Com
put. 13, 2, 423-439 (1984). 



www.manaraa.com

303 

[8] Cori, R., Perrin, D.: Automates et commutations partielles. RAIRO Inf. Theor. 19, 
21-31 (1985). 

[9] Furst, M., Saxe, J.B., Sipser, M.: Parity, circuits and the polynomial time hierarchy. Math. 
Syst. Theory 17, 13-27 (1984). 

[10] Gibbons, A., Rytter, W.: Efficient Parallel Algorithms. Cambridge University Press 
(1988). 

[11] Goldschlager, L.: £-Productions in context-free grammars. Acta Informatica 16,303-308 
(1981). 

[12] He Jifeng: Process Simulation and Refinement. Formal A.spect.s of Computing 1, 229-241 
(1989). 

[13] Hoover, H.J., Ruzzo, W.L.: A Compendium of Problems Complete for P. Manuscript 
(1984). 

[14] Immerman, N.: Expressibility and parallel complexity. SIAM J. Comput. 18, 3, 625-638 
(1989). 

[15] Kanellakis, P.C., Smolka, S. A.: CCS expressions, finite state processes, and three problems 
of equivalence. Information and Computation 86, 202-241 (1990). 

[16] Karp, R., Ramachandran, V.: Parallel Algorithms for Shared Memory Machines. In: 
Handbook of Theoretical Computer Science, (volA), 869-941, editor Jan Van Leeuwen, 
Elsevier (1990). 

[17] Keller, R.M.: Formal Verification of Parallel Programs. Comm. ACM, 19, 7, 371-384 
(1976). 

[18] Mazurkiewicz, A: Basic notions of trace theory. Springer Verlag Lecture Notes in Computer 
Science 354, 285-363 (1989). 

[19] Milner, R.: A Calculw of Communicating Systems. Springer Verlag Lecture Notes in 
Computer Science 92 (1980). 

[20] Milner, R.: Communication and Concurrency. Prentice Hall (1989). 

[21] Milner, R.: A Complete Axiomatization for Observation Congruence of Finite-State Be
haviours. Information and Computation. 

[22] Miyano, S., Shiraishi, S., Shoudai, T.: A list of P-complete problems. Technical Report 
RIFIS-TR-CS-17, Kyushu University 33, 1989. 

[23] Parberry, I.: A primer on the complexity theory of neural networks. In: Formal techniques 
in artificial intelligence, R.B. Banerji (editor), North-Holland (1990). 

[24] Park, D.: Concurrency and Automata on Infinite Sequences. Springer Verlag Lecture Notes 
in Computer Science 104, 168-183 (1981). 

[25] Peterson, J.L.: Petri net theory and the modeling of system.s. Prentice-Hall (1981). 

[26] Stockmeyer, L., Vishkin, U.: Simulation of parallel random access machines by circuits. 
SIAM J. Comput. 13, 2, 409-422 (1984). 

[27] Walker, D.J.: Automated Analysis of Mutual Exclusion Algorithms using CCS. Formal 
A.spect.s of Computing, 1, 273-292 (1989). 



www.manaraa.com

FORK 
A High-Level Language for PRAMs 

T. Hagerup1 , A. Schmitt2 , H. Seidl2 

Fachbereich Infonnatik, Universitat des Saarlandes 
lm Stadtwald, 6600 Saarbriicken, Germany 

Abstract 
We present a DOW programming language designed to allow the convenient expression or algorithms for 
a parallel random acceBB machine (PRAM). Tho language attempts to satisfy two potentially conHicting 
goals: On the one band, it should be simple and clear enough to serve as a vehicle for human·to. 
human communication of algorithmic ideas. On tho other hand, it should be automatically translatable 
to efficient machine (i.e., PRAM) code, and it should allow precise statements to be made about tho 
amount of resources (primarily time) consumed by a given program. In the sequential setting, both 
objectives are reasonably well met by the Algol·like languages, e.g., with tho RAM as tho underlying 
machine model, but we are not aware of any language that allows a satisfactory expreasion of typical 
PRAM algorithms. Our contribution should be soon as a modest attempt to fill this gap. 

1 Introduction 
A PRAM is a parallel machine whose main components are a set of processors and a global memory. 
Although every real machine is finite, we consider an ideal PRAM to have a countably infinite number of 
both processors and global memory cells, of which only a finite number is used in any finite computation. 
Both the processors and the global memory cells are numbered consecutively starting at 0; the number 
of a processor is called its processor number or its index, and the number of a memory cell is, as 
usual, also known as its address. Each processor has an infinite local memory and a local program 
counter. All processors are controlled by the same global clock and execute precisely one instruction in 
each clock cycle. A PRAM may hence also be characterized as a synchronous shared-memory MIMD 
(multiple-instruction multiple-data) machine. 

The set of instructions available to each processor is a superset of those found in a standard RAM 
(see, e.g., [2)). The additional instructions not present in a RAM are an instruction LOADINDEX 
to load the index of the executing processor into a cell in its local memory and instructions READ 
and WRITE to copy the contents of a given global memory cell to a given cell in the local memory of 
the executing processor, and vice versa. All processors can access a global memory cell in the same 
step, with some restrictions concerning concurrent access by several processors to the same cell (see 
Section 2.5). 

Among researchers working on the development of concrete algorithms, the PRAM is one of the most 
popular models of parallel computation, and the number of published PRAM algorithms is large and 
steadily growing. This is due mainly to the convenient and very powerful mechanism for inter-processor 
communication provided by the global memory. Curiously, there is no standard PRAM programming 
language, and each researcher, in so far as he wants to provide a formal description of his algorithms, 
develops his own notation from scratch. The disadvantages of this are evident: 

1 supported by Deutsche Forscbungsgomeinschaft, SFB 124, TP B2 
2 supported by Deutsche Forscbungsgemeinochaft, SFB 124, TP C1 



www.manaraa.com

305 

1. At least potentially, difficulties of communication are aggravated by the lack of a common lan
guage; 

2. The same or very similar definitions are repeated again and again, resulting in a waste of human 
time and journal space; 

3. Since the designer of an algorithm is more interested in the algorithm than in the notation used 
to describe it, any language fragments that he may introduce are not likely to be up to current 
standards in programming language design. 

In the wider area of parallel computing in general, much effort has gone into the development of 
adequate programming languages. Most of these languages, however, are intended to be used with 
loosely coupled multiprocessor systems consisting of autonomous computers, each with its own clock, 
that run mainly independently, but occasionally exchange messages. The facilities provided for inter
processor communication and synchronization are therefore based on concepts such as message exchange 
(Ada [16]; OCCAM [15]; Concurrent C [10]) or protected shared variables (Concurrent Pascal [13]). 
In particular, a global memory simultaneously accessible to all processors is not supported by such 
languages, and it can be simulated only with an unacceptably high overhead. While such languages 
may be excellent tools in the area of distributed computing, they are not suited to the description of 
PRAM algorithms. 

Before we go on to discuss other languages more similar in spirit to ours, we describe what we 
consider to be important features of such languages. Most obviously, they must offer a way to state 
that certain operations can be executed in parallel. Secondly, we want to write programs for a shared
memory machine. Therefore, the language should distinguish between shared variables, which exist 
only once and can be accessed by a certain group of processors, and private variables, of which there 
might be several instances, each residing in a different processor's private memory and possibly having 
a different value. 

Also, the machine facilities of synchronous access to shared data, should be reflected in the language. 
Finally, program constructs like recursion, which are well suited for writing clear and well structured 
sequential programs, should be allowed to be freely combined with parallelism. Recursion is character
ized by a subdivision of a given problem into a set of subproblems that can be solved independently 
and possibly in parallel. Each subproblem may again be worked on by several processors. Therefore, 
the programming language should provide the programmer with a means of generating independently 
working subgroups of synchronously running processors. Since the efficiency of many algorithms re
lies on a subtle distribution of processors over tasks, an explicit method should be available to assign 
processors to newly created subgroups. 

A frequently used tool for indicating parallelly executable program sections is a for loop where all 
loop iterations are supposed to be executed in parallel. Such a construct is, e.g., used in extensions of 
sequential imperative languages like FORCE [14] and ParC [4]. Also textbooks about PRAM algorithms, 
e.g. (3, 11], usually employ some Algol-style notation together with a statement like for i:=l ton pardo 
... endpardo. 

A different approach is taken in the language GATT (7]. In GATT all processors are started si
multaneously at the beginning. During procedure calls subgroups can be formed to solve designated 
subproblems. However, since GATT is designed for describing efficient algorithms on processor networks, 
GATT lacks the concept of shared variables. Instead, every variable has to reside in the private memory 
of one of the processors. 

For PRAMs, there are various examples of descriptions of recursive algorithms using an informal 
group concept, e.g., see (3, sect. 4.6.3, p. 101], [8, 6]. An attempt to formulate a recursive PRAM 
algorithm more precisely is made in (5]. Corresponding to the machine-level fork instruction of [9], a 
fork statement is introduced, which allows a given group of synchronously working processors to be 
divided into subgroups. This fork statement gave the name to our language. 

The present paper embeds the fork statement suggested in (5] into a complete programming lan
guage. In detail, the contributions of FORK are the following: 

• It adds a start construct, which allows a set of new processors with indices in a specified range 
to be started. 



www.manaraa.com

306 

• It makes precise the extent to which the semantics guarantees synchronous program execution 
(and hence synchronous data access). 

• Besides the implicit synchronization at the beginning of every statement, as proposed in [5], it 
introduces implicit splitting into subgroups at every branching point of the program where the 
branch taken by a processor depends on its private variables. 

It is argued that the available program constructs can be freely nested. In particular, iteration and 
recursion are compatible both with the starting of new processors and the forking of subprocesses. 

The paper is organized as follows. In Section 2 we explain the mechanism of synchronism of FORK 
together with the new constructs in FORK for maintaining parallelism. Moreover, we introduce the 
three basic concepts of FORK, namely the concepts of a ''logical processor", of a "group" of logical 
processors and of ''synchronous program execution". These basic concepts are used in Section 3, which 
gives the semantics of the main constructs of FORK in an informal way. A complete description of 
FORK can be found in [12]. Section 4 concludes with some hints on how programs of the proposed 
language can be compiled to efficiently running PRAM machine code. 

It should be emphasized that although our language design aims to satisfy the needs of theoreticians, 
we want to provide a practical language. The language FORK was developed in close connection 
with a research project at the Saarbriicken Computer Science Department that in detail explores the 
possibilities of constructing a PRAM [1] and is going to build a prototype. We plan to write a compiler 
for our language that produces code for this physical machine. 

Both a formal semantics of FORK and a more precise description of a compiler for FORK are in 
preparation. 

2 An overview on the programming language FORK 

Parallelism in FORK is controlled by two orthogonal instructions, namely start [<expr> •. <expr>] 
and fork [<expr> .. <expr>]. The start instruction can be used to readjust the group of processors 
available to the PRAM for program execution, whereas the fork instruction leaves the number of 
processors unchanged, but creates independently operating subgroups for distinct subtasks and allows 
for a precise distribution of the available processors among them. The effect of these instructions 
together with FORK's concept of synchronous program execution will be explained by the examples 
below. 

2.1 Creating new processors: The start statement 

A basic concept of FORK is a logical processor. Logical processors are meant to be mapped onto the 
physical processors provided by the hardware architecture. However, the number of actually working 
logical processors may vary during program execution; also, the number of logical processors may exceed 
the number of physically ·available processors. Therefore, these two kinds of processors should not be 
confused. In the sequel, if we loosely speak of ''processors" we always mean "logical processors". 1£ we 
mean physical processors we will state so explicitly. 

Every (logical) processor p owns a distinguished integer constant d whose value is referred to as the 
processor number of p. Also, it may have other private constants, private types, and private variables 
which are only accessible by itself. Objects declared as shared by a group of processors can be accessed 
by all processors of the given group. 

As a first example consider the following problem. Assume that we are given a forest F with nodes 
1, ••. , N. F is described by an array A of N integers, where A[i] = i if i is a root ofF, and A[i] contains 
the father of i otherwise. For an integer constant N, the following program computes an array R of N 
integers such that R[i] contains the root of the tree to which i belongs in F. 

As in PASCAL, the integer constant N, the loop variable t, and the arrays A and R must be declared 
in the surrounding context; in FORK this declaration indicates whether variables are shared (as in the 
example) or private and hence only accessible to the individual processor itself. 



www.manaraa.com

shared const N = ... ; 
shared var t : integer; 
shared var A : array [1 .. N] of integer; 
shared var R : array [1 .. N] of integer; 

start [l..N] 
R[tt] := A[tt]; 
for t := 1 to log(N) do 
I* log(N) denotes flog2(N)l *I 

R[tt] :=R[R[tt]J 
end do 

ends tart 

307 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 

(10) 
(11) 
(12) 
(13) 
(14) 

Initially there is just one processor with processor number 0. The instruction start [l..N] in line (7) starts 
processors with processor numbers 1, ... , N. The corresponding instruction ends tart stops these pro
cessors again and reestablishes the former processors. Hence the sequence of an instruction start [l..N] 
immediately followed by an instruction start [l..M] does not start N M processors but only M proces
sors. An occurrence of endstart finishes the phase where M processors were running and again there 
are N processors with numbers 1, ... , N. 

At the machine level every instruction consumes exactly one time unit. However, the semantics of a 
high-level program should be independent of the special features of the translation schemes. Therefore, 
it should be left unspecified how many time units are precisely consumed by, e.g., an assignment 
statement of FORK. 

For this reason a notion of synchronous program execution is needed which only depends on the 
program text itself. Again, the semantic notion of "synchronous program execution" should not be 
confused with the notion of a global clock of a physical PRAM. For example, the underlying hardware 
may allow different processors to execute different instructions within the same clock cycle, whereas 
our notion of synchronism does not allow for a synchronous execution of different statements. Being 
synchronous is a property of a set of processors. It implies that all processors within this set are 
at the same program point. This means that they not only execute the same statement within the 
same loop within the same procedure. It also means that the ''history" of the recursive call to that 
procedure and the number of iterations within the same loop agree. There is no explicit synchronization 
mechanism in FORK. Implicit synchronization in FORK is done statement by statement. At the end 
of each statement there is an (implicit) synchronization point. This means that if a set of processors 
synchronously executes a statement sequence 

<statement>,; <statement>2 

the processors of this set first synchronously execute <statement>1 • When all processors of this set 
have finished the execution of <statement>1 they synchronously execute <statement>2• Note that 
within the execution of <statement> 1 different processors may reach different program points. Thus 
they may become asynchronous in between. 

FORK is well structured; there are no gotos. Hence implicit synchronization points cannot be cir
cumvened. Nontermination caused by infinite waiting for deviating processors is therefore not possible. 

In the given example all the processors execute the same code. According to our convention they 
execute statement by statement synchronously. Hence, first every processor copies the value of A[U] 
to R[tt]. Recall that the constant U is distinct for every processor. Then all processors assign 1 to the 
variable t, followed by the execution of line (11). Then they assign 2 to t, and so forth. Since the upper 
bound for t depends on shared data only (namely on N), all processors finish the for loop at the same 
time. 

Observe here that the synchronous execution of an assignment statement is subdivided into three 
synchronously executed steps: first, the right-hand side is evaluated; secondly, the variable correspond
ing to the left-hand side is determined; finally, the value of the right hand side is assigned to the variable 
described by the left-hand side. 



www.manaraa.com

308 

In our example, in line {11), first the value of R[R[~]) is computed in parallel for every processor, 
secondly, the variable R[PJ is determined, which receives its new value in step three. 

2.2 Forming groups of processors: The fork statement 

FORK allows free combination of parallelism and recursion. This gives rise to the second basic concept 
of FORK: a group. Groups are formed by a (possibly empty) set of processors. Shared variables are 
always shared relative to a group of processors, meaning that they can be accessed by processors within 
this group but not by processors from the outside. 

Groups can be divided into subgroups. This is done by the fork construct of FORK. The most 
recently established groups are called leaf groups. Leaf groups play a special role in FORK. As a 
minimum, the processors within one leaf group work synchronously. Also, if new shared objects are 
declared, they are established as shared relative to the leaf group executing this declaration. 

Every group has a group number. The group number of the most recently created group can be 
accessed by its members through the distinguished private integer constant @. Clearly, the values of @ 

are equal throughout that group. Initially, there is just one group with group number 0 which consists 
of the processor with processor number 0. 

As an example, consider the following generic divide-and-conquer algorithm DC. DC has a recursion 
parameter N describing the maximal number of processors available to solve the given problem and ad
ditional parameters containing the necessary data, which for simplicity are indicated by •..• Assuming 
that the problem size is reduced to its square root at every recursion step, DC may be programmed as 
follows: 

procedure DC( shared eonst N: integer; •.. ); 

if trivial(N) 
then conquer( ... ) 
else 

endif; 

fork [0 .. sqrt(N)-1] 
@ = ~ div sqrt(N) ; 
U = U mod sqrt(N) ; 

DC(sqrt(N), ••• ) /• sqrt(N) denotes r vNl •/ 
endfork; 
combine( ••. ) 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 

(10) 
{11) 
(12) 
{13) 

When a leaf group reaches the fork instruction in line (6), a set of subgroups with group numbers 
0, ••• , sqrt(N) - 1 is created. These newly created groups are leaf groups during the execution of the 
rest of the fork statement, which, in the example, consists of line {9). Observe that procedure calls 
inside a fork may allocate distinct instances of the same shared variable for each of the new leaf groups. 

Executing the right-hand side of line (7), every processor determines the leaf group to which it will 
belong. 

In order to make the call to a recursive procedure simpler it may be reasonable for a processor 
to receive a new processor number w.r.t. the chosen leaf group. In the example this new number is 
computed in line (8). 

When the new leaf groups have been formed, the existing processors have been distributed among 
these groups, and the processor numbers have been redefined, the leaf groups independently execute 
the statement list inside the fork construct. In the example this consists just of a recursive call to 
DC. Clearly, the parameters of this recursive call which contain the specification of the subproblem in 
general depend on the value of the constant @ of its associated leaf group. 

When the statements inside a fork statement are finished the leaf groups disappear- in the example 
at line (10). The original group is reestablished as a leaf group, and all the processors continue to 
synchronously execute the next statement (11). 



www.manaraa.com

309 

2.3 Why no pardo statement? 

There is no pardo statement in FORI(. This choice was motivated by the observation that in general 
pardo is used simply in the sense of our start. A difference occurs for nested pardos. Consider the 
program segment 

fori := 1 to n pardo (1) 
for j := 1 to m pardo (2) 

op(ij) (3) 
endpardo (4) 

endpardo (5) 

Using a similar semantics as for the start instruction in FORK, the second pardo simply would overwrite 
the first one, which means that on the whole only m processors execute line (3); moreover, the value 
of i in line (3) would no longer be defined. This is not the intended meaning. 

Instead, two nested pardos as in lines (1) and (2) are meant to start nm processors indexed by 
pairs (i,j). Precisely, a pardo statement of the form 

fori:= <expr> 1 to <expr>2 pardo <statement> endpardo 

where the expressions <expr>1 and <expr>2 and the statement <statement> do not use any private 
objects, can be simulated as follows: 

begin (1) 
I* declare two new auxiliary constants in order (2) 

to avoid double evaluation of the (3) 
expressions <expr>1 and <expr>2 (4) 

*I (5) 
shared const a1 = <expr>1 ; (6) 
shared const a2 = <expr>2 ; (7) 

I* start a2-a1+1 new processors •.. *I 
start[a1 .. a2] 

I*· .. and distribute them among a2-a1+1 new groups *I 
fork[a1 .. a2] 

® = P; 
p = 0; 
I* each leaf group creates a new variable i and 

initilizes it with the group number 

*I 
begin 

shared var i : integer; 

i:=@; 
<statement> 

end 
endfork 

ends tart 
end I* of the pardo simulation *I 

In order to avoid redundancies we decided not to include the pardo construct in FORK. 

(8) 
(9) 

(10) 
(11) 
(12) 
(13) 
(14) 
(15) 
(16) 
(17) 
(18) 

(19) 
(20) 
(21) 
(22) 
(23) 
(24) 

On the other hand one may argue that the fork construct as provided by FORK is overly compli
cated. Using the very simple pardo would suffice in every relevant situation. Using pardo a generic 
divide-and-conquer algorithm may look as follows: 



www.manaraa.com

310 

procedure DC( shared const N: integer; ... ); 

if trivial(N) 
then conquer( ••• ) 
else 

end if; 

for i := 1 to sqrt(N) pardo 
DC(sqrt(N), ••• ) 

endpardo; 
combine( ..• ) 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(B) 
(9) 

(10) 
(11) 

In the pardo version of DC beginning with one processor, successively more and more processors are 
started. In particular, every subtask is always supplied with one processor to solve it. Opposed to that, 
in the fork version the leaf group of processors is successively subdivided and distributed among the 
subtasks. The leaf group calling DC does not necessarily Corm a contiguous interval. Hence there might 
be subtasks which receive an empty set of processors and thus are not executed at all. In fact, this 
capability is essentially exploited in the order-chaining algorithm of (5]. This algorithm is not easily 
expressible using pardos. This was one of the reasons for introducing the fork construct. 

2.4 Forming subgroups implicitly: The if statement 

So far we have not explained what happens if the processors of a given leaf group synchronously arrive 
at a conditional branching point within the program. As an example, assume that for some algorithm 
the processors 1, •.. , N are conceptually organized in the form of a tree of height log(N). At time t, a 
processor should execute a procedure opl(d) if its height in the tree is at most t, and another procedure 
op2(d) otherwise. The corresponding piece of program may look like: 

shared var t : integer; 

for t := 1 to log(N) do 
if height(P) <= t 

then opl(P) 
else op2(d) 

end if 
end do 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(B) 
(9) 

For every t the condition of line (4) may evaluate to true for some processors, and to false for others. 
Moreover, the evaluation of both opl(P) and op2{d) may introduce local shared variables, which are 
distinct even if they have the same names. Therefore, every if-then-else statement whose condition 
depends on private variables implicitly introduces two new leaf groups of processors, namely those that 
evaluate the condition to true and those that evaluate it to false. Both groups receive the group number 
of their Cather group, i.e. the private constants @ are not redefined. 

Clearly, within each new leaf group every processor is at the same program point. Hence, they in fact 
can work synchronously as demanded by FORK's group concept. As soon as the two leaf groups have 
finished the then and the else parts, respectively, (i.e., at the instruction endif) the original leaf group 
is reestablished and the synchronous execution proceeds with the next statement. Case statements and 
loops are treated analogously. 

In the above example the condition of the for loop in line (3) depends only on the shared variable t. 
Therefore, the present leaf group is not subdivided into subgroups after line (3). However, this subdi
vision occurs after line (4). The two groups for the then and the else parts execute lines (5) and (6) 
in parallel, each group internally synchronously but asynchronously w.r.t. the processors o£ the other 
group. Line (7) reestablishes the original lea£ group, which in return synchronously executes the next 
r-ound of the loop, and so on. 

The fact that we implicitly form subgroups at branching points whose conditions depend on private 
data allows for an unrestricted nesting of ifs, loops, procedure calls and forks. 



www.manaraa.com

311 

Observe that at every program point the system of groups and subgroups containing a given pro
cessor forms a hierarchy. Corresponding to that hierarchy, the shared variables can be organized in a 
tree-like fashion. Each node corresponds to a group in the hierarchy and contains the shared variables 
relative to that group. For a processor of a leaf group all those variables are relevant that are situated 
on the path from this leaf group to the root. Along this path, the ordinary scoping rules hold. 

For returning results at the end of a fork or for exchanging data between different leaf groups of 
processors it is necessary also to have at least in some cases a synchronous access to data shared between 
different subgroups of processors. 

Consider the following example: 

shared var A: array [O .. N-1] of integer; 
shared var i : integer; 

fork [O .. N-1] 
@= ... j 

u = ... j 

fori:= 0 to N-1 do 
A[ (@+1) mod N] := result(i,@,A) 

end do 
endfork 

(1) 
(2} 
(3} 
(4} 
(5) 
{6} 
(7) 
(8) 
(9} 

(10) 
(11) 
(12) 

In this example the array A is used as a mail box for communication between the groups 1, .•• , N. The 
loop index i and the limits of the for loop of lines (8} and (9} are shared not only by the processors 
within every leaf group, but also between all groups generated in line (5}. If (as in the example} the 
loop condition depends only on variables shared by all the existing groups, the semantics of FORK 
guarantees that the loop is executed synchronously throughout those groups. 

Hence, the results computed in round i are available to all groups in round i+ 1. The general rule by 
which every processor (and hence also the programmer) can determine the largest surrounding group 
within which it runs synchronously is described in detail in Section 3.2.2. 

2.5 How to solve read and write conflicts 

So far we have explained the activation of processors and the generation of subgroups. We left open 
what happens when several processors access the same shared variable synchronously. In tltis case, 
failure or success and the effect of the succeeding access is determined according to an initially fixed 
regime for solving access conflicts. Most PRAM models allow common read operations. However, we 
do not restrict ourselves to such a model. The semantics of a FORK program also may be determined, 
e.g., w.r.t. an exclusive read regime where synchronous read accesses of more than one processor to the 
same shared variable leads to program abortion. Also, several regimes for solving write conflicts are 
possible. For example, we may fix a regime where common writes are allowed provided all processors 
assign the same value to the shared variable. In this case, the for loop in the example above is executed 
successfully, whereas if we fix a regime where common writes are forbidden, a for loop with a shared 
loop parameter causes a failure of program execution. 

As another example consider a regime where common writes are allowed, and the result is determined 
according to the processor numbers of the involved processors, e.g., the processor with the smallest 
number wins. This regime works fine if the processors only access shared data within the present leaf 
group. If processors synchronously write to variables declared in a larger group g they may solve the 
write conflict according to their processor numbers relative to that group g. Consider the following 
example: 



www.manaraa.com

312 

shared var A: array[O .. N-1] ofinteger; 

fork[O .. 1) 
@ = d div N; 
d = d mod N; 

A[H) := result(A,@,d) 
endfork 

ends tart 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 

(10) 
(11) 
(12) 

The shared variable A is declared for some group g having according to line (2) processors numbered 
0, ••. , 2 * N - 1. For n E {0, .•• , N - 1} there are processors Pn,o and Pn,l of processor number n in 
the first and the second leaf group, respectively, that want to assign a value to A[n] in line (9). This 
conftict is solved according to the processor numbers of Pn,o and Pn,l relative to group g, i.e. n and 
N + n, respectively. Hence, in line (9), the result of processor Pn,o is stored in A[n). 

Observe that this scheme fails if another start occurs inside the fork statement because the original 
processor numbers can no longer be determined. In this case program execution fails. 

In any case, the semantics of a FORK program is determined by the regime for solving read and 
write conflicts. Hence, FORK is intended to give the syntax and a scheme for the semantics of FORK 
programs. 

2.6 Input/Output in FORK 

There are at least two natural choices for designing input and output facilities for FORK. First, one 
may provide shared input/output facilities. These can be realized by (one-way infinite) shared arrays. 
Within this framework, synchronous 1/0 is realized by synchronous access to the corresponding array 
where conflicts are solved according to the same regime as with other accesses to shared variables (see 
Section 2.5). 

As a second possibility one may provide private input/output facilities. These can be realized by 
equipping every logical processor with private input streams from which it can read, and private output 
streams to which it can write. The latter is the straightforward extension of PASCAL's 1/0 mechanism 
to the case of several logical processors. 

Which of these choices is more suitable depends on the computing environment, e.g., the available 
hardware, the capabilities of an operating system and the applications. Therefore, input functions and 
output procedures are not described in this first draft on FORK. 

3 The semantics of FORK 

In this section we give a description of the constructs of the PRAM language FORK. As usual, non
terminals are enclosed in angled brackets, and we use them also for denoting arbitrary elements of the 
corresponding syntactical category, e.g., an arbitrary statement may be addressed by <statement>. 
The empty word is denoted by e. 

Programs are executed by processors which are organized in a group hierarchy. For each construct 
of FORK we have to explain how the execution of this construct affects the group hierarchy, the 
synchronism among the processors, and the scopes of objects. 

We use the following terminology. A group hierarchy H is a finite rooted tree whose nodes are 
labeled by sets of processors. A node of H is called a group (in H). Assume G is a group. A subgroup 
of G is a node in the subtree with root G. A leaf group of G is a leaf of this tree. A processor p is 
contained in a group G if it is contained in (the label of) a leaf group of G. 

In the sequel we define inductively the actual group hierarchy and the notion of a maximally syn
chronous group w.r.t. this hierarchy. According to the inductive definition all processors in a maximally 
synchronous group are at the same program point. Also, each leaf group is a subgroup of a maximally 



www.manaraa.com

313 

synchronous group. A group G is called synchronous if it is a subgroup of a maximally synchronous 
group. H we loosely speak of a synchronous group G executing, e.g., a statement, we always mean that 
all the processors within G synchronously execute this statement. 

Before program execution, the group hierarchy H consists just of one group nwnbered 0 which 
contains a single processor also numbered 0. This group is maximally synchronous. At the end of 
program execution we again have this hierarchy H. 

Declaration sequences and statement sequences are executed by maximally synchronous groups 
(w.r.t. the actual group hierarchy). In the sequel G always denotes such a maximally synchronous 
group w.r.t. the actual group hierarchy and H the subtree with root G. The execution of declarations 
and statements may change the group hierarchy and the synchronism- but only within the subtree H. 
Therefore, we only describe these changes. 

3.1 Declarations 

In order to have e.g. dynamic arrays, the values of constants may not be computable at compile time 
and hence have to be determined at runtime. 

Assume G executes a declaration sequence 

<declaration> ; <decls> . 

Then G first executes the declaration <declaration>. During the execution of <declaration> the syn
chronism among the executing processors and the group hierarchy with root G may change. However, 
at the end of <declaration>, H is reestablished, and G is maximally synchronous again w.r.t. the actual 
group hierarchy. Now G starts executing <decls>. As in PASCAL, there are constant, type, variable, 
function and procedure declarations. Constant and variable declarations additionally have to deter
min~ the access type of the newly created data objects, i.e., whether they are private or shared. H a 
data object is declared private, a distinct instance of the object is created for every processor executing 
the declaration. H a data object is declared shared, each leaf group executing this declaration receives 
a distinct instance of this object, which is accessible by all the processors of this leaf group. 

Also, the return values of functions and the formal parameters of procedures and functions are 
treated differently to PASCAL: 

• In a function declaration we have to specify whether the return value should be treated as a 
private or as a shared value. H it is declared shared then it is shared relative to the leaf group 
which called the function. 

• Our language uses canst parameters instead of PASCAL's value parameters. 

• Every formal parameter has to be declared as private or as shared. 

3.2 Statements 

Assume G is a maximally synchronous group executing a statement sequence 

<statement> ; <stats> . 

Then G first executes the statement <statement>. During the execution of <statement> the synchro
nism among the executing processors and the group hierarchy H with root G may change. However, at 
the end of <statement>, H is reestablished, and G is maximally synchronous again w.r.t. the actual 
group hierarchy. Then G starts executing <stats>. 

Our language supports 6 kinds of statements: 

1. assignments 
2. branching statements (if and case statement) 
3. loop statements (while, repeat and for statement) 
4. procedure calls 
5. activation of new processors (start statement) 
6. splitting of groups into subgroups (fork statement) 

The statements of types 1-4 are similar to their counterparts in PASCAL. But due to the fact that there 
are usually several processors executing such a statement synchronously there are some differences in 



www.manaraa.com

314 

the semantics. 
The start statement allows the activation of new processors by need. If an algorithm needs a certain 

number of processors these processors are activated via start. When the algorithm has terminated, the 
new processors are deactivated and the computation continues with the processors that were active 
before the start. 

The fork statement does not change the number of active processors, but refines their division into 
subgroups. 

3.2.1 The assignment statement 

Assume an assignment statement of the form 

<expr> 1 := <expr> 2 

is executed. First all processors of G synchronously evaluate the two expressions (see Section 3.3). 
Each processor of G evaluates the left-hand side expression to a private or shared variable. Then the 
processors of G synchronously bind the value of the right-hand side expression to this variable. The 
effect of this is defined as follows: 

1. if the variable is private, then after the assignment it contains the value written by the processor. 

2. if the variable is shared, then the regime for solving write conflicts (see Section 2.5) determines 
the success or failure of the assignment, and, in case of success, the value to which the variable is 
bound. 

Example Assume that four processors numbered 0 - 3 synchronously execute the assignment 

:ll :=@ + u 
where z is a variable of type integer. The value of z after the assignment depends on whether z is 
declared as private or as shared. We list some cases below. 

1. z is a private variable. In this case there are four distinct incarnations of z. Then after the 
assignment z contains for each processor the value of the expression @ + U. 

2. the four processors form a leaf group and the variable z is shared relative to that leaf group. In 
this case the four processors write to the same variable and this write conflict is solved according 
to the regime for solving write conflicts (see Section 2.5). 

3. the four processors form two different leaf groups (i.e. processors 0 and 1 are in the first one, 2 and 
3 in the second one). Each leaf group has a distinct instance of the variable z. Then processors 
0 and 1 write to the same variable and so do processors 2 and 3. The regime for solving write 
conflicts determines the value of the (two distinct) variables z after the assignment. 

Above we have described the assignment of basic values. Our language supports assignment of 
structured values (e.g., a := b, where a and b are arrays of the same type), which is carried out 
component by component synchronously. 

3.2.2 The if statement 

Assume an if-statement 

if <expr> then <stats>1 else <stats>2 endif 

is executed. Then all processors of G first evaluate the expression <expr> synchronously. Depending 
on the result of this evaluation the processors synchronously execute the statements of the then or 
of the else part, respectively. Since different processors may evaluate <expr> to different values, we 
cannot make sure that all of them continue to work synchronously. The group hierarchies and the 
new maximally synchronous groups executing the then and the else part (if present), respectively, 
are determined according to the constants, variables and functions on which the expression <expr> 
"depends". Precisely, we say < expr> depends on a variable :r: if :r: occurs in < expr> outside any actual 
parameter of a function call. The case of constants and functions is analogous. We have to treat two 
cases: 



www.manaraa.com

315 

1. the expression does not depend on any private variables, constants, or functions. 

In this case we do not change the group hierarchy H. Only the synchronism among the processors 
may change. Consider a processor p of G. We choose as the maximally synchronous group 
containing p the maximal group gp of H which satisfies the following conditions: 

• gp is a subgroup (not necessarily a proper one) of G. 

• p is contained in 9p· 

• The condition <expr> does not depend on any shared variables or other shared data relative 
to a proper subgroup of 9p· Note that the return value of a shared function is a shared datum 
only relative to a leaf group (see Section 3.3). 

Under these conditions all processors in 9p evaluate <expr> to the same value. Therefore all 
these processors choose the same branch of the if statement and hence are at the same program 
point. 

Note that a processor outside of gP runs asynchronously with the processor p even if it evaluates 
expression <expr> to the same value. 

Example Assume that during program execution we have obtained the following group hierarchy. 

and that all processors execute synchronously the if statement 

if z = 5 then sl else s2 endif 

where an instance of z is a shared variable relative to G1 , and another instance of z is a shared 
variable relative to G2 • Then the processors of group G3 work synchronously with the processors 
of group G4 and the same holds for groups Gs and Gs, respectively. The processors of group 
G4 work asynchronously with the processors of group Gs even if the two instances of variable z 
contain the same value. 0 

When a processor of G has finished the execution of <stats> it waits until the other processors of 
G have finished their statement sequences. When all processors of G have arrived at the end of the 
if statement, G becomes maximally synchronous again. This means that even if two processors 
of G work asynchronously inside the if statement they become synchronous again after the if 
statement. 

2. The expression depends on private variables, constants, or functions 

In this case we cannot even be certain that all processors inside the same leaf group evaluate 
<expr> to the same value. In this case both the group hierarchy H and the synchronism are 
changed as follows. 

Each leaf group of G generates two new leaf groups: The first one contains all processors of the 
leaf group that evaluate <expr> to true, and the second one contains the rest. All new leaf 
groups obtain the group number of their father group. The new leaf groups become maximally 
synchronous. Thus, the processors inside the same new subgroup work synchronously, while the 
processors of different subgroups work asynchronously. 

Again, when a processor reaches the end of the if statement, it waits until the other processors 
reach this point. When all the newly generated leaf groups have terminated the execution of the if 
statement, i.e., when all processors have reached endif, the leaf groups are removed. The original 
group hierarchy H is reestablished and G is again maximally synchronous. 



www.manaraa.com

3.2.3 The while statement 

A while statement 

while <expr> do <stats> enddo 

is semantically equivalent to 

if <expr> then 
<stats>; 
while <expr> do <stats> enddo 

end if 

316 

Thus, its semantics is determined by the semantics of if-then-else and recursion. The semantics of 
other kinds of loops, e.g., for or repeat loops, may be reduced to the semantics of the while loop. 

3.2.4 Procedure calls 

Syntax and semantics of procedure calls are similar to those of PASCAL. There are some slight differences 
due to the fact that processors can access two different kinds of objects: shared and private objects. 
This imposes some restrictions on the actual parameters of a procedure call. One only has to be careful 
of the access types of formal and actual parameters: 

1. If a formal parameter is a shared-var-parameter then the corresponding actual parameter has to 
be a variable which does not depend on any private object, e.g., ar[P] is not allowed as an actual 
shared var parameter even if ar is a shared array. 

2. If a formal parameter is a private-var-parameter then the corresponding actual parameter can 
be a private or a shared variable. 

3. If a formal parameter is a shared-canst-parameter then the corresponding actual parameter may 
denote a private or a shared value. 

4. If a formal parameter is a private-const-paramenter then the corresponding actual parameter 
may denote a private or a shared value. 

The case where a formal shared-var-parameter is bound to a private variable is explicitly excluded 
since it allows some processor to modify the contents of this private variable, which may belong to 
a different processor. In contrast, in the case of a formal shared-canst-parameter the value of that 
formal parameter during the execution of the procedure is determined by the regime for solving write 
conflicts. This is done in the same way as when determining the value of a shared variable after the 
assignment of a private value (see Section 3.2.1). 

Assume the maximally synchronous group G executes a procedure call 

<name>(<expr>t•• •• , <expr>n). 

First the actual parameters <expr>1 , ... ,<expr>n are synchronously evaluated and bound to the 
corresponding formal parameters synchronously from left to right. Then G synchronously executes the 
procedure block, i.e. the declarations and the statements of that procedure. 

3.2.5 The start statement 

The start statement is used for activating new processors. The new processors are not allowed to access 
the private objects of the old processors. Therefore, statements inside the start statement should not 
refer to any private types, variables or constants, except @ and p, that are declared outside the start 
statement. 



www.manaraa.com

317 

When the processors of G execute the statement 

start [<expr>p.<expr>2] <stats> endstnrt 

they first evaluate the range <expr>1 .. <expr>2• This range must not depend on any private data. 
Thus, the evaluation gives for all processors in the same leaf group g the same range v9,h • •• , 1111,2 • At 
every leaf group g of G a new leaf group is added which contains v9,2 -v9 ,1 + 1 new processors numbered 
with the elements of { v9,1, ••• , v9,2}. The group numbers of the new leaf groups are the same as for 
their father groups. G remains maximally synchronous. Now G executes <stats>, which means that 
the new processors of the new leaf groups execute <stats> synchronously. When G reaches endstart, 
the leaf groups are removed, i.e. the original hierarchy H is reestablished. 

3.2.6 The fork statement 

The fork statement is used to generate several new leaf groups explicitly. The new leaf groups obtain 
new group numbers and the processors inside the new leaf groups are renumbered. 

Assume the processors of G execute the statement 

fork[<expr> 1 .. <expr>2J 
@ = <expr>3i 
d = <expr>4; 
<stats> 
endfork 

First each processor p o£ G evaluates the expressions <expr> 1, ••• , <expr>4• The expressions <expr>1 

and <expr>2 must not depend on any private data. Thus, all processors within the same leaf group g 
of G evaluate <expr>1 and <expr>2 to the same values v9 ,1 and 1111,2 respectively. At every leaf group g 
of G v9 ,2 -v9,1 + 1 new leaf groups are added which are numbered with the elements of {v9,1, ••• ,v9,2}• 

The new leaf group with number i is labeled by the subset of those processors of g which evaluate 
<expr>3 to i. Each of these processors obtains the value of <expr>4 as its new processor number. G 
remains maximally synchronous and executes <stats>. When G reaches endfork, the new leaf groups 
are removed, i.e., the original group hierarchy is reestablished. 

3.3 Expressions 

Syntax and semantics of expressions are similar to those of PASCAL. There are just two new predefined 
constants: the processor number d and the group number @, which both are private constants of type 
integer. Every processor of the maximally synchronous group G evaluates the expression and returns a 
value. The return value of a shared function is determined according to the choosen regime for solving 
write confiicts seperately for each leaf group of G and is treated as a shared object of this leaf group. 
Note that the evaluation of expressions may cause read conflicts, which are solved according to the 
choosen regime for solving read confiicts. 

Example 

shared var a: array[! .. 10] of integer; 

... := a[3]+3 

Determining the variables corresponding to the subexpression a(3] does not cause a read conflict, 
whereas determining the values of these variables may cause read conflicts. 0 

4 Implementation 

In this section we sketch some ideas showing that programs of FORK can not only be translated to 
semantically equivalent PRAM code, but also to code that runs efficiently. These considerations are 



www.manaraa.com

318 

supposed to be useful both to theoreticians and to compiler writers, who may have different realiza
tions of PRAMs available, possibly without powerful operating systems for memory management and 
processor allocation. 

Our basic idea. for compiling FORI{ is to extend the usual stack-based implementation of recursive 
procedure calls of, e.g., the P-machine [17] by a. corresponding regime for the shared data. structures, 
a synchronization mechanism, and a. management of group and processor numbers. Hence, here we 
address only the following issues: 

• creating new subgroups; 

• synchronization; 

• starting new processors with start. 

4.1 Creating new subgroups 

The variables which are shared relative to some group have to be placed into some portion of the shared 
memory of the PRAM, which is reserved for this group. Therefore, the crucial point in creating new 
subgroups is the question of how the subgroups obtain distinct portions of shared memory. There are 
(at least) two ways to do this with little computational overhead: 

1. by address arithmetic, as suggested in [5], 

2. taking into account that in practice the available shared memory always is finite, by equally 
subdividing the remaining free space among the newly created subgroups. 

The first method corresponds to an addressing scheme where the remaining storage is viewed as a 
two-dimensional matrix. Its rows are indexed by the group numbers, whereas the column index gives 
the address of a storage cell relative to a given group. For the second method the role of rows and 
colwnns are simply exchanged. In both cases splitting into subgroups can be executed in constant 
time. Also, the addresses in the physical shared memory can be computed from the (virtual) addresses 
corresponding to the shared memory of a subgroup in constant time. This memory allocation scheme 
is well suited to group hierarchies with balanced space requirements. It may lead to an exponential 
waste of space in other cases. Consider the following while loop, whose condition depends on private 
variables: 

while cond(U) do 
work( d) 

end do 

(1) 
(2) 
(3) 

Whenever the group of synchronously working processors executes line (1), it is subdivided into 
two groups, one consisting of the processors that no longer satisfy cond(d), and one consisting of 
the remaining processors. Hence, the first group needs no shared memory space (besides perhaps 
some constant amount for organizational reasons); a fair subdivision into two equal portions would 
unnecessarily halve the space available to the second group to execute work(U) of line (2). 

However, there is an immediate optimization to the above storage distribution scheme: we attach 
only a fixed constant amount of space to groups of which it is known at compile time that they do not 
need new shared memory space, and subdivide the remaining space equally among the other subgroups. 

This optimization clearly can be performed automatically for loops as in the given example, but also 
for one-sided ifs, or ifs where one alternative does not involve blocks with a non-empty declaration 
part. 

4.2 Synchronization 

In order to reestablish a group g, the runtime system has to determine when all the subgroups of group 
g have finished. This is the termination detection problem for subgroups. 

If all processors run synchronously, no explicit synchronization is necessary. In the general case 
where the subgroups of group g run asynchronously, there are the following possibilities for implementing 
termination detection: 



www.manaraa.com

319 

1. Use of special hardware support such as a unit-time fetch&add operation which allows the pro
cessors within a group to simultaneously add an integer to a shared variable. 

2. Static analysis (possibly assisted by user annotation); most of the PRAM algorithms published 
in the literature are of such a simple and regular structure that the relative times of execution 
sequences can be determined in this way. 

3. Use of a termination detection algorithm at runtime. The latter is always possible; however, 
complicated programs cheating a static analyzer will be punished by an extra loss of efficiency. 

4.3 Starting new processors 

The following method which is analogous to the storage distribution scheme works only for concurrent
read machines with a finite number of processors. Before running the program, all processors are 
started, all of them with processor number p = 0. If in a subsequent start statement of the program 
fewer processors are started than what are physically available in the leaf group executing this statement, 
then several physical processors may remain ''identical", i.e., receive the same new processor number. 
These identical processors elect a ''leader". All of them execute the program but only the leader is 
allowed to perform write operations to shared variables. Consider the following example. Assume that 
we are given 512 physical processors. 

start [0 .. 127] 
if p < 64 then 

start [0 .. 212] 
compute(212) 

ends tart 
endif 

ends tart 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 

Before line (1), all the 512 physical processors are started. After line (1), there are always four processors 
having the same processor number p, Having executed the condition of line (2) all the processors whose 
processor number is less than 64 enter the then part: these are 256. All of them are available for the 
start instruction of line (3), where they receive the new numbers 0, ... , 212. Two physical processors 
are assigned to each of the first 43 logical processors whereas one physical processor is assigned to 
each of the remaining 170 logical processors. The original processor identities are put onto the private 
system stack. When the endstart in line (5) is reached, the processors reestablish their former processor 
numbers. 

If more processors are started than physically available in the present group, then every processor 
within that group has to simulate an appropriate subset of the newly started processors. 

In both cases start can be executed in constant time by every leaf group consisting of a contiguous 
interval of processors: this is the case, e.g., for starts occuring in the statement sequence of the toplevel 
block. Thus, a programming style is encouraged where the logical processors necessary for program 
execution are either started at the beginning, i.e., before splitting the initial group into subgroups, or 
are started in a balanced way by contiguous groups. 

To maximally exploit the resources of the given PRAM architecture, a programmer may wish to 
write programs which use different algorithms for different numbers of physically available processors. 
Therefore, a (shared) system constant of type integer should be provided, whose value is the number 
of physical processors available on the given PRAM. This allows programs to adopt themselves to the 
underlying hardware. 



www.manaraa.com

320 

References 

[1] F. Abolhassan, J. Keller, and W.J •. Paul. On physical realizations of the theoretical PRAM model. 
Technical Report 21/1990, Universitii.t des Saarlandes, SFB 124, 1990. 

[2] A.V. Aho, J.E. Hopcroft, and J.D. illlman. The Design and Analysis of Computer Algorithms. 
Addison-Wesley, Reading Massachusetts, 1974. 

[3] S.G. Akl. The Design and Analysis of Parallel Algorithms. Prentice Hall, 1989. 

[4] Y. Ben-Asher, D.G. Feitelson, and L. Rudolph. ParC- An extension of C for shared memory 
parallel processing. Technical report, The Hebrew University of Jerusalem, 1990. 

[5] P.C.P. Bhatt, K. Diks, T. Hagerup, V.C. Prasad, S. Saxena, and T. Radzik. Improved deterministic 
parallel integer sorting. Information and Computation, to appear. 

[6] A. Borodin and J.E. Hopcroft. Routing, merging and sorting on parallel models of computation. 
J. Camp. Sys. Sci. 30, pages 130 - 145, 1985. 

[7] M. Dietzfelbinger and F. Meyer auf der Heide (ed.). Das GATT-Manual. In: Analyse paralleler 
Algorithmen unter dem Aspekt der lmplementierbarkeit auf verschiedenen parallelen Rechenmod
ellen. Technical report, Universitii.t Dortmund, 1989. 

[8] F.E. Fich, P. Ragde, and A. Widgerson. Simulations among concurrent-write PRAMs. Algorith
mica 3, pages 43- 51, 1988. 

[9] S. Fortune and J. Wyllie. Parallelism in random access machines. In 10th ACM Symposium on 
Theory of Computing, pages 114-118, 1978. 

[10] N.H. Gehani and W.D. Roome. Concurrent C. In N.H. Gehani and A.D. McGettric, editors, 
Concurrent Programming, pages 112-141. Addison Wesley, 1988. 

[11] A. Gibbons and W. Rytter. Efficient Parallel Algorithms. Cambridge University Press, 1988. 

[12] T. Hagerup, A. Schmitt, and H. Seidl. FORK - A high-level language for PRAMs. Technical 
Report 22/1990, Universitiit des Saarlandes, SFB 124, 1990. 

[13] P.B. Hansen. The programming language Concurrent Pascal. IEEE Transactions on Software 
Engeneering 1(2), pages 199-207, June 1975. 

[14] H.F. Jordan. Structuring parallel algorithms in a MIMD, shared memory environment. Parallel 
Camp. 3, pages 93-110, 1986. 

[15] Inmos Ltd. OCCAM Programming Manual. Prentice Hall, New Jersey, 1984. 

[16] United States Department of Defense. Reference manual for the Ada programming language. 
ANSI/MIL-STD-1815A-1983. 

[17] St. Pemberton and M. Daniels. Pascal implementation: The P4 compiler. Ellis Horwood, 1982. 



www.manaraa.com

NEURAL NETWORK-BASED DECISION MAKING FOR 
LARGE INCOMPLETE DATABASES 

A. R. Hurson, B. Jin and S. H. Pakzad 
Department of Electrical and Computer Engineering 

The Pennsylvania State University 
University Park, PA 16802 

Abstract 

As an extension to the relational algebra, maybe algebra operations have been proposed to handle 
incomplete information. Such a set of operations allows the user to investigate the potential set of data 
values ( i.e. tuples ) to draw his/her own conclusions. However, maybe algebra operations could return 
nonrelevant data, generate low quality results, and offer low physical performance. Hence, it is 
appropriate to design a scheme to investigate the results generated by the maybe operations, in order to 
improve the data quality and performance of large databases. Such a mechanism should be dynamic to 
adjust itself according to the user's query and the characteristics of the underlying databases. In this paper, 
an artificial neural network-based decision support system for handling large databases containing 
incomplete information is proposed. It is a subsystem which learns and constructs a knowledge base to 
filter out the data that is not of any importance to the user. The network accomplishes the decision-making 
task in a massively parallel manner. This paper also discusses the implementation of the decision-making 
network based on the VLSI design of a Basic Neural Unit (BNU). Using a weight-centered design 
principle, BNU can be expanded and reconfigured to satisfy the requirements of the underlying 
environment 

I. Introduction 

Missing information presents a problem for any data model. Such a data value can be interpreted as 
the "value at present unknown". The inclusion of missing information provides unknown data for the 
attributes in a database. Within the scope of relational model, a partial tuple is the one that contains one or 
more incomplete (null) data. A tuple is said to be total if it contains no null values. Similarly, a relation is 
total if all of its tuples are total. As the relational database model has matured, researchers have examined 
the question of how to handle missing data [2,4,5,6,8,9,14,15]. The extensions of relational algebra have 
been addressed in [4,8,9,15]. This study is based on Codd's maybe algebra[4] which adopts a three
valued logic for handling partial relations. Such an extended capability allows the user to probe the 
database for potential data relationships that might be useful but can not be retrieved by true relational 
algebra. 

While such a set of maybe operations brings a better information utilization, it also has drawbacks. 



www.manaraa.com

322 

For example, maybe join operator has the potential to return nonrelevant data relationships which are not 
defined according to the semantics of the underlying database. Moreover, it might generate extremely large 
result relations, which could cause drastic degradation in performance if most of the resultant tuples are not 
of interest to the user. [8] shows that the loss in physical performance is paralleled by a loss in logical 
performance. Zaniolo's generalized join [19] removes the join over two nulls, but it still has the potential 
to produce extremely large relations. 

What is needed then is a dynamic mechanism which functions as a frlter with learning capability to 
adjust itself according to the specific characteristics of the underlying database and the requirement of the 
user's query. To fulfill the requirement of such a dynamic mechanism, we propose a neural network-based 
decision support system. The neural network-based approach has advantages over conventional 
knowledge-based systems, due to its strong dynamic and self-adaptive characteristics [7]. In a neural 
network, learning algorithm sets the connection strengths to their appropriate values based on valid 
input/output pairs (i.e. training pairs) [1]. In this way, the network learns and constructs a knowledge base 
to filter out the useless information. This paper will explore these points and will show how a knowledge 
acquisition model can be built for the decision-making network. 

The dynamic nature of the databases and user's query require expandability and reconfigurability at 
the underlying decision-making network. Such a requirement creates a major problem for the traditional 
neuron-centered design techniques. In this paper, a weight-centered design principle is used instead, 
which yields a high parallelism and reconfigurability for the constructed networks. A Basic Neural Unit 
(BNU), based on the weight-centered approach, is designed to be used as basic building block in the 
construction of an expandable and reconfigurable decision-making network. 

This paper is organized as follows: Section 2 overviews the concept of neural network-based 
decision support system. The VLSI design of BNU and the construction of a decision-making network 
using BNUs are discussed in Section 3. Section 4 presents the simulation results to analyze the 
performance of the proposed decision support system. Finally, Section 5 concludes the paper. 

II. A Neural Network-Based Decision Support System 

The maybe operations could offer a low-level logical and physical performance. To improve such a 
behavior, it is desired to build an intelligent mechanism which can make appropriate judgments over the 
resultant tuples, i.e., filtering out low quality and erroneous data and providing higher quality result to the 
user. To achieve such a goal, we propose a neural network-based decision support system, as shown in 
Figure 1. This system learns, adjusts and adapts itself to make certain decisions by applying its learned 
knowledge to the real database environment. 

The neural network-based decision support system is composed of four modules: i) decision
making network; ii) knowledge acquisition; iii) decision-controlled buffer; and iv) user-system interface. 

2.1 Adaptive Learning and Decision-Making Network 
This module is a three layer neural network, an input layer, a hidden layer, and an output layer 

(Figure 2). The decision-making network is characterized by a set of neurons, pattern interconnection, 
propagation rule, output function, and learning rule. It is a fully connected network, i.e., all input units are 
connected to all hidden neuron-units, and all hidden neuron-units are connected to all output neuron-units. 



www.manaraa.com

323 

A Relational Database System 
Maybe Result outputs 

(Enhanced with maybe algebra) 

t , 

Knowledge , r 
Acquisition 

Knowledge 
Precomp111ng 

Knowledge-Base 
~ Adaptive Learning 

I D-Table I "' 0 & I K-Table I Tra1n1ng 
Pa1rs . Decision-Making 

(Buffer) C'> 

~ 
c: 

• :5 Network 
"' L.. 

Tra1n1ng-Pa1r 
1-

Formation 

( User-query 
Interpreter 

- drop/keep , r 
Training-pair 

Generator L.( Decision-Controlled ) Burrer 

( User-system Interface 

? ? ? ; 

Figure 1. A neural network-based decision support system 



www.manaraa.com

324 

No computation function is performed by the units of the input layer. They simply distribute an input 
pattern to the hidden layer. Input is a binary bit pattern, representing the resultant tuples generated by 
maybe operations, such as maybe join. Each input unit can take a value of either "I" (meaning known 
attribute value) or "0" (meaning unknown or null attribute value). The number of input units in the 
decision-making network varies with the number of attributes in the resultant tuple. The proposed 
decision-making network is designed to have a reconfigurable architecture in both software simulation and 
hardware implementation [7]. Hidden neuron-units compose a layer of abstraction, putung features from 
the input pattern[ll,l3,16,18]. In the decision-making network, the number of hidden units is also 
adjustable [7]. The decision responses are shown in the output layer. It represents the classification 
associated with each input pattern. Classifications (or network outputs} are binary and can be interpreted as 
categories. The leftmost output unit, in Figure 2, represents the "keep" decision, which means that the 
associated input tuple should be passed to the user for its high quality information: while the rightmost unit 
represents the "drop" decision due to the low quality and/or erroneous information. Besides these two 
categories, we can derme certain intermediate categories representing some degree of data quality. This will 
provide the user a more flexible "keep"f'drop" range. It can be recognized as a flow-controlled mter which 
controls the quantity (as well as the quality} of the filtered tuples. Hence the number of output neuron-units 
should also be adjustable. 

The decision-making network functions in either of the two operation modes, learning mode or 
decision-making mode. When the network works in the teaming mode, it receives a number of training 
pairs from the knowledge acquisition module. Each training pair consists of a known input pattern and a 
desired output pattern. Using supervised learning algorithm of the "generalized delta rule", the network 
adjusts its weights so that it can respond to the input patterns as closely to their respective desired 
responses as possible. Once the network is trained, it is ready to switch to the decision-making mode. 
Working in the decision-making mode, the network receives input patterns generated by maybe operations. 
and responds to the closest classification (e.g. "keep", "drop", etc.). Generalization is considered to be 
successful if the network responds correctly, with high probability, to input patterns that were not 
included in the training set [11]. The decision made by the network is transferred to decision-controlled 
buffer as a control signal • 

2.2 Knowledge Acquisition 
The goal of knowledge acquisition in the decision support system is to gather a set of training pairs 

for the decision-making network. In the knowledge acquisition module, knowledge can be obtained from 
the database semantics, i.e. data dependency relationships and key attributes. Decision-making process 
requires to understand the semantics of the underlying database as well as the requirements of the user's 
query. We propose a two-level hierarchical knowledge acquisition module for the decision support system 
(Figure 1}. In the first level, knowledge can be acquired by extracting relationships that are 
implicitly/explicitly defined in a database system, independent of the user's query. This can be done by a 
knowledge precompiling uniL It provides long-term knowledge with a strong portability. However, to 
form the training pairs proper information should be also extracted from the user's query. This part of the 
knowledge can be extracted by a user-query interpreter unit in the second level of knowledge acquisition. 
In this level, knowledge acquisition takes place after a query is submitted. The acquired knowledge, 
referred to as short-term knowledge, differs from query to query and can not be shared. Since we assume 
that the knowledge-base is constructed in advance, only the speed of the short-term knowledge acquisition 
could affect the performance of knowledge acquisition module in the real-time situation. 



www.manaraa.com

325 

keep_,) "--drop 

• m = null value 

Figure 2. A neural natworlc:-based decision-making netwodc 

Input pattern 

Input units 

hidden 
neuron-units 

output 
neuron-unl ts 

output pattern 
(decision categories) 



www.manaraa.com

326 

Level 1: Knowledee Precompiline 
In the decision support system, accumulating useful information directly from the underlying 

relational database system and reorganizing it for the formation of training pairs, is referred to as 
knowledge precompiling. Two concepts in a relational database system form the theoretical foundation for 
knowledge precompiling: data dependencies and key attributes . The knowledge base consists of a D-table 
and a K-table. D-table stores the knowledge captured by analyzing the data dependency relationships. A 
K-table is constructed as part of the knowledge base to store the knowledge acquired from various kinds 
of key attributes, i.e., candidate keys (including primary keys, alternate keys) and foreign keys [17]. 

Leyel 2: 'Ifajnlne-Pair Formation 
The second level of the knowledge acquisition is the training-pair formation. Each time a query is 

submitted to the system, a set of training pairs ought to be generated based on the user's query. A user
query interpreter is designed to analyze and recognize the set of query dependent information needed to 
generate the training pairs. Consequently, the long term and short term knowledge are used, along with a 
set of heuristic criteria, to form the training pairs. This set of heuristic rules is determined by a careful 
analysis of the user's requirements and the semantics of the database, such as: 

• If a resultant tuple has null values for all the candidate keys, then the decision should be "drop". 
• If a resultant tuple has null value for the primary key attribute, but with one of the alternate keys 

defined, then the decision should be "keep". 
• If, in the resultant tuple, attribute A functionally determines attribute B, and A is null, then the 

tuple should be "dropped". 
• Under the previous dependency condition, if A is defined, but B is null, then this tuple should be 

"kept" . 

• 
• 

These guiding criteria should be enforced by the system designer. Moreover, it should be flexible 
enough to satisfy the requirements of the ever changing environment. Finally, all generated training pairs 
are stored in a training-pair buffer to be sent to the decision-making network. 

2.3 Decision-Controlled Buffer 
Decision-controlled buffer is a delay device which simply holds the resultant tuples and waits for 

the output from the decision-making network. By the time when a decision arrives, the buffer will either 
pass a resultant tuple to the user (if a "keep" decision was made) or filter out the tuple (if a "drop" decision 
was made). The delay time would depend on the execution speed of the decision-making network. 

2.4 User-System Interface 
It functions as an interface between the user and the decision support system. It provides a 

convenient communication environment for both the user and the system. It explains the result to the user, 
and more importantly, links the user to the knowledge acquisition module through a dialogue system. 



www.manaraa.com

327 

III. Implementation of Decision-making Network Using BNU Chips 

Software simulations have been conducted to demonstrate the feasibility of the proposed decision 
support system, e.g., the decision-making network and the knowledge acquisition modules[?]. 
Simulations were run to investigate two performance parameters, the accuracy and the training time of the 
decision-making network. As a result, the design of such a decision support system was verified by the 
obtained avemge accumcy of network response between 70 percent to 97 percent. It was shown that the 
decision-making network converged within short training times. As part of the simulation, it was 
demonstrated that these two parameters are also a function of the number of hidden units[?]. While the 
simulation results have shown the feasibility of the proposed scheme, it did not give any insight regarding 
the parallel capability of the proposed decision-making network. To demonstrate the parallel capability of 
the proposed decision-making network, a Basic Neural Unit (BNU) was designed and fabricated. The 
BNU is used as the basic building block in the construction of a decision-making network. The 
effectiveness of parallel processing in decision support was exploited by hardware implementation of the 
decision-making network. 

3.1 The VLSI Design of BNU(Basic Neural Unit) chip 

Neuron-centered Design v.s. Weight-centered Design 

The decision-making network is composed of a set of processing elements (PEs) and the synaptic 
weight interconnections. Each PE simulates a neuron which sums all the weighted inputs from other PEs 
(neurons). Typically, this is a neuron-centered PE, as shown in Figure 3(a). In neuron-centered design, 
once a PE or a set of PEs is implemented, it is usually difficult to expand the size of the network with the 
increased number of inputs. For example, by combining two networks of Figures 3(b) and 3(c), an 
expanded 9-input, 3-output, three layer network can be constructed, as shown in Figure 3(d). However, 
such a small scale expansion requires 36 additional interconnections. In VLSI implementation, the 
requirement for additional connections complicates the design strategy where strong modularity, 
expandability and reconfigurability are necessary. 

Due to this restriction we propose a new approach, namely weight-centered design. Figure 4(a) 
shows a 4-input, !-output weight-centered processing element. It consists of 4 weight units, 1 
accumulator, and a nonlinear function unit. It is functionally equivalent to a 4-input, !-output neuron
centered PE. Each weight unit stores a weight value. Similar to a neuron-centered PE where each weight 
value has an associated input, in a weight-centered PE each input should be received by its associated 
weight unit to form the weighted input value that is shifted down to the accumulator. The accumulator then 
sums all the weighted inputs and sends the result to a nonlinear function unit to genemte the final output. 
In the proposed weight-centered PE, two ports are left open for the purpose of expansion and 
reconfiguration. Horizontally, inputs can be sent to more weight units to increase the number of output 
neurons. For example, by adding another set of weight units, the network of Figure 4(a) can be expanded 
to a 2-output processing unit (Figure 4(b)). In this way, the number of output neurons can be easily 
expanded and reconfigured. Vertically, weight-centered PEs can be stacked up to increase the number of 
input neurons. Figure 4(c) shows an 8-input, !-output processing unit. Note that the nonlinear function 
unit is not a part of the basic building block, it is required only at the final output. 

To form a multilayer decision-making network, weight units are divided into groups, called layer-



www.manaraa.com

328 

(a) A neuron-centered processing element 

Input Input 

output 
(b) A 4-input, 1-outputthree-layer network (c) A 5-iupUL, 2-output three-layer network 

Input 

output 

{d) A 9-input, 3-output three-layer network constructed by combining (b) and (c) 

Figure 3. Neuron-centered design of decision-making networks 



www.manaraa.com

pu1Lol oulpul rrom other 1'1!1 

e 
~ 
9 
i 
.9 

0 - welghl•nil 

® ...... KCUmulltor 

329 

"'\1 ~ non II neAl" function unit 

ou1pu1 
(a} A weight-centered processing element 

parllot oulpou rrom other 1'1!1 

= 0.. 

.:1 .!3 
c. 

l ~ 
9 
;; 
0.. 
.9 

parllol OUipUI from other 1'1!1 

i 
.9 

OUipol 

i 
~ 
9 

i .e 

(b) A 4-input, 2-output, two layer network 

(d) An expanded 3-input, 1-output, four layer network 

OUipUI 

(c) An expanded 8-input, I -output, two layer network 

Figure 4. Weight-centered design of decision-making networks 



www.manaraa.com

330 

to-layer board. Each group (board) represents weight units between each two adjacent layers. For 
example, Figure 4(d) is a four layer network constructed by using weight-centered design principle. 

The Design of Baste: Neural Unit CBNUl 
Weight-centered design technique is promising due to its modularity and expandabiUty. In contrast 

to the neuron-centered design, it simplifies the inter-neuron connections especially when expanding a 
network. Based on the concept of weight-centered design, a Basic Neural Unit (BNU) was proposed and 
fabricated. Besides the expandability and reconfigurability, embedding more weight units into a single 
silicon chip serves the main objective in designing the BNU. Due to the fabrication process available to us, 
a BNU consisting of 30 weight units, 10 inputs and 3 outputs was fabricated by the mM corporation. A 
photomicrogragh of BNU chip is shown in Figure S(a). BNU is packaged in a 120-pin package. The 
BNU chip has a maximum time delay of 153.6 ns to generate the partial output sums. 

Figure S(b) shows the circuit schematic of a BNU chip. Each BNU forms three identical and 
independent processing strings, i.e., three weight groups, running in a parallel fashion. W' s represents the 
weight input The 10 inputs are denoted by a's. b(k+1) is the output And, b(k) represents the partial 
output coming from other BNU chip when more than one BNU are used in constructing a network. One 
weight group is functionally equivalent to a neuron-centered PE which has 10 inputs and 1 output The 
BNU works in two functional modes. It first enters the initialization mode in which weight values are 
loaded into three weight groups, then it is switched to the execution mode in which three groups receive 
the same set of inputs, and generate three outputs. Figure S(c) demonstrates the detail schematic of one 
weight group in a BNU chip. The 10 weight units are implemented as shift registers. At the top is a 
multiplexing register that can either load the weight values during the network initiaUzation or form the 
WEIGHT ITERATION LOOP when the network is in the execution mode. Each group is augmented by 
two more multiplexing registers. One is used to receive the INPUT via an enable input ("en"). It either 
passes a weight value to the adder if the input value is "1" or rejects it (i.e. sends out a "0'') if the input is 
"0". Another multiplexing register is used to loop back the partial sum of weighted inputs to form the 
ADDrnON LOOP. With the help of these two registers, the adder generates a partial sum output of 10 
weighted inputs. The latter register is also responsible for receiving partial output from another BNU and 
pass to the adder if more than one BNU are used in the network. It is noted that because of our limited 
fabrication process, the "a" values are passed in sequential fashion. Naturally, such approach has affected 
the execution time of the chip. 

3.2 Constructing a Decision-making Network with BNU Chips 
Varying physical characteristics of databases and dynamic nature of the user's queries require 

varying number of neurons on input, output and hidden layers. As a result, the supporting decision
making network should have the ability to be reconfigured to satisfy the requirements of the user's query. 
This can be accomplished by using BNU chips as basic building blocks in the construction of a decision
making network. On one hand a BNU itself forms a 10-input, 3-output, two layer network, on the other 
hand it can be connected with other BNUs to construct a larger network. 

Each BNU chip is a 10-input, 3-output, two layer network. By adding another BNU chip along 
the vertical direction (i.e., the P ARI1AL SUM OUTPUT of one BNU is connected to the PARTIAL SUM 
INPUT of another BNU), it can be extended to a 20-input, 3-output module. By the same token, attaching 
one BNU to another in the horizontal direction will extend the network to a 10-input, 6-output module. 
For example, Figure 6(a) depicts a 4 connected BNUs on the input-to-hidden layer board which forms 20 



www.manaraa.com

331 

bl(k) b2(k) bl(k) 

(a) Photomicrograph of a BNU chip (b) Circuit schematic of a BNU chip 

INPliT 

alO, a9, .. .... , a2, at 

PARTIAL SUM INPlJf 
from an<>1ber BNU 

PARTIAL SUM OliTPliT 

(c) single weight group in a BNU chop 

Figure 5. VLSI design of a Basic Neural Unit (BNU) chip 



www.manaraa.com

332 

input lnyer-to-bidden layer board 

12outputs 

(a) A three layer network constructed by 8 BNU chips with 20 inputs and 12 outputs. 

18 outputs 

(b) A three layer network constructed by 18 BNU chips with up to 30 inputs and 18 outputs. 

input Jnycr-to-hiddcn-1 layer board 

hidden-l-to-bidden-2 

18outputs 

(c) A four layer network constructed by 48 BNU chips with up to 40 inputs and 18 outputs. 

Figure 6. Constructing a decision-making network using BNU chips 



www.manaraa.com

333 

inputs and 6 outputs. In general, adding a "row" of BNUs in the vertical direction of a network can 
increase the number of inputs by 10, while adding a "column" of BNUs in the horizontal direction can 
increase the number of outputs by 3. Figure 6(b) shows a 30-input, 9-output, two layer network on the 
input layer-to-hidden layer board. 

The proposed BNU can be used to expand the number of layers in a multilayer network through 
the use of layer-to-layer board. In general, each two-layer network forms a group of BNUs which are 
mounted on a circuit board, called a layer-to-layer board. For example, in Figure 6(a) two layer-to-layer 
boards, an input-to-hidden layer board and a hidden-to-output layer board, are used to obtain a three layer 
networlc. When connecting the two, the number of outputs in the first group should match up with the 
number of inputs in the second group. Note that the second group has 10 inputs and 12 outputs. 
However, only 6 inputs are used to match the 6 outputs generated by the first group. 

When expanding a multilayer network, the same design principle can be applied to an individual 
layer board. As an example, Figure 6(b) is an expanded three layer network based on the one shown in 
Figure 6(a). On the input-to-hidden layer board, a row of BNUs is added to increase the number of 
input neurons by 10. Adding another column of BNUs, the number of hidden neurons can be extended to 
9. On the hidden later-to-output layer board, 2 more BNUs are used in order to form 18 outputs. 
Moreover, adding one more layer board will increase one layer in the decision-making networlc. Figure 
6(c) demonstrates the construction of a four layer network consisting of 3 layer-to-layer boards. It can be 
easily observed that the network has maximum 40 input neurons, 21 neurons on the first hidden layer, 9 
neurons on the second hidden layer, and 18 output neurons. 

I'V. Performance Analysis and Simulation Results 

A number of simulation runs have been conducted to show the feasibility of the proposed decision 
suppon system. A generator was developed to generate two relations -- student relation and company 
relation. The student relation contained the social security number, class standing, major, area of interest, 
and GPA. The company relation was composed of company's name and it's hiring requirements (e.g., area 
of interest. major, minimum required GPA). 

The simulation is based on the following assumptions: 

1. The entire database resides in memory. 
2. There are 138 majors offered. 
3. There are approximately 600 areas of interest 
4. There are 500 tuples in the student relation, and SO tuples in the company relation. 

The simulation was run based on four different classes of queries, to represent a variety of join 

operations (i.e., join over single and multiple attributes, 9-join and attribute maybe join): 

Query class 1 --- The first class of queries was performed using the company's hiring area of 
interest and a student's area of interest as the join attribute. The null value in the 
student relation simply meant that the student was not sure about his/her area of 
interest was. 



www.manaraa.com

334 

Query class 2 -- The second class of queries concerns only those students wbo satisfted the 
minimum GPA requirement for hiring, i.e., a company's minimum GPA 
requirement In this type of queries, the company's minimum GPA had a domain 
from 2 to4. 

Query class 3 --- The third class of queries was performed using area of interest. major, and the 
GPA as join attributes. Even if a student doesn't know hislher area of interest, the 
student's GPA and major might satisfy a company's criteria and therefore should be 
considered. 

Query class 4 --- The fourth class of queries was based on the attribute maybe-join on major and 
area of interest 

The following table lists some information about the simulation results: 

Query Total tof t of training I of Correct t of Incorrect Al:cUnJt::y 01 

class Resultant Tuples pairs Generated Decisions Decisions 

1 608 98 458 150 75..33% 

2 412 76 357 55 86.85% 

3 337 55 274 63 81.31% 

4 153 28 114 39 74.51% 

In the above table, the training pairs for each query class were generated by the knowledge 
acquisition module. As a verification of the performance of this module, the decision-making network 
achieved an accuracy of response between 74% to 86%. The higher accuracy obtained in query class 2 is 
mainly due to the high quality of ttaining pairs. The issue or how to improve the quality of training pairs is 
Wlder the consideration. 

1b investigate the performance improvement of the proposed BNU-based network apinst software 
simulator, the simulation was run based on the characteristics of fabricated BNU chip. Three layer 
decision-making network was used for all four query classes, while the size of the network: varies among 
different classes, depending on the length of the resultant tuple. Figure 7(a) shows the simulation results. 
Note that the length of the resultant tuples or query class 1 is the longest among all. Therefore, class 1 
requires the longest decision-making time. Moreover, the time difference between hardware and software 
implementation tends to be larger when the length of the resultant tuple is longer, i.e., the size of the 
decision-making network is larger. In another word. the length of the resultant tuple affects the decision
making time required by the software more than it affects the hardware. In a separate simulation run the 
accuracy of knowledge acquisition module was analyzed based on the size of the training-pair set for each 
query class (Figure 7{b)). We observed that the size is a function of the length of the resultant tuples. As a 
result, for query class 1 the module was able to generate more training pairs than the other classes of 
queries. This is due to the fact that for relations with larger length the module can extract more short-term 
and long-term knowledge. In addition, as can be observed the accuracy after a certain point, is a function 
of the number of training pairs. This can be interpreted that too many training pairs will bring too much 
noise which would degrade the accuracy of the network responses. On the other hand, fewer number of 

training pairs may decrease the generalization ability of the network which will also affect the accuracy. 



www.manaraa.com

335 

7 

i • 6 

8 5 .:: .e ........ • Hardware 
. ~!! 4 • sortware 
~:I • '0·9 3 • a.§. 
"'" ... 2 • • ~ • • • 

0 
0 2 3 4 s 

Query classes 

(a) Time required for decision-making 

100 

~ 
8. 80 
i! 
~~ 60 
~&'o ------ Overy class I 
8~ 

40 -- Overy class 2 

~~ 
_,_ .. ___ 

Overy class 3 -- Overy class 4 

~ 20 

~ 
o ~~~~~~~~--~~~~~~~ 

0 ~ 100 ·~ 
Number of training pairs 

(b) Accuracy led by the size of the set of training pairs 

Figure 7. Some simulation results and perfonnance analysis 



www.manaraa.com

336 

V. Conclusion 

A neural network-based decision support system for handling large databases containing 
incomplete information is proposed. The major difficulty which hinders the use of maybe algebra 
operations is due to its tendency in generating large volume of low quality resultant data. It is the learning 
capability and strong dynamic self-adaptive nature of a neural network which make it effective to filter out 
low-quality tuples and extract higher-quality ones. 

The design of the proposed decision support system has resulted in a model consists of four 
modules: adaptive learning and decision-making network (neural network), knowledge acquisition 
module, decision-controlled buffer, and user-system interface. The principle of operation of each module 
and the interrelationships among modules have been discussed. The VLSI implementation of a Basic 
Neural Unit based on the concept of weight-centered design was addressed. It was shown that BNU 
offers a high degree of modularity, expand ability and reconfigurability if it is used as the basic building 
block of the proposed decision-making network. The execution time and accuracy of the proposed 
decision-making network based on the architectural features of the implemented BNU chip was simulated 
and analyzed. In addition, we have shown that these performance measures are directly related to the 

length of the input data. 

References 

[1] 

[2] 

[3] 

[4] 

[5] 

[6] 
[7] 

[8] 

[9] 

[10] 

[11] 

[12] 

[13] 

Below, R.K., "Designing Appropriate Learning Rules for Connectionist Systems," in 
Proceedings, ffiEE first International Conference on Neural Networks, June 1987, pp. ll479-
ll486. 
Biskup, J., "A Foundation of Codd's Relational Maybe-Operations," ACM Transaction Database 
Systems, Vol. 8, No. 4, 1983, pp. 608-636. 
Burr, D.J., "A Neural Network Digit Recognizer," in Proceedings of the ffiEE Conference 
on Systems, Man, and Cybernetics, 1986, pp. 1621-1625. 
Codd, E.F., "Extending the Database Relational Model to Capture Meaning," ACM Transactions 
on Database Systems, Vol. 4, No. 4, 1979, pp. 397-434. 
Codd, E.F., "Missing Information {Applicable and Inapplicable) in Relational Databases," 
SIGMOD Record, Vol. 15, No.4, 1986, pp. 53-78. 
Grant, J., "Null Values in a Relational Database," Information Processing Lett. 6 (1977) 156-157. 
Jin, B., and Hurson, A.R., "Neural Network-Based Decision Support For Incomplete Database 
Systems," Proceedings of Analysis of Neural Net Applications Conference, ANNA-91, May 
1991, To appear. 
Hurson, A.R., Miller, L.L. and Pakzad, S.H., "Incomplete Information and the Join Operation in 
Database Machines," Proceedings of Fall Joint Computer Conference, 1987, pp. 436-443. 
Hurson, A.R., and Miller, L.L., "Database Machine Architecture for Supporting Incomplete 
Information,'' Journal of Computer System Science and Engineering, Vol. 2, No. 3, 1987, pp. 
107-116. 
Jin, B., and Raggad, B., "A Reconfigurable Architecture for A VLSI Implementation of Artificial 
Neural Networks," Proceedings of 1990 International Neural Network Conference (INNC 90), 
Paris, July 1990, pp. 665-668. 
Kohonen, T., "State of the Art in Neural Computing," In Proceedings, IEEE Frrst International 
Conference on Neural Networks, June 1987, pp. 179-I90. 
Lendaris, G.G., "Neural Networks, Potential Assistants To Knowledge Engineers", The 
Journal of Knowledge Engineering, Vol. 1, No. 3, Dec. 1988, pp 7- 18. 
Lippermann, R.P., "An Introduction to Computing with Neural Nets," ffiEE ASSP Magazine, 
April1987, pp. 4-22. 



www.manaraa.com

[14] 

[15] 

[16] 

[17] 

[18] 

[19] 

337 

Lipski, W., "On Semantic Issues Connected with Incomplete Information Databases, ACM 
Transactions on Database Systems, Vol. 4, No. 3, 1979, pp. 262-296. 
Pakzad, S.H., Hurson, A.R., and Miller, L.L., "Maybe Algebra and Incomplete Data in Database 
Machine ASLM," Journal of Database Technology, 1990. 
Rumelhart, D.E., Hinton, G.E., and Williams, R.I., "Learning Internal Representations 
by Error Propagation," in Parallel Distributed Processing (PDP): Explorations in the 
Microstructure of Cognition, Vol. 1: Foundations, MIT Press, Cambridge, Massachusetts, 1986, 
pp. 318-362. 
Ullman, J.D., Principles of Database Systems, 2nd Edition, Computer Science Press, Rockville, 
MD 1982. 
Widrow, B., Winter, R.G.; and Baxter, R.A., "Learning Phenomena in Layered Neural 
Networks," in Proceedings, IEEE first International Conference on Neural Networks, June 1987, 
pp. 11411-11429. 
Zaniolo, C., "Relational views in a database system: support for queries," ffiEE COMPSAC, 
1977, pp. 267-275. 



www.manaraa.com

An Optical Content-Addressable Parallel Processor for 
Fast Searching and Retrieving * 

Ahmed Louri 
Department of Electrical and Computer Engineering 
The University of Arizona, Tucson, Arizona 85721 

Associative processing based on content-addressable memories has been argued to be the natural 
solution for non-numerical information processing applications. Unfortunately, the implementation 
requirements of these architectures using conventional electronic technology have been very cost 
prohibitive, and therefore associative processors have not been realized. Instead, software methods 
that emulate the behavior of associative processing have been promoted and mapped onto conven
tional location-addressable systems. This however, does not bring about the natural parallelism of 
associative processing, namely the ability to access many data words simultaneously. 

The inherently parallel nature and high speed of optics, combined with the recent technologi
cal advancements in optical logic, storage and interconnect devices are raising hopes for practical 
realization of highly parallel optical computing systems. This paper presents the principles of de
signing an optical content-addressable parallel processor, called OCAPP, for the efficient support 
of high speed symbolic computing. The architecture is designed to fully exploit the parallelism an 
high speed of optics. Several parallel algorithms are mapped onto OCAPP in bit-parallel as well as 
word-parallel fashion, resulting in efficient symbolic algorithms with execution times dependent only 
on the precision of the operands and not on the problem size. This makes OCAPP very suitable for 
applications where the number of data sets to be operated on is high e.g., massively parallel pro
cessing. A preliminary optical implementation of the architecture using currently available optical 
components is also presented. 

1 Introduction 

The "information explosion" seen in recent years has stimulated the development of computer
based information systems to assist in the creation, storage, modification, classification, and retrieval 
of mainly textual or symbolic data. For example, progress in database management systems, expert 
systems, and intelligent knowledge-based systems is increasing demand for symbolic information 
processing such as text .editing, file processing, table sorting, searching, and retrieval. In fact a 
substantial proportion of the work-load of modern information processing systems involve searching 
and sorting symbolic data(l]. Nevertheless, a majority of today's computers are designed mainly for 
numerical computations, and suffer from a fundamental handicap, which stems from the principle 
of addressing the memory. 

When a search for a value is made through a location-addressable memory, the entire memory 
may need to be searched one word at a time (if the data is not sorted in memory) which consumes 
a great deal of time. There is no logical reason why the search must be done sequential. The only 
reason stems from the fundamental handicap of separating processing and memory and addressing 
memory one word at a time. This fundamental Uaw has forced system analysts and programmers 
to develop sophisticated software techniques for symbolic information processing such as hashing 

•This research was supported by an NSF Grant No. MIP-8009216. 



www.manaraa.com

339 

and indexing(2]. However, the implementation of such software techniques on location-addressed 
computers has lead to complex, expensive, and inefficient information processing systems. 

Searching, retrieving, sorting a.nd modifying symbolic da.ta. can be significantly improved by 
the use of content-addressable memory (CAM) instead of location-addressa.bility. In a content
addressable memory da.ta. is addressed by its contents(2]. An associative processor is a. pa.ra.llel 
processing machine in which the data items are content-addressable with the added capability to 
write in parallel into words satisfying certain criterion. It may be that the entire contents of stored 
words may be changed or just a few bits of the words. Using this model, processing is carried out 
within the associative memory, without transfer to an independent processing unit. Since there is 
no addressing of data. and no da.ta. movement, this implies the elimination of the fundamental von 
Neumann bottleneck encountered in conventional systems. Moreover, the amount of time required 
for searching, retrieving, and updating information is independent of the da.ta set sizes. 

However, this model of computing is not being largely used because of the difficulty and high 
cost of implementing it in conventional electronic technology. This can be seen from the following: 

1. Each bit cell in an associative memory is much more complex and requires more circuitry than 
does a conventional cell. Even with the advent of VLSI technology, the single cell complexity 
still does not allow Cor the use of large associative memories. 

· 2. The memory storage provides poor storage density compared with conventional memory. 

3. The third major difficulty is the complexity of the interconnects. Recall tha.t in order for 
all cells to compare their values to tha.t of the comparand 'register, the control unit must 
broadcast the value to a.ll cells involved in the comparison. However, using conventional 
technology, the time delays associated with the broadcasting function are very appreciable. 
Moreover, inter-cell interconnects become cumbersome for large array size. 

4. The fourth difficulty is the la.ck of efficient mea.ns of implementing parallel access to the cells, 
namely parallel input and output. 

There are two hypotheses underlying this pa.per: 

1. that CAM-based processing provides a. sound ba.sis to uncover inherent parallelism in symbolic 
processing and information retrieval applications, a.nd 

2. that optics is, potentia.lly, the idea.! medium to exploit such parallelism by providing efficient 
implementation support for it. 

2 Optical Content-Addressable Parallel Processor 

Optical systems bold the promise for providing efficient support for future parallel processing 
systems. Optics advantages ha.ve been cited on numerous occa.sions(3, 4, 5, 6]. These include 
inherent parallelism, high spatial a.nd temporal bandwidths, a.nd non-interfering communications. 
For CAM-based processing, optics ma.y be the idea.! solution to the fundamental problems faced by 
electronic implementations, namely cell complexity, interconnects latency, difficulty of implementing 
information broadcasting and parallel access to the stored data. Optics can alleviate the cell com
plexity by migrating the implementation of wiring and logic into free-space. The multi-dimensional 
nature of optical systems allows for data storage and logic to be performed on two-dimensional 
planes whiie the third dimension can be used for interconnects. The high degree of connectivity 
available in free-space space-invariant optical systems (106 to lOs}, and the ease with which optical 
signals ca.n be expanded (which allows for signal broadcasting) a.nd combined (which allows for 
signal funneling) can also be exploited to solve Lhe interconnects problems[?, 8]. Moreover, optical 



www.manaraa.com

340 

and electro-optical systems can offer a considerable storage capacity and parallel access than do 
pure electronic systems(9). 

Figure 1 depicts a preliminary organizational structure for an optical content-addressable parallel 
processor called OCAPP. The architecture is organized in a modular fashion, and consists of a 
selection unit, a matcli/compare unit, a response unit, an output unit, and a control unit. The 
architecture is developed to meet four goals, namely: (1) exploitation of maximum parallelism; 
(2) amenability to optical implementation with existing devices; (3) modular design in that it can 
be scalable to bigger problems; and (4) ability to efficiently implement information retrieval, and 
symbolic computations. Moreover, the programming methodology for OCAPP is compatible with 
that of existing single-instruction multiple data (SIMD) systems. In what follows we describe the 
role of each unit. Detailed optical implementation of OCAPP will be presented in Sec.3. 

The selection unit is schematically described in Fig.2. It is comprised of (1) a storage array of n 
words, each m bits long (in actuality, the storage array capacity is n X 2m, since each bit position 
is comprised of a true bit w;; and its complement Wi;); and (2) word and bit-slice enable logic to 
enable/disable the words and/or the bit·slices that participate in the match operation, and reset 
the rest. It is assumed that the storage array can be loaded in parallel and (if need be) read in 
parallel. 

The match/compare unit shown in Fig.3, contains a (1) 1 X m interrogation register I; (2) logic 
hardware to perform parallel bitwise comparison between the bits of the interrogation register and 
the enabled bits of the storage array; (3) two n x 1 working registers, G and L, which are used 
for magnitude comparisons (to be explained later); (4) an x 1 response register R for displaying 
the result of the comparison; and (5) a single indicator bit called the match detector MD, which 
indicates whether or not there is any matching words. This unit allows comparison of a single 
operand stored in the interrogation register and the words stored in the storage array. As such it 
is considered an SIMD (single-instruction-multiple data) unit. Bit position R; of R is set to one 
when word W; of the storage array matches the contents of I. The I register is a combination of 
the comparand register C and the mask register M as shown in table 1. As such, it holds the 
operand (depending on masking information if any) being searched for or being compared with. It 
is assumed that register I is available in dual-rail logic (both true and compliment bits available). 

The response unit is responsible for selecting one or several matching words. It comprises 
several scratchpad registers and a priority circuit for selecting the first matching word. Depending 
on program control, the output of the response unit is routed either to the output unit for outputting 
the result or fed back to the selection unit for further processing of the matching words. All units 
are under the supervision of a conventional control unit with conventional storage (eg., a local 
RAM) which stores the program instruction. Its role is to load/unload the storage array, set/rest 
various registers such as the I, R, G and L of the match/compare unit, enable/disable memory 
words, perform conditional instructions, monitor the MD bit, and test program termination. In 
what follows, we describe the implementation of several parallel algorithms on the OCAPP in order 
to show its use and processing benefits. 

Table 1: Formulation of the interrogation register 

I Search bit Cj I Mask bit m · I l Interrogation bits /; I; 
0 0 0 1 
1 0 1 0 
0 1 1 1 
1 1 1 1 (no comparison is performed at this bit position) 



www.manaraa.com

2-D array of optical data 
(n x m data bits) 

1-D vector of optical data 
(n x 1 data bits) 

341 

Figure 1 : A schematic organization of the proposed optical 
content-addressable parallel processor: OCAPP. 

3 Parallel Search Algorithms on OCAPP 

We classify search operations as basic and compound operations. A basic search operation is one 

which can be completed in one sweep over all the bit-slices of the storage array. It does not involve 

any feedback processing. A compound search operation requires a feedback from the response unit 

to the selection unit. As a consequence, it takes more than one sweep over the storage array to 

complete. Under basic search operations, we group the following operations: 

• Equivalence Search: The equality search, the not-equal-to search, and the similarity search 

(search for a. match within a masked field). 

• Threshold Search: The smaller-than, the not-smaller-than, the greater-than, and the not

greater-than searches. 

• Eztrema Search: The greatest value search, nnd the smallest value search. 

Compound search operations can be implemented in a series of basic search operations. Under the 

compound search, we group the following operations: 

• Adjacency Search: Next-above search, and next-below search. 

• Between-Limits Search: Search for words z, between two limits X and Y (X < Y): a) 

X S z S Y, b) X< z S Y, c) X S z < Y, and d) X< z < Y. 



www.manaraa.com

WORD 
SELECT 
LOGIC 

342 

Figure 2 : Organization of the selection unit. 

2-DOPTICAL ~ 
DATA FROM 
SELECTION 
UNIT 

MATCH 
DETECTOR BIT 

Figure 3 : Organization of the match/compare unit. 



www.manaraa.com

343 

• Outside-Limits Search: Search for words z, outside two limits X andY (X < Y): a) X :5 
z or z ~ Y, b) X> z or z ~ Y, c) X~ z or z > Y, and d) X> z or z > Y. 

• Ordered Retrievals (sorting): Ascending order retrieval, and descending order retrieval. 

Of course many more compound search operations can be formulated using the basic search oper
ations. The above search operations are the most frequently used in information retrieval applica
tions. 

3.1 Parallel Algorithms for Basic Search Operations on OCAPP 

In what follows, we denote a memory word as W; = (w;mWim-l ••• w11) where w;; is the jth bit 
cell of the word W;. We denote the jth bit-slice by B; = (w1;w2; .•• Wn;), which is made up of the 
jth bit of every word in the storage array. The interrogation and response registers are denoted by 
I= I ... I ... _1 •• • I., and R = R1~ ••• Rn respectively. The comparand word (search argument) and 
the mask register words are denoted by C = (cmCm-J .•. c1), and M = (m ... m ... _1 ••• m1). 

3.1.1 Equivalence Search 

In this type of search, the memory is partitioned according to the magnitude of the search word 
C into two sets, namely, words which are equal to C and words which are not. The equality and 
masked search operations can be implemented by a bitwise match. For equality match all the bits 
of the search word need to be matched, whereas for the masked search, only a subset of the bits of 
the search word is compared with the respective bits of the memory words. For m; = 0 means that 
c; is not masked, while m; = I means c; is masked. These two search modes can be combined as 
shown in Table I. Given an interrogation word I, a bit match denoted by b;; on the jth cell of the 
ith word is given by: 

b;; =(I; A w;;) V (Jj A tD;;) (equivalence) (1) 

where the symbols A, V, and the bar (-) denote the logical AND, logical OR and logical NOT 
respectively. Now the exact· matching of memory word W; with interrogation vector I requires the 
logical product of the bits b;; for j = I, •.. , m, therefore: 

j=m 

R; = 1\ b;; = b;m A b;m-1 A ••• A b11. 
i=l 

(2) 

where A denotes a logical AND over all bits. The above equation indicates that matching words 
in memory will be flagged by having their corresponding R bit set to one, and all mismatches will 
have their R bits set to zero. Equations I and 2 are space-invariant and can be implemented in 
bit-parallel as well as word-parallel fashion. Therefore, all R;s for i = 1, ..• , n, are computed at the 
same time with a single access to the storage array. 

Equivalence Search Algorithm: 

I) Initialization: 

a) Load I (this will depend on the search word and the masking condition); 

b) Clear R (clear all bits of the R register); 

2) Perfonn comparison: 

a) b;; =(I; A w;;) V (f; A tD;;) ; 

b) R; = Af;,';' b;; fori= 1, .•. , n. (R; = 1 if and only if W; matches 1). 



www.manaraa.com

344 

3.1.2 Threshold Search 

This mode of search partitions the memory according to the magnitude of the search word C 
into three sets, namely words which are equal to C, words which are less than C, and words which 
are greater than C. The result of the search is stored in the three registers of the response unit, 
namely R, G and L. Initially, all memory words are made active by making control registers RGL 
= 100. The memory is scanned from the most significant to the least significant bit position by 
enabling a single bit-slice at a time. When the comparand bit Cj is one, we select all active memory 
words with Wij = 0 as "less than" by setting their corresponding bit position RGL = 001. These 
words are then disabled from further comparisons (the disabling process will be explained later). 
Similarly, when Cj = 0, we select all active memory words with Wij = 1 as "greater than" by setting 
their corresponding bit position RGL = 010, and then disable them from further processing. At the 
end of the last bit position, words still in the state RGL = 100 are equal to the comparand, words 
in the state RGL = 010 are greater than the comparand, and words in the state RGL = 001 are less 
than the comparand. It is important to note that, even though we are scanning the memory from 
most significant bit to least significant bit, the search process can be terminated any time there are 
no matching words at a given bit position (R; = 0 for all i = 1, ... , n). Such a condition is easily 
detectable by checking the MD bit. The detailed algorithm follows. 

Threshold Search Algorithm: 

1) Initialization: 

a) Load I (depending on the search word and masking condition); 
h) Enable memory words; 
c) Set R, clear G, clear L, set j = m (the variable j is used by the control unit to scan 
the storage array); 

2) Perform Magnitude Search at bit-slice j: 

a) R; = 1\j";.":' b;j, G; =/\~":,_"['I; 1\ tiJ;;, E; = /\1~':' l; 1\ W;j fori= 1, ... , n (note that only the 
enabled bit-slice j determines the values of R;, G; and L;, all other bit-slices are disabled 
at this time, and therefore have no influence); 

b) Test if MD = 1 (is there any words that match the I register at the current bit position 
j?); 

3) If MD= 1 do: 

a) Disable memory words whose corresponding bits in R are zero (memory words W; with 
R; = 0 have already been decided on); 

b) Decrement j: j +- j -1, and test if j = 0?; 
c) If j ':/: 0, go to step 2; 
d) If j = O, go to step 4; 

4) If (MD= 0} or (j = 0}, then we are done and the search result is reported in R, G, and L. 

The following example illustrates the algoriLhm for a magnitude search of 7 words, each 5 bits 
long: 

Example 1: Threshold Search 

Search word, S : 10ll0 
Mask word: 00000 
I register: lOllO (effective word search) 



www.manaraa.com

345 

I Memory word i W; State of RGL at the end of the jth iteration 

j = 5 j=4 j=3 j=2 j = 1 (last iteration) 
1 10111 100 100 100 100 010 (Wt > S) 
2 11000 100 010 010 010 010 (W2 > S) 
3 10010 100 100 001 001 001 (Wa < S) 
4 10110 100 100 100 100 100 (W~ = S) 
5 10101 100 100 100 Q01 001 (Wa < S) 
6 01101 001 001 001 001 001 (We< S) 
7 11101 100 010 010 010 010 tw1 > s) 

8.1.8 Extrema Search 

This type of search refers to finding the maximum (or minimum) of a set of (or all ) memory 
words. We· consider first the search for maximum. 

A. Maximum Search 

To find the maximum, we scan memory words from the most to the least significant bit positions. 
As we scan the bit-slices, we determine if any of the enabled words have a one in the current bit 
position. If we find some, we disable all those words that do not have a one in this position. If 
none of the words at the current position possess a one, we do nothing. At any given time, all 
remaining candidates are equal as far as we have examined them, because for every bit position 
either everybody had a zero in that bit position, or whenever some words have ones, we disable the 
ones with zeros. Therefore, at bit position j, enabled words with W;J = 1 are larger than enabled 
words with WiJ = 0. Since we are seeking the maximum, we disable the ones with w;; = 0. This 
process is repeated until we exhaust all bit positions at which time the maximum word will be 
indicated by R; = 1. 

Algorithm for Finding the Maximum: 

1) Initialization: 

a) Load I :/ <- 11 .•. 11 (I is loaded with all bits set to one); 

b) Clear MD, set j = m; 

c) Enable memory words, and set R; = 1 for i = 1, ... 1 n; 

2) Perform equivalence search at bit-slice j: 

3) Test if MD = 1 (is there any words with a one in the current bit position j ?); 

4) If MD= 1 do: 

a) Disable all words which do not have a one in the current bit position (these words are 
indicated by R; = 0). 

b) Clear Rand MD; 

c) Go to step 5; 

5) Decrement j : j <- j - 1, and test if j = 0?; 

a) If j .f. 0, go to step 2; 

b) If j = 0, output maximum value indicated by R; = 1. 

B. Minimum Search 

The search for the minimum is very similar to the search for the maximum except that the I 
register is initially loaded with zeros and that if any enabled word has a zero in the current bit 



www.manaraa.com

346 

position (There exists a memory word W; such that its corresponding R; = 1), we disable the words 
with a one in the current bit position (R; = 0). These words are bound to be greater than the 
minimum sought. The process is repeated until we exhaust all bits of the enabled words. The 
minimum value will also be indicated by a one in register R. 

3.2 Parallel Algorithms for Compound Search Operations on OCAPP 

Compound search operations such as the ones stated earlier can not be economically imple
mented by a single sweep over the memory words. We therefore choose to implement such opera
tions as a series of basic searches. The rationale is to keep the architecture as simple as possible, 
and therefore making it highly amenable to optical implementation. or course speed improvements 
can be gained by implementing these search operations as basic search, but the amount of logic 
circuits may be extensive. 

3.2.1 Double Limits Search (Between and Outside Limits) 

Given two numbers called HIGH and LOW, the double limits search consists of finding those 
words that are between this limits and/or words that are outside these limits. This gives rise to 
eight different searches which can be accomplished in a very similar manner. Let us consider the 
between limit search. Given the two numbers HIGH and LOW, we wish to find those words that 
are greater than LOW but less than IIIGH namely, find all W; such that LOW< W; <HIGH. 
We can accomplish this search by using the magnitude comparison search as follows. First, }Ye 
determine the words that are less than the comparand HIGH. These words will be indicated by a 
one in the L register. We then disable all other words except the ones that are less than HIGH, 
and perform another threshold search using the comparand LOW. After the second search, words 
that are less than HIGH and greater than LOW will be marked with a one in the G register, which 
could be routed to the output unit for outputting the search result. 

3.2.2 Adjacency Search 

To find the word that is next-above the comparand (the smallest word larger than the com
parand), we search for all words that are larger than the comparand an~ then select their minimum. 
Similarly, to find the word that is next-below the comparand (the largest word smaller than the 
comparand), we search for all words less than the comparand and select their maximum. The search 
for the largest word smaller that the comparand (next-below search) can be carried out by a similar 
algorithm as the one above. In this case, step two of the next-,a.bove algorithm is replaced by a 
search for words that are less than the comparand, and step four is replaced by a maximum search. 

3.2.3 Ordered Retrieval (Sorting) 

The sorting or ordered retrieval of a set of data can be achieved by performing the extrema 
search repeatedly until all the data are retrieved. For the ascending order retrieval, we enable the 
memory words to be sorted, and determine their minimum (using the minimum search operation). 
We output the obtained minimum value and disable it from the storage array. We repeat these 
steps until we retrieve (in ascending order) all the enabled words. For descending order retrieval, 
we select the maximum value at each step. 



www.manaraa.com

347 

4 Optical Implementation 

In this section we identify the fundamental and b'lSic operations required to implement the 
optical architecture, and describe possible optical components for achieving them. Detailed practical 
implementation issues and experimental setups will be the subject of a different publication. 

4.1 Basic Operations and Hardware Components Required 

An analysis of the conceptual OCAPP, the basic operations, and the algorithms reveals that in 
order to optically implement OCAPP, the following functions are required: (1) data is optical and 
must be available in dual-rail format (both the value and its complement is required); (2) parallel 
access for writing into and reading from the storage array as well as the various control registers; 
(3) disabling/enabling a memory word (or several memory words) based on certain criteria; (4) 
logical AND, and logical OR; (5) space-invariant optical transmission of information (one-to-one 
connections); (6) spreading a single bit (actually two bits due to the dual-rail format) of information 
to several spatial locations (one-to-many connection); (7) combining several bits of information into 
a single spatial location (many-to-one connection); and (8) dynamic routing of information (e.g., 
routing contents of register R to selection unit, or output unit, or response unit depending on the 
algorithm). The optical components required to accomplish the above operations can be divided into 
(1) logic elements, (2) storage elements, and (3) information transfer elements (or interconnects). 

For optical logic and storage, many approaches are being investigated. One approach is the 
adaptation of the spatial light modulator (SLM) technology to opticallogic[10]. Another approach 
for realizing optical ~mponents capable of performing logic, is to optimize the device from the 
beginning for digital operations. The recent emergence of the quantum-well self-electrooptic effect 
device (SEED) and its derivatives (S-SEED, T-SEED, D-SEED) is one such a. product[ll). The 
SEED devices can be used to realize both logic operations such as NOR, OR, AND, NAND, etc. 
as well as for storage such as S-R latches[ll]. Optical resonators are another family under this 
approach intended for opticallogic[12]. Two similar bistable devices, etalons, and interference filters 
both based on the Fabry-Perot resonator are being actively pursued[13, 12). All data movements 
and informa.tiqn transfer in OCAPP are space-invariant which may render their implementation 
easier. Classical optical components such as lenses, mirrors, beam splitters, holographic deflectors, 
and delay elements are most likely to be used for this purpose[14]. In addition, halfwave plates, 
shutters, and masks may be used for dynamic routing. 

4.2 A Modular Implementation of OCAPP 

In this paper, we present a modest design example of OCAPP, using existing optical hardware 
in order to highlight the potential implementation issues of a practicable realization. The imple
mentation of this first version will make use of Lhe SEED device operating as a NOR. gate for 
optical logic, and of the S-SEED device operating as a. S-R latch for storage[ll]. The NOR gate 
is preferable to any other form of thresholding nonlinearity because it only requires distinguishing 
between the state where no light comes in and the state where light come in. Thus the NOR gate 
requires an SNR better than one only. In addiLion, a. NOR function constiLutes a complete logic 
set capable of implementing any boolean or ariLhmeLic function[15]. The family of SEED devices 
seem to be easy to use, capable of high speed, low energy operation, and can be fabricated in 2-D 
format. Space-invariant optical interconnects, dynamic masking components, and beam spreading 
and combining devices are assumed for data routing[l6]. 

The S-SEED device has two inputs, S, R, and two outputs Q and Q. The state of the device 
is set by a pair of unequal signal beams labeled S (for setting the output Q = 1, Q = 0 ) and R 
(for resetting the output Q = 0, (J = 1). The device is set (Q = 1) when the power incident on 



www.manaraa.com

348 

the S input is much higher than the power incident on the R input. The state of the device is read 
by applying two equal-power (clock signal) beams to both inputs. During the setting of the device, 
the clock beams must be low, compared to the signal beams. The device holds its state when no 
clock signal is incident .. Thus the device can operate as a latch. Moreover, during the application of 
the clock signal (the reading process) the state of the device is unaltered. As described earlier, the 
optical processor can be constructed from several units: the selection unit, the match/compare unit, 
the response unit, the output unit, and the control unit. In what follows, we describe the optical 
implementation (architectural rather than experimental setup) of each of these units. Moreover, the 
details in the routing and imaging paths such as lenses, holographic elements, masks, beam splitters, 
and polarizers have been omitted in this version to assist the reader's conceptual understanding of 
these configurations. 

4.3 The Optical Selection Unit 

The optical selection unit of Fig.4 is composed of a storage array which consists of a 2-D n X m 
array of clocked S-SEED devices (each entry in the array at position i,j has two incoming bits S, 
Rand two outgoing bits w;;, ttii;), an x 1 word register A which serves at setting and resetting 
data words in the storage array, a 1 x (m + 1)) bit-slice loading register B for loading a single 
bit-slice of the storage array. The first bit B0 and its complement B0 are called set-E and reset-E 
respectively, since they are used for setting and resetting the n x 1 enable register E which is used 
for the matching process (to be explained below). Memory words are disabled through then x 1 
NOR gate array, representing the D register. The D register can be loaded from R, G or L registers. 
In addition, theE register can also be reset from the priority register P of the response unit (to be 
explained below). 

A. Writing a Wor-d/Bit-Slice into the Storage Ar·ray: 

The storage array is assumed to be loaded in parallel at the beginning of the program. During 
program execution, the contents of the storage array can be altered by the use of the A and the B 
registers. To write a word in the storage array, say at word position i, the word is first written in 
the flip-flops of the B register. In the next clock cycle, the clock signals of B bits are pulsed high, 
and the contents of the B register is spread out vertically such that each bit B; impinges on the set 
ports of the j-th column of the storage array. Next, bit A; of A (corresponding to word position i) is 
pulsed high and spread out horizontally such that it impinges on the set/reset ports of the i-th row 
of the storage array. A one bit is written in bit position w;; of the storage array if and only if a high 
A; and a high B; coincide at the set port of bit w;;. Similarly, a zero bit is written in bit position 
w;;. if and only if a high A; and a high B; coincide at the reset port of w;;. This of course assumes 
that the set/reset thresholds of the S-SEED devices are so designed. Similar operations take place 
for writing a bit-slice in the j-th column of the storage array, with the exception of interchanging 
the roles of the B and A registers. 

B. Enabling/Disabling Memory Words: 

By enabling a memory word W;, it is meant including it in the matching process. Similarly, by 
disabling it, it is meant excluding it from further matching operations. To allow a memory word 
W; in participating in the matching process, its corresponding bit E; in the E register must be 
set high. Similarly, to disallow a memory word 10; from participating in the matching process, its 
corresponding bit E; in theE register must be made low. To enable/disable the entire memory 
words, the set-E/reset-E bits (B0/B0) are spread out vertically and broadcast to all the set/reset 
ports of E. To selectively disable memory words whose R, or G or L bits are not asserted (R= 0, 
or G = 0 or L = 0}, requires the routing of the appropriate register (R, G, or L) to the NOR gate 
array D. The output of D (which represents the complement of the routed register) is imaged onto 
the reset ports of register E. For example, to disable memory words whose R bits are not asserted 
(R = 0) from further matching operations, first contents of R is routed to D, which in turn image 



www.manaraa.com

S-Seed device acting 
as a clocked S-R latch 

-j)o- Optical NOR gate 

349 

E 

B 

Figure 4 : Optical Implementation of the selection unit. 

Figure 5 : Optical Implementation of the match/compare unit. 



www.manaraa.com

350 

the complement of R onto the reset ports of E. Thus a. low bit R; of the R register will disable 
the i-th bit of theE register, which in turn disables memory word W; from participating in further 
comparisons. The role of the E register in the match operation is explained next. 

4.4 The Optical Match/Compare Unit 

This unit performs exact match, and magnitude comparison searches between the interrogation 
register I and words of the storage array. As shown in Fig.5, It contains several SEED arrays 
operating as NOR gate arrays, and three registers, namely the response register, R, the greater 
than register G, and the less tha.n register L. Parallel comparison takes place between memory 
words emanating from the storage array and the interrogation register I. A match at bit w;; is 
detected by an exclusive-and principle as indicated in Eq.l. For tha.t, register I needs to be spread 
out vertically so that ea.ch bit I; impinges on one port of the NOR ga.tes of the j-th column of the 
a.rray, while da.ta bits w;; impinge on the second port of the NOR gates of the same j-th column. 
Matches between I; and w;; are reported in bit R; of the R register. Otherwise, the G and L 
registers indicate the relative magnitude. The contents of R , G, and L are routed to the response 
unit as well as fed back to the selection unit. 

As stated above, the enable register E determines whether or not a. memory word participates 
in the matching process. Thus, the word match condition o"r Eq.2 is rewritten as follows: 

where bit Im+l is set to one (I,;+l = 0) during a. match operation. It can be seen from Eq.3 that a 
memory word W; will participate in the match process if a.nd only if its enable bitE; is set to one. 
The R register bits are logically ORed to form the Match Detector (MD) bit. The MD flip-flop 
indicates if there is any match between I and memory words. 

The optical match/ compare unit of Fig.5 consists of a. single interrogation register I, and therefore 
allows comparison of one search argument with the words stored in the storage array. However, 
using the multi-dimensionality of optical systems, this unit can be extended to perform multiple 
search operations in a single step. That is, several search arguments are compared simultaneously 
with the words of the storage array. An extended MIMD match/compare unit would have a. k x m 
two-dimensional array of k search arguments, a two-dimensional storage array of n words each m 
bits long, and a m x k two-dimensional response array as shown in Fig.6. Each response register 
R, (1 = 1, ... , k) would indicate the match between interrogation register I, (1 = 1, ... , k) and the 
words of the storage array. The two-dimensional match operation can be thought of as an optical 
binary matrix-matrix multiplication which can be implemented using several optical techniques [17). 

4.5 The Optical Response Unit 

The response unit, contains a. combinational priority circuit, and a priority register P for indicat
ing the first matching word in memory (It may also contain few scratchpad registers for temporary 
storage). The priority circuit allows only the first responder (the first memory word W; whose R; is 
one) to pass to the priority register P. The priority circuit can be implemented using several stages 
of the NOR gate arrays in the form of a binary tree with space-invariant interconnections between 
them[18). Contents of the P register are routed to the output unit, and also fed back to the selection 
unit. 

4.6 The Optical Output Unit 

The output unit outputs memory word whose corresponding bit in the priority register P, R., G 
or L is set to one (Fig.7). These latter registers ltre routed to an X 1 NOR gate array, denotNI 



www.manaraa.com

351 

by N in Fig.7, whose sole purpose is to invert their values. Each bit N; of N is logically NORed 
with memory word Wi using a 2-D NOR gate array. Next, each column of the NOR gate array is 
logically ORed to form output bit 0; of the output register. This latter could be a photosensitive 
device which only detects the presence of light and outputs electrical signals, or a 1-D array of 
SEED devices acting as OR gates, and outputting optical signals. It should be noted that parallel 
readout of selected memory words is also achievable by replacing P with a 2-D output device and 
eliminating the OR function. 

4.7 The Control Unit 

OCAPP is under the control of a memory control unit which comprises a. local memory for 
storing programs and a. program sequencer for executing instructions that control the optical hard
ware such as the S-R latches, the NOR gate arrays, the routing shutters, and splitters, etc. The 
instruction set is composed of conventional assignment and conditional statements, and additional 
instructions required to implement associative parallel processing. This includes data movement 
between units, comparison operations, memory loading and unloading, monitoring the MD bit, etc. 
These additional instructions are very few in nature and are derived from the required fundamental 
operations described above. It should be noted that application programs for OCAPP can be writ
ten in conventional high-level languages such as Pascal or C, with few calls to external procedures 
which support parallel associative processing. 

4.8 Estimated Execution time 

An exact performance analysis of the proposed OCAPP including cost and power budget break
down is currently not feasible due to the lack of optical S-R latches and thresholding devices with 
reasonable size (e.g., 500 x 500 gates ), low operating energy, and fast response time. However, 
major efforts are being pursued(lO, 11) in developing these devices in larger sizes. These efforts 
will soon culminate in the required devices and components for OCAPP as well as for other digital 
optical computing models. 

We therefore try to theoretically estimate the execution time in terms of gate delay of the various 
basic search and arithmetic algorithms presented. This time does not include memory loading and 
unloading. We assume that the response times of the S-R latches (S-SEED) and that of the NOR 
gate arrays (SEED) are comparable and are both equal to T., and T,. is light propagation time 
through the processing loop (from the selection unit and back). It is assumed that the reading of 
memory words from the storage array and the I register is done at the same time, and takes one 
gate delay T.; enabling/disabling of memory words is achieved in one gate delay; testing of the MD 
bit takes one gate delay, and the priority circuit takes log2 n gate delays, where n is the number of 
words participating in the matching process. 

Table 2 presents the estimated execution time of the algorithms presented. It can be seen that 
the execution time in equivalence search is a constant factor, and independent of the number of 
words in memory. The time in threshold search, double limits search, adjacency search, and extrema 
search, ordered retrieval (minimum time only) is proportional to the precision (number of bits) of 
the operands, and is independent of the number of words involved in the operation. 

Note that the availability of the Match Detector (MD) bit provides major speed improvements 
to the above algorithms, in that certain conditions to terminate the computation as early as possible 
can be easily detected. Take for example, the threshold search algorithm. After the first comparison 
operation, if there are no words that match the comparand a.t that bit position (a. condition that 
can be easily be detected by checking the MD bit), then all the words have been decided on in only 
4T. delay time, and the result is obtained in a much shorter time. The same considerations take 
place for double limits search, and adjacency search. 



www.manaraa.com

352 

•• h storage array n x k response array 
k x n Interrogation array 

Register A• Indicates the match/mismatch of memory words with Interrogation registers h(for la1 to k). 

Figure 6 : Optical Implementation of a 2·0 match/compare unit : the Interrogation as 
well as the response registers of figure 5 are replaced by two-dimensional 
arrays of search arguments and response registers respectively. 

N 

2-D optical data from 
optical selection unit 

0 :output 
register 

Figure 7 : Optical implementation of the output unit. 



www.manaraa.com

353 

Table 2: Estimated execution time of the parallel algorithms on OCAPP 

I Search Algorithm I Minimun Execution Time I Maximum Execution Time 
Equivalence Search 3T. I3T. 

Threshold Search 4T. I (5T. + T,) x m 

Minimum Search (6T. +T,) x m I (GT. + T,) x m 

Maximum Search (6T. +T,) x m I (GT. + T,) x m 

Double Limits Search lOT. +2T, I T. + T, + 2(5T. + T,) x m 

Adjacency Sea.rch 5T. + T, + (6T. + T,) x m IT. +T,+ (llT. +2T,) x m 

Ordered Retrieval Search ((6T. + T,) X m + T,+ 3T.) I ((6T. + T,) X m + (log2 n)T.+ 
T,+3T.) x n 

The parameters m and n in the above table represent the word length and the number of 
operands respectively. 

5 Conclusions 

CAM-based processing has been argued to be the natural solution for non-numerical information 
processing applications. Unfortunately, the implementation requirements of these architectures 
using conventional electronic technology have been very cost prohibitive. This paper presented the 
principles and initial design concepts of an CAM-based parallel processing architecture that matches 
well with optics advantages, and therefore is highly amenable to optical implementation. The 
architecture relies heavily on the use of space-invariant interconnections, optical signa.! broadcasting 
and funneling (combining), and the simultaneous application of the same operation to many data 
points (SIMD mode of computing). The motivations behind this is the ease with which these 
operations can be realized with optics. A representative set of search algorithms have been presented 
to show the use and merits of the architecture. These algorithms are key components which occur 
in large computing tasks. It is important to note that these fundamental search algorithms are 
implemented on the optical architecture with an execution time independent of the problem size 
(the number of words to be processed). This indicates that the architecture would be best suited to 
applications where the number of data sets to be operated on is high. Some of the applications being 
investigated are: (1) real-time information retrieval, (2) database management, (3) knowledge-base 
and expert system implementation, and (4) list and string processing. 

We presented a preliminary and simple version of an optical implementation of OCAPP. This 
version is only meant to show the feasibility of the architecture with existing optical devices. No 
optimization attempts were made. Nevertheless, this preliminary version reveals several key design 
issues that will determine the physical realization of such an optical architecture. Even if we assum~ 
the availability of optical nonlinear devices (latches, and NOR gates) in large sizes, the effective 
memory size will be critically determined by the beam spreading/combining optics, the contrast ratio 
and the fan-in/fan-out factors of the logic clements to be used. These practical implementations 
issues will be fully detailed in a follow-up paper. 



www.manaraa.com

354 

References 

[1) K. Hwang and D. Degroot, Parallel Processing for Supercomputers and Artificial Intelligence, 
McGraw-Hill, New York, 1988. 

(2) T. Kohonen, Content-addressable memor·ics, Springer-Verlag, 1980. 

[3) A. A. Sawchuk and T. C. Stand, "Digital optical computing," Proceedings of The IEEE, vol. 
72, no. 7, pp. 758-779, July 1984. 

[4) W. T. Cathey, K. Wagner, and W. J. Miceli, "Digital computing with optics," Proceedgins of 
the IEEE, vol. 77, pp. 1558- 1572, Oct. 1989. 

[5) A. Louri, "A parallel architecture and algorithms for optical computing," Optics Communica
tions, vol. 72, no. 1, pp. 27- 37, July 1, 1989. 

(6) A. Louri, "3-D optical architecture and da.ta.-pa.ra.llel algorithms for massively parallel comput
ing," IEEE MICRO, April1991. 

(7] B. K. Jenkins, P. Cha.vel, R. Forchheimer, A. A. Sawchuk, and T. C. Strand, "Architectural 
implications of a digital optical processor," Applied Optics, vol. 23, no. 19, , October 1984. 

[8) J. W. Goodman, F. J. Leonberger, S. Y. Kung, and R. A. Atha.le, "Optical interconnections 
for VLSI systems," Proceedings of the IEEE, vol. 72, no. 7, pp. 850-866, July 1984. 

[9] P. B. Berra., A. Gha.foor, M. Guiza.ni, S. J. Marcinkowski, a.nd P. A. Mitka.s, "Optics and 
supercomputing," Proceedings of the IEEE, vol. 77, pp. 1797-1815, Dec. 1989. 

[10) J. A. Neff, R. A. Atha.le, and S. H. Lee, "Two-dimensional spatial light modulators: a. tutorial," 
Proceedings of the IEEE, vol. 78, pp. 836 - 855, May 1990. 

[11] A. L. Lentine, H. S. Hinton, ·D. A. B. Miller, J. E. Henry, J. E. Cunningham, and L. M. F. 
Chirovsky, "Symmetric self-electrooptic effect device: optical set-reset latch, differential logic 
gate, a.nd differentia.! modulator/detector," IEEE J. of Quantum Electron., vol. 25, pp. 1928-
1936, Aug. 1989. 

[12] J .. L. Jewell, M. C. Rushford, and H. M. Gibbs, "Use of a single non-linear Fabry-Perot etalon 
a.s optical logic gate," Appl. Phys. Lett., vol. 44, pp. 172-174, Jan. 1984. 

[13] S.D. Smith, J. G. H. Mathew, M. R. Taghizadeth, A. C. Walker, B.S. Wherret, and A. Hendry, 
"Room temprature, visible wavelength optical bistability in ZnSe interference filters," Optics 
Communications, vol. 51, pp. 357- 362, Oct. 1984. 

(14] A. W. Lohmann, "What classical optics can do for the digital optical computer," Applied 
Optics, vol. 25, no. 10, pp. 1543 - 1549, 15 May 1986. 

[15] A. Louri and K. Hwang, "A bit-plane architecture for optical computing with 2-d symbolic 
substitution algorithms," In Proc. 15th Int '1. Symp. on Computer Arch., Honolulu, Hawaii, 
May 30 - June 4, 1988. 

(16] K. Hwang and A. Louri, "Optical multiplication and division using modifed signed-digit sym
bolic substitution," Optical Engineering, Special issue on Optical Computing, vol. 28, no. 4, 
pp. 364 - 373, April 1989. 

[17) R. A. Athale, "Optical matrix processors," In PI'Oc. SPIE, Optical and Hybrid Computing, vol. 
634, pp. 96- 111, 1986. 

(18) C. C. Foster, "Determination of priority in associative memories," IEEE Transactions on Com
puters, vol. C-17, pp. 788-789, Aug. 1968. 



www.manaraa.com

Towards an Efficient Hybrid 
Dataflow Architecture Model 

Guang R. Gaot Herbert H.J. Hum+ Jean-Marc Montit 

tMcGill University 
School of Computer Science 

McConnell Engineering Building 
3480 University St. 

Montreal, Canada, H3A 2A 7. 

tCentre de recherche informatique 
de Montreal 

3744 Jean Brillant, Bureau 500 
Montreal, Canada, H3T lPl. 

Abstract 

The dataflow model and control-flow model are generally viewed as two extremes 
of computation models on which a spectrum of architectures are based. 

In this paper, we present a hybrid architecture model which employs conventional 
architecture techniques to achieve fast pipelined operation, while exploiting fine
grain parallelism by data-driven instruction scheduling. A mechanism for supporting 
concurrent operations of multiple instruction threads on the hybrid architecture 
model is presented and a compiling paradigm for dataflow software pipelining which 
efficiently exploits loop parallelism in loops is outlined. Simulation results attest 
that hybrid evaluations can indeed be beneficial. 

1 Introduction 
There have been two basic models in computer architectures: (1) the von Neumann se
quential control model; and (2) the data-driven distributed control model. The parallel 
architectures based on the von Neumann model are aimed at exploiting coarse-grain par
allelism, while the traditional dataflow architecture model was conceptualized to handle 
fine-grain parallelism. For the past decade, researchers have been debating on which 
model is a "better" basis for future large-scale parallel computer systems. 

The work described in this paper is based on our view that the two models are not 
orthogonal, and that a flexible architecture model can be developed by extending the 
dataflow model to allow hybrid dataflow and control-flow evaluation. As a result, the 
grain-size of the parallelism supported by such a hybrid parallel architecture model is 
"flexible" - compiler and hardware techniques can be combined to "tune" the effective 
grain size for the needs of efficient exploitation. 

We believe that the dataflow model of computation offers a sound, simple, yet power
ful model of parallel computation. In the dataflow programming and architectures, there 



www.manaraa.com

356 

is no notion of a single point or locus of control. Dataflow architectures have promised 
solutions addressing the two fundamental problems of von Neumann computers in mul
tiprocessing: the memory latency and synchronization overhead [2]. However, we must 
not ignore the efficiency and simplicity of the instruction sequencing mechanism in von 
Neumann architecture models, as well as over 40 years of optimizations in the instruc
tion execution mechanism. We have compared dataflow architectures designed as direct 
execution engines for dataflow graphs and those that perform the execution of dataflow 
graphs using features of conventional von Neumann computer architectures. We believe 
that the latter has the potential of offering a better performance/cost ratio. 

In this paper, we develop a framework for a hybrid architecture model. The essential 
elements of such a framework must consist of both a simple architecture model and an 
effective compiling methodology which can structure code to expose parallelism for hybrid 
evaluation. Our application domain is general-purpose scientific computations where a 
program usually consists of a number of code blocks (or loops) which define the major 
array values for the computation. A compiling paradigm is established which exploits 
loop parallelism through dataflow software pipelining. We establish a. set of basic results 
which show that the fine-grain parallelism in a loop can be fully exploited by a a simple 
scheduling scheme, achieving time and space efficiency simultaneously. 

In Section 2, we describe one processing element of the McGill Dataflow Architecture 
Model (MDFA) which employs the argument-fetching principle. We then describe the 
basic architecture mechanisms for supporting concurrent (recursive) function invocations. 
For multiprocessing support, an efficient inter-processor synchronization and communica
tion mechanism is described for sending and receiving data through an interconnection 
network. In Section 3, we present a. hybrid evaluation model based on the MDFA which 
is structured around the notion of instruction threads, i.e., instructions in each thread are 
executed sequentially, while multiple (sequential) instruction threads can operate concur
rently through a data-driven style instruction scheduling mechanism. In Section 4, we 
present the principle of dataflow software pipelining and the limited balancing technique 
- a technique that can be used to obtain instruction threads (or "macro" dataflow actors) 
for the hybrid model. Simulation results which attest to the need for hybrid evaluation 
are briefly discussed in Section 5. However, a major assumption made for the simulation 
runs has created a need to further extend the hybrid model so that executions can be 
performed more efficiently. We outline these other extensions in section 5.3. Finally, 
conclusions and future work are briefly outlined in the last section. 

2 The McGill Dataflow Architecture Model 
In this section, we introduce the operational model of the McGill Dataflow Architecture. 

The operational semantics of dataflow programs for this model are defined in terms 
of familiar concepts used in conventional architectures. This architecture is based on the 
argument-fetching principle [5], where the instruction scheduling is decoupled from the 
main execution datapath, yielding a unique dataflow model which makes the extension 
to hybrid evaluation straightforward. 



www.manaraa.com

357 

IPU: Instruction processing unit 
IPP: instruction processing pipeline 
IM: Instruction memory 
OM: data memory 

ISU: instruction scheduling unit 
SP: signal processor 
SLM: signal list memory 
EC: enable controller 
ECM: enable count memory 

Figure 1: The McGill Dataflow Architecture Model. 

2.1 The Architecture and the Program Tuples 

The computation in our dataflow model is specified by a dataflow program and ita op
erational semantics. A dataflow program is a tuple {P, S}, where the P portion, called 
P-code, is a set of 3-addreaa instructions, and the S portion, called S-code, is a directed 
graph named the !ignal graph. 

The architecture consists of an instruction processing unit (IPU) and an instruction 
scheduling unit (ISU) as shown in Figure 1. A three-address instruction (called a p
instruction or p-node) in the P-code is similar to that in a conventional architecture, and 
is stored in the IM. The operands and results of instructions are stored in the DM. For 
example, in a multiplication instruction < times a b c >, the identifiers a and bare the 
memory addresses of the two operands and c is the address of the result. The storage 
model of the DM will be introduced shortly. Each p-instruction is uniquely identifiable by 
a p-instruction address in the IPU, pointing to its program memory in IM. In Figure 2, 
we show an example of a program tuple. 

When a p-instruction address, say i, is presented to the "fire" input (we call this the 
fire !igna~, it is executed by the IPU in a fashion similar to that of any von Neumann 
style architecture, i.e., it goes through the usual stages of instruction fetch, operand 
fetch, execution, result store, etc., and accesses the appropriate memories accordingly. 
The major difference is that after the execution is completed, the IPU delivers the p
instruction address (in this case, i) to the "done" link as the done signal. 

The scheduling of p-instruction execution is performed by the processing of S-code 
in the ISU. S-code consists of a set of nodes (named a-instructions or a-nodes), intercon
nected by directed arcs. Each a-node has a status field with the information required for 
scheduling: an enable count, indicating how many signals are yet to be received for the 
a-instruction to become enabled, and a reset count indicating the total number of signals 
it requires to become enabled again after the a-instruction is executed. The status field 
of the a-nodes are stored in the enable count memory (ECM) of the ISU. Each s-node is 
identified by an a-node address (or a-instruction address). For the purpose of this paper, 
we assume that there is a one-to-one correspondence between each a-instruction address 



www.manaraa.com

P-C ode: 

S-Code: 

a 
b 

c 
d 

358 

n1: +a b x 
n2: - c d y 
n3: * x y z 

z=(a+b) x (c-d) 

Figure 2: A Dataflow Program Tuple. 

and each p-instruction address. 
In reality, there are different ways the graph structure in S-code can be specified. For 

the purpose of this paper we assume that each s-node contains a list of s-node addresses 
as the destinations of its output arcs. This list is stored in the signal list memory (SLM) 
within the ISU. The principal function of S-code will be described shortly. 

2.2 Run-time Storage Model 
One of the important features of the architecture is its run-time storage model. In dataflow 
computations, it is perfectly legal (and also desirable) to have multiple function invoca
tions active concurrently. Therefore, the stack model in a conventional architecture is not 
appropriate: there is no single point of control corresponding to the "top of stack". 

A program tuple is often structured as multiple code modules, i.e., named function 
modules. Each function module corresponds to code generated from functions in a high 
level language program. A function module can be shared by many invocations of the 
function. To support multiple invocations, the memories in the IPU and the ISU are 
organized to support dynamic allocation of frames of locations, one for each invocation. 
A frame is also called a function overlay in [8]. Although an overlay appears to play a 
similar role to that of a stack frame in conventional processors, the run-time structure of 
the overlays in the memory is very different. 

An overlay is composed of an IPU overlay and an ISU overlay. For each invocation 
of a function /, a data memory overlay is allocated to store the result values of each 
p-instruction composing the function body. The enable status fields of all s-nodes of a 
particular invocation of f are stored in f's corresponding ISU overlay in ECM. A value 
stored in a function overlay can be accessed through an address consisting of two parts: 
a base address of the overlay and an offset. For the purpose of this paper, we assume 
that the base address is generated and managed (together with memory overlays) by the 
run-time storage mechanism. This is done through the execution of apply and return 
operators for function invocations described in [8]. 



www.manaraa.com

359 

2.3 The Operational Model 

Now, we can present the operational semantics of our dataflow model by the following 
firing rules of a dataflow program tuple: 

• a p-instruction i is enabled if its S-code counterpart, an a-instruction i in S-code 
becomes enabled, i.e., it has received all the signals it needs; 

• an enabled p-instruction may be selected to fire when a fire signal < i, b > (where i 
is the p-instruction address and b is the base address of the corresponding function 
overlay) is generated; 

• an enabled p-instruction i is processed (or fired) in the IPU by accessing the val
ues stored in its function overlay using the base address b; a result value may be 
generated and stored in a location within the function overlay (note that in an 
unoptimized form, one location is allocated to each p-instruction); 

• after the p-instruction processing is completed, a done signal < i, b > is generated, 
signaling the completion of the firing of the p-instruction; and 

• a scheduling phase (S-code processing) is activated by a done signal < i, b >; an 
a-instruction i is processed by sending signals to all a-instructions in its output 
signal list, and the status fields (referenced through the base address b) of these 
s-instructions are updated accordingly. If an s-node has received all the signals it 
needs, it will become enabled and its enable status will be reset accordingly. 

The acute readers may recall the classical formulation of the firing rules based on token 

flow in a dataflow graph as described in (4]. Although our firing rules do not introduce 
the concept of tokens, they remain equivalent to the classical firing rules. It is beyond the 
scope of this paper to present a proof, but interested readers ma.y convince themselves by 
considering the following hint: an actor in a dataflow graph ca.n be mapped into a pair of 

p-instruction and a-instruction, and the classical firing rules can be implemented by the 
firing rules above. 

Furthermore, it should be possible to extend the concept of well-behaved dataflow 

graphs [4] and its translation rules from high-level languages for this model. 

2.4 Interprocessor Communication Supports 

Thus far, we have only described one processing element of the MDFA. For multiprocessing 
support, we introduce an Interprocessor Communications Unit (ICU) (16]. Figure 3 shows 
a schematic block diagram of the ICU and the MDFA within a. multiprocessor system. 

In this section, we present an efficient interprocessor synchronization method to allow 

two data-dependent nodes residing in different processing elements (PEs) to synchronize 

their execution. Also, since dataflow architectures can effectively tolerate long latency 

memory operations, we have provided the system with a shared global memory, physically 

distributed among the PEs. 



www.manaraa.com

360 

Figure 3: The MDFA in a multiprocessor context. 

2.4.1 The Interprocessor Communication Unit 

An important issue in the synchronization of remote events is the reduction of network 
traffic and one of the most effective ways of reducing network traffic is by pairing signals 
and data in the same packet whenever possible. Also, we believe that it is more efficient 
to implement interprocessor communications by using attributed elements in the signal 
list memory instead of special "send" and "receive" actors. Hence, in our scheme, we 
introduce one more kind of signal list elements: those tagged with ip-count. Regular 
signal list elements send their count signals to the EC, while the ones tagged with ip-count 
trigger the ICU to send interprocessor count signals. There are two kinds of ip-counts: 
data-count signals, which signifies that data has to be transmitted along with the signal, 
and remote-count which only convey the signal. The remote specifications o{ the target 
node as well as the type of packet that has to be sent onto the network are stored in the 
interprocessor communication memory (ICM). The following are the packet structures for 
the data-count and remote-count signals: 

<data-count, PE.cm, s-node,.cm, dm..add.cm, data.. value> 
<remote-count, PE,..,., s-node,.em > 

where PE.cm is the remote PE address, s-node.em is the target node address (within 
PE.cm), dm.add,cm is the address where the data._value has to be stored in the remote 
DM. 

At the remote PE, reception of ip-signals is straightforward. For a data-count signal, 
the data conveyed in the packet is stored into DM before the count signal is sent to the 
EC unit while a remote-count ip-signal just sends a count signal to the EC. 

2.5 A Summary of Distinct Features of the MDFA 

The features of the MDFA in comparison with other proposed dataflow architecture mod
els can be summarized as follows: 



www.manaraa.com

361 

• Elimination of instruction pipeline gaps due to operand matching. The data-driven 
instruction scheduling mechanism is clearly separated from the instruction process
ing unit. Thus, the MDFA does not perform token "matching" in the critical in
struction execution da.tapath, either explicitly using a. matching store as in [1, 11] or 
implicitly at the frame slot with the direct token addressing scheme as in [18]. This 
eliminates pipeline "gaps" due to operand matching (in dyadic operators), provided 
that the ISU can handle the signals generated by IPU to "hide" the matching cost 
from the IPU. (The tradeoff will be elaborated later). 

• Avoiding token duplication. In the MDFA, a result value never needs to be dupli
cated (copied) and routed to the input "area" of destination nodes. It is stored in 
the operand memory (only once when it is produced), and will be directly fetched 
when the subsequent instruction execution needs it as a.n operand - in a. manner 
similar to any conventional architecture. 

• Efficient dataflow software pipelining of loops. This is the subject of a. more detailed 
discussion in later sections. 

The MDFA supports multiple recursive function invocations, in this sense the model 
has the power of dynamic dataflow architecture models [1]. However, the MDFA treats 
loops differently from the loop unraveling scheme used in most dynamic dataflow mod
els [1]. It retains the simplicity of the static dataflow model by limiting the number of 
concurrent activations of an instruction (to one instance per instruction) and multiple ini
tiations of a loop body can be concurrently executed through dataflow software pipelining. 
In Section 4, we will comment on the relation between our scheme and the loop bounding 
scheme proposed as a practical realization for the loop unraveling scheme [3]. 

3 Hybrid Evaluation 

In this section, we start with the operational model of the MDFA model and show how 
it can be easily extended to support sequential instruction execution. 

3.1 Support of Sequential Instruction Execution on the MDFA 
Model 

Although the processing of a p-instruction in the argument-fetching dataflow model is 
similar to that in a von Neumann architecture, there is one missing feature - the se
quencing mechanism of instruction execution. In the control-flow model of computation, 
this mechanism implies that: 1) a program counter is maintained to contain the unique 
address of the currently executable instruction; 2) the program counter is updated during 
an instruction execution by default (i.e., for instructions other than branch instructions) 
- it will be incremented by one - automatically pointing to the next instruction in the 
sequence; and 3} only branch instructions may update the program counter with a. desti
nation address possibly different from the default value. 



www.manaraa.com

362 

There is little doubt that the program counter ba.sed control mechanism is simple 
and effective for sequential instruction processing. It tums out that the extension o£ the 
basic MDFA to support hybrid evaluation is very simple. All that needs to be done is 
to provide a.n alternative for the instruction continuation, a.£ter the execution pha.se o£ a. 
p-instruction is completed. That is, i£ desirable, the IPU ca.n directly generate the next 
p-instruction address to be executed, instead o£ going through the scheduling pha.se in the 
ISU. 0£ course, this implies that some notion equivalent to the program counter o£ the 
control-flow model must be introduced in the dataflow model. In fact, we need a. number 
o£ program counters: one for each instruction sequence. 

To implement this hybrid model, each p-instruction is extended to carry a.n extra. 
field - a. tag field ( ca.lled a. von Neumann bit) which indicates whether the instruction is 
following a. dataflow style scheduling or a. von Neuma.nn style scheduling. For example, a. 
multiplication instruction now ha.s the following format: 

times a b c v-tag 

where the v-tag is the tag field. 
Depending on the value o£ the v-ta.g field, the instruction is either scheduled in dataflow 

mode (D-mode) or von Neuma.nn mode (V-mode). Ifv-ta.g = 0 (dataflow mode), the done 
signal is generated a.s usual, i.e., it contains the address o£ the p-instruction so that it will 
be processed by the ISU. Otherwise, a. new address is generated a.s the address o£ the next 
p-instruction to be fired, in a. way similar to the update o£ the program counter in a. von 
Neuma.nn architecture. Note that this is different from the repeat-on-input mecha.nism 
in the epsilon dataflow processor which wa.s proposed to exploit the locality inherent in 
parameter duplication [10]. 

3.2 The Hybrid Operational Model 

Since in the basic model, a. p-instruction is processed by the IPU in a. style similar to von 
Neuma.nn style processing, the above hybrid evaluation model ca.n be implemented in a 
straightforward £a.shion. The only cha.nge to be ma.de is to a.llow a "short-cut" path from 
the done link to the fire link, thus a.llowing a. V-mode p-instruction to directly "fire" the 
next instruction, bypa.ssing the scheduling pha.se (ISU). In Figure 4, we illustrate how a 
sequence o£ dataflow nodes ca.n be grouped into a "macro" dataflow node, a.nd a short-cut 
signal mecha.nism is used for their sequencing. 

The operational model for hybrid evaluation becomes: 

• a p-instruction i is enabled i£ 

- its S-code counterpart, a.n a-instruction i in S-code becomes enabled, i.e., it ha.s 
received a.ll the signals it needs; 

- or, it is the next instruction in a sequence o£ V-mode p-instructions, a.nd its 
predecessor p-instruction (i- 1) ha.s completed its execution; 

• An enabled p-instruction may be selected to fire when a fire signal < i, b > (where i 
is the p-instruction address and b is the ba.se address o£ the corresponding function 
overlay) is generated; 



www.manaraa.com

I 
llliCIO 
node 

363 

IM 

11 "1 
11 n2 .. 
0 "k 

[ \...._ -. Neumam bit 

fire 
signals 

done 
signals 

Figure 4: The Hybrid Evaluation Model. 

• An enabled p-instruction i is processed (or fired) in the IPU by accessing the values 
stored in its {unction overlay using the base address b. 

• After the p-instruction is fired and depending on its mode, one of the following 
happens: 

- for a V-mode instruction (vtag = 1), a fire signal is sent through the short-cut 
path, which contains the next p-instruction address; and 

- for a D-mode instruction, a done signal < i, b > is generated, signaling the 
completion of the firing of the p-instruction and the start of the ISU scheduling 
phase below. 

• a scheduling phase (S-code processing) is activated by a done signal < i, b >; an 
a-instruction i is processed by sending signals to all a-instructions in its output 
signal list, and the status fields (referenced through the base address b) of these 
a-instructions are updated accordingly. If an s-node has received all the signals it 
needs, it will become enabled and its enable status will be reset accordingly. 

3.3 Features of the Hybrid MDFA Model 

We briefly summarize the features of the hybrid MDFA model: 

• Generality: The hybrid MDFA model supports both thread level and instruction 
level parallelism through efficient fine-grain synchronization. At any time, the IPU 
can execute several instructions in parallel: any instruction may be a D-mode in
struction or a V-mode instruction, and the V-mode instructions may themselves 
come from different instruction threads. Thus our model is different from so-called 
"macro-dataflow" schemes where dataflow scheduling can only be done at the inter
procedural level [14] . It retains the advantage of dataflow models in terms of dealing 



www.manaraa.com

364 

DOALL loop L 1: 

for lin [1,n] 
A[I):=X[I]+5; 
B[I):=Y[I)+A[I); 

end 

C[I]:=B[I]+A[I]; 
D[I]:=A[i]+C[I); 

Figure 5: Example of Dataflow software pipelining 

with the two fundamental issues of von Neumann multiprocessing as discussed in 
the introduction. 

• Flexibility: There is no restrictions to the number of instruction threads which can 
be supported by this model. In fact, a variable number of instruction threads each 
with a different size can be active concurrently. This is different from some other 
multi-threaded architectures where the maximum number of threads are fixed a 
priori such as in the HEP (19]. 

• Simplicity: Under the hybrid MDFA model, any instruction in a program can be 
set to one of two modes, regardless of its function or type. This flexibility certainly 
makes the job of a compiler easier, since the mode control and the operation of an 
instruction become orthogonal. Note that ISU performs the fork/join operations of 
the threads implicitly through signal processing, while some other multi-threaded 
architectures may execute explicit fork and join instructions (17]. 

) 

4 Dataflow Software Pipelining 

In this section, we present a compiling paradigm which exploits loop parallelism through 
dataflow software pipelining using limited balancing. The limited balancing technique 
is one method which can be employed to obtain macro dataflow nodes for the hybrid 
architecture model. 

4.1 Background 

The principle of dataflow software pipelining can be explained using loop L1 as an example 
(in fig. 5). The loop is translated into a pipelined dataflow graph as shown in figure 5 (a). 
Successive waves of elements of the input arrays X and Y will be fetched and fed into the 
dataflow graph, so that the computation may proceed in a pipelined fashion. This is called 
data:Bow software pipelining: the arcs drawn between actors correspond to addresses in 
stored dataflow machine code, not to the wired connections between logic elements. 

Previous work in dataflow software pipelining are based on an idealized dataflow ma
chine model. Here is a summary of some known results whjch are valid under the ideal 



www.manaraa.com

365 

G11s unbalanced. II has 7 simple cycles and tho cycle C: 
A·B·C·A has tho minimum balancing ratio, I.e. B(C) • 113. 

G21a Omltadly balanced with a balancing ratio B(G2)=113. 

Figure 6: Balancing ratio !or some example graphs. 

model. A graph is {fully) balanced i£ every path between a pair o£ nodes contain exactly 
the same number o£ actors. To achieve maximum pipeiining, a basic technique (called bal
ancing) is used to transform an unbalanced dataflow graph into a {fully) balanced graph 
by introducing FIFO buffers on certain arcs. 

For example, the dataflow graph in figure 5 (a) is not balanced We can introduce two 
FIFO buffers as shown in figure 5 (b) so the resultant graph will become fully balanced, 
and hence can be maximally pipelined in an ideal dataflow machine model. 

Unfortunately, the previous work does not cover the case where dataflow graphs con
tain cycles. We will discuss an extension to include these loops in the next section. More 
about dataflow software pipelining can be found in (6]. 

4.2 Limited Balancing 

A loop may contain loop-carried dependencies, in which cycles may exist with some back 
edges due to inter-iteration data dependencies. 

Let us introduce the notion o£ balancing ratio, denoted by B{ G), to describe the de
gree o£ balancing of a dataflow graph G. We give an informal definition o£ the balancing 
ratio based on the observation o£ token and space duality in dataflow graph models sug
gested by Kung et. al. (15]. Let us augment G with acknowledgment arcs and assign one 
initial (dummy) token on each acknowledgment arc in G, denoting the !act that the cor
responding forward (data) arc has one empty place - the SDFP is initially empty under 
our assumptions. Then our (augmented) SDFP is similar to Kung's augmented dataflow 
graph where the acknowledgment arcs correspond to his "reverse arcs". For any directed 
simple cycle C in G, 1 let the length o£ C (number o£ arcs) be Kc, and the number of 
dummy tokens be De. The ratio~. called the balancing ratio o£ C (denoted by B(C)) 
in this paper, determines the fastest rate at which the node in the cycle can be activated 
[15]. A graph is (limitedly) balanced with balancing ratio B(G) if all directed cycles C; in 
the graph have the same balancing ratio, i.e., B(C;) = B(G) for all i. 

Figure 6 gives an example to illustrate the notion o£ limited balancing and the concept 
o£ balancing !actor. It is beyond the scope o£ this paper to present the algorithm !or limited 

1Simple cycles are cycles in which each node appears at most once. For our purposes, only simple 
cycles are considered. 



www.manaraa.com

366 

graph balancing. Readers may find a dedicated discussion in [9]. The basic intuition is 
that adding buffers as well as removing redundant signals (both data and acknowledgment 
arcs) may be required during the limited balancing process. In our simple example in 
figure 6, the nodes A, B, 0 can be grouped into a thread, so can D, E, F. This can 
have the potential of significantly reducing the number of signals to be handled by the 
ISU in dataflow software pipelining. Note that actors grouped into threads will form a 
macro dataflow actor for hybrid evaluation. We will demonstrate this advantage in the 
simulation section. 

4.3 Related Work 

There have been several different suggestions as how to compile von Neumann instruction 
threads for a hybrid computing model [13, 20]. In one interesting approach proposed by 
Iannucci [13], a compiler is responsible for partitioning program graphs into scheduling 
quantums. A methodology is outlined which will generate multiple scheduling quantums 
without deadlock. His method is tightly-coupled with the hybrid architecture described 
in his doctoral dissertation [13]. Another interesting approach proposed by Traub is to 
view partitioning of a program into threads as the central problem {or in his words: "first 
order business") of functional language compilation [20]. As a result of his "compiling
as-partitioning" strategy, one gains a much cleaner understanding of the relationships 
between lazy vs. lenient evaluation, as well as sequential vs. parallel execution. These 
techniques can also be applied to the architecture described in this paper. 

5 Simulation Results 

5.1 The Impact of ISU Signal Processing Capacity 

In this section, we first present some simulation results to show that reducing the number 
of signals to be handled by the ISU is very important, thus motivating us to study the 
limited balancing technique. 

In a balanced design of the MDFA, the ISU has to supply fire signals to the IPU 
just fast enough to keep the instruction execution pipelines operating continuously at full 
capacity. There could be cases in which the signal processing demand in the ISU cannot 
be satisfied fast enough, and this could cause a bottleneck. 

Figure 7 shows the performance of Livermore Loop 7 using various machine configu
rations. When the signal processing capacity is one, the execution time of loop7 remains 
the same, no matter how many IPUs are used. In this case the computation is ISU bound, 
that is, the ISU is unable to satisfy the demand for manipulating incoming signals, caus
ing a performance degradation. As the signal processing capacity of the ISU is increased, 
more enabled actors are presented to the IPUs per cycle, and thus, optimum processing 
is achieved, as shown by the leveling off of run times for the various numbers of IPUs 
modeled within a PE. From the shape of the curves we postulated that there is a relation
ship between signal processing capacity and number of IPUs needed to obtain optimum 
cost-effective program execution. Let us examine this phenomenon in more detail. To 



www.manaraa.com

367 

3!5000 

!=1\ 
,i! 1!5000 ,~,-----------1PIPU 

10000 ~'---============~2PWU 
PIPU 

!5000 

oL-~--~--~~--~~~~--~-J 
I 4 S 6 7 10 

DISU Sisnai Pnx:esslng Capncily 

Figure 7: Varying machine configurations for loop7. 

achieve such optimality, the following factors are important: 

1. IPU capacity (denoted by P) must match the amount of parallelism within the 
program (computational parallelism), and 

2. ISU signal capacity (denoted by C) must match the demand for processing the 
signals required to exploit the computational parallelism (synchronization require
ment). 

Our studies show that, even for a program having a computational parallelism suffi
ciently high to keep the IPU filled in an idealized ISU (one having infinite signal processing 
capacity), performance on a realistic machine might be far below that of the ideal value; 
the outcome depends upon the average number of signals S that are needed to fire an 
instruction. This number, called the average signal density, is given by the following 
formula: 

S = =--:-11-:co:-t_al_G_o....,u7nt_S_;ig'=n:-a_ls--:-~ 
TotallnstructionsExecuted 

So for a given machine configuration, the condition to keep the IPU pipeline usefully 
busy is: 

£>P s- (1) 

Conceptually this means that to fully exploit the computational parallelism of a pro
gram, the ISU capacity should be at least equal to the product of the average signal 
density of the program and the number of IPUs of the given configuration. This is not 
surprising; fine-grain parallelism has its price, and for our architecture, the ISU pays. 

Both the ISU capacity and IPU capacity can be taken as important parameters in 
compiler optimizations for the McGill dataflow architecture. In a machine in which signal 
traffic plays such an important role, the compiler should try to minimize the number of 
signals, while at the same time, trying to expose sufficient parallelism. This is one of the 
main motivations behind limited balancing. 



www.manaraa.com

368 

IPU: 1, ISU Signal capacity: oo, Pipeline Stages: 8 
l: 8, n: 60, CB(G) = -:h, 

Balance Factor (B) ~ ~ ~ ~ * 
$ 

A vg. !nit. Cycle 60 60 60 60 60 66 
Avg. Instr. Delay 11.08 11.14 6.34 3.68 1.73 1.28 

Run Time 12,119 12,113 12,096 12,102 12,114 13,305 
Utilization 99.1% 99.2% 99.3% 99.3% 99.2% 90.3% 

Table 1: Simulation results for 1 IPU 

5.2 The Effects of Limited Balancing 

In this section, we demonstrate the effect of limited balancing. In each simulation run, 
the limited balancing has only been applied to one simple cycle of the graph in order to 
ease the job of manipulating the large number of signal arcs manually. 

Table 1 shows the simulation results for the machine configuration of 1 pipeline (1 
IPU) with 8 pipelined stages. The top row of the table indicates the associated machine 
configuration and the size of the graph n. The program graph does not have to be fully 
balanced to keep the IPU fully utilized. Instead, a critical balancing ratio CB(G} can be 
estimated based on the graph structure [7], which can be used to balance the graph. Each 
column of the table gives the corresponding results of applying a distinct balancing ratio 
(B) to the graph. The Average Initiation Cycle records the average pipelining period of 
each node in the graph; the average initiation rate of the graph is simply its reciprocal. 
The Average Instruction Delay records the average time delay of the enabled instruction 
waiting in the fire queue, which implicitly represents the amount of parallelism exposed 
in the graph that have not been fully utilized by the execution pipe. 

Here is a summary of the major observations from table 1: 

• In all simulation runs, we have observed that the loop initiation sequence will enter 
a steady state: a constant average initiate rate is reached. 

• Once the average initiation rate 1/n is achieved, the pipeline is maximally utilized. 

• The critical balancing ratio for this loop is 1/7.5. Our simulation results are very 
close to this prediction. At B = 1/6, the pipeline is near fully utilized. 

• The average instruction delay decreases gradually as the balancing ratio decreases. 
When the balancing ratio reaches the critical value, no excessive parallelism is ex
posed which may not be efficiently utilized, and the average instruction delay ap
proaches its minimum. 

The limited balancing scheme will reduce the amount of count signals to be handled 
by the ISU. In this case, if the limited balancing is applied to the entire graph, the total 
number of signal arcs can be reduced considerably. 



www.manaraa.com

369 

5.3 Discussions 

As we have shown, applying fine-grain synchronization to all actors in a dataflow graph 
does not necessarily yield optimal performance due to the fine-grain synchronization costs 
which must be absorbed by the synchronization mechanism in the underlying architecture. 
If there are enough parallelisms in the application, limiting the amount of exposed par
allelism to the underlying machine by means of grouping actors into aggregates and then 
scheduling the aggregates themselves can lead to lower fine-grain synchronization costs 
and thus a more balanced use of the underlying processing and scheduling resources. This 
is fine, but in all the simulation runs, we have assumed that memory latencies are unity 
and as we all know, memory latencies in an actual implementation can never be kept fixed 
and low, especially not unity. 

To address this problem, memory hierarchies must be investigated where fast and 
small memory like register files and conventional caches are utilized. However, in a multi
threaded architecture, lifetime analysis for register values are difficult, thus rendering 
registers less than effective. Moreover, the frequent switching between active threads 
wreaks havoc on the locality principle on which the conventional cache obtains its power, 
so caches are not ideal. In a paper appearing in the same conference [12], we introduce the 
Register-Cache mechanism which is a hybrid register file and cache mechanism. Register 
allocations are performed dynamically at run-time, so lifetime analysis of values are not 
necessary, and furthermore, all required values are loaded into the register-cache before a 
thread executes so that the execution pipe will see a fixed and low memory latency time. 
This register-cache mechanism is employed in the context of an extended MDFA model 
called the Super-Actor Machine, and readers are referred to [12] for more details. 

6 Conclusion 

We have presented an operational model for a hybrid dataflow and control-flow archi
tecture. Based on the argument-fetching dataflow principles, we have demonstrated that 
a straightforward extension to the basic McGill dataflow architecture model can accom
modate concurrent operations of multiple instruction threads. The :flexibility of the new 
model not only resides in the support of hybrid evaluation, but also in exploring paral
lelism at any desirable level in a fine-grain fashion. A unique program mapping scheme for 
loops based dataflow software pipelining and the limited balancing technique was also pre
sented. To take memory latencies into consideration, the hybrid MDFA model presented 
in this paper is further extended to be the Super-Actor Machine [12}. 

At McGill University, we are using the MDFA model and its variants as vehicles 
for studying a range of architectural issues for multi-threaded architectures, as well as 
compiling techniques for them. It is our plan to conduct a more extensive analysis and 
comparison of the advantages and disadvantages between the architectural models of the 
MDFA genre and other hybrid dataflow architecture models. We are also investigating 
the impacts of the hybrid model on language designs for multi-threaded computing. 



www.manaraa.com

370 

7 Acknowledgment 

We would like to thank the National Science and Engineering Research Council (NSERC) 
for their support of this work. Thanks also to the Bell Northern Research (BNR) for their 
support of research in parallel processing and dataflow. 

We would also like to thank the members of the Advanced Architecture and Program 
Structures Group for joining us in the adventure of dataflow research. In particular, we 
thank Rene Tio, Robert Yates, Zaharias Paraskevas, Yue-Bong Wong, and Russel Olsen 
for working on the architecture, compiler, and simulation testbed for the McGill Dataflow 
Architecture. Without their support, the work described in this paper would not have 
been possible. Finally, we would like to thank J.B. Dennis for his valuable contributions. 

References 

[1] Arvind and D. E. Culler. Dataflow architectures. Annual Reviews in Computer 
Science, 1:225-253, 1986. 

[2] Arvind and Robert A. Iannucci. Two fundamental issues in multiprocessing. In 
Parallel Computing in Science and Engineering, pages 61-88. Springer-Verlag, LNCS-
295, 1987. Proceedings of the 4th International DFVLR Seminar on Foundations of 
Engineering Sciences, Bonn, June 1987. 

[3] D. E. Culler. Managing parallelism and resources in scientific dataflow programs, 
Ph.D thesis. Technical Report TR-446, Laboratory for Computer Science, MIT, 
1989. 

[4] J. B. Dennis. First version of a data-flow procedure language. In Proceedings of the 
Colloque sur la Programmation, volume 19 of Lecture Notes in Computer Science, 
pages 362-376. Springier-Verlag, 1974. 

[5] J. B. Dennis and G. R. Gao. An efficient pipelined dataflow processor architecture. In 
Joint Conference on Supercomputing, pages 368-373, Florida, November 1988. IEEE 
Computer Society and ACM SIGARCH. 

[6] G. R. Gao. A Code Mapping Scheme for Dataflow Software Pipelining. Kluwer 
Academic Publishers, Boston, December 1990. 

[7] G. R. Gao, H. H. J. Hum, andY. B. Wong. An efficient scheme for fine-grain soft
ware pipelining. In Proceedings of the CONPAR '90-VAPP IV Conference, Zurich, 
September 1990. 

[8] G. R. Gao, H. H. J. Hum, andY. B. Wong. Parallel function invocation in a dy
namic argument-fetching dataflow architecture. In Proceedings of the PARBASE '90 
Conference, Miami Beach, FL, March 1990. 

[9] G.R. Gao and Qi Ning. Loop storage optimization for dataflow machines. ACAPS 
Technical Memo 23, School of Computer Science, McGill University, Montreal, Que., 
February 1991. In preparation. 



www.manaraa.com

371 

[10] V. G. Grafe, G. S. Davidson, J. E. Hoch, and V. P. Holmes. The epsilon dataflow 
processor. In Proceedings of the 16th International Symposium on Computer Archi
tecture, pages 36-45, Israel, June 1989. 

[11] J. R. Gurd, C. C. Kirkham, and I. Watson. The Manchester prototype dataflow 
computer. Communications of the ACM, 28(1):34-52, January 1985. 

[12] H. H. J. Hum and G. R. Gao. A novel high-speed memory organization for fine-grain 
multi-thread computing. In in the same Proceedings, June 1991. 

[13] R. A. Iannucci. Toward a dataflow /von Neumann hybrid architecture. In Proceedings 
of the 15th Annual International Symposium on Computer Architecture, pages 131-
140. ACM, June 1988. 

[14] D. Kuck, E. Davidson, D. Lawrie, and A. Sameh. Parallel supercomputing today 
and the cedar approach. Science Magazine, 231:967~974, February 1986. 

[15] S. Y. Kung, S. C. Lo, and P. S. Lewis. Timing analysis and optimization of VLSI 
data flow arrays. In Proceedings of the 1986 International Conference on Parallel 
Processing, 1986. 

[16] J.M. Monti. Interprocessor communication supports for a multiprocessor dataflow 
machine. Master's thesis, School of Computer Science, McGill University, Montreal, 
Que, March 1991. 

[17] R. Nikhil and Arvind. Can dataflow subsume von Neumann computing? In Proceed
ings of the 16th International Symposium on Computer Architecture, pages 262-'-272, 
Israel, 1989. 

[18] G. M. Papadopoulos and D. E. Culler. Monsoon: An explicit token-store architec
ture. In Proceedings of the Seventeenth Annual International Symposium of Computer 
Architecture, Seattle, Washington, pages 82-91, 1990. 

[19] Burton Smith. The architecture of REP. In J. S. Kowalik, editor, Parallem MIMD 
Computation: HEP Supercomputer and its Application, pages 41-55. The MIT Press, 
1985. 

[20] K. R. Traub. Sequential implementation oflenient programming languages. Technical 
Report MIT/LCSfTR-417, Laboratory for Computer Science, MIT, 1988. 



www.manaraa.com

Data Flow Implementation of Generalized 
Guarded Commands 

R. Govindarajan 
VLSI Design Laboratory 

McGill University 
Montreal, H3A 2A 7, Canada 

govindr@pike.ee.mcgill.ca 

Sheng Yu 
Department of Computer Science 

University of Western Ontario 
London, N6A 5B7, Canada 

syu@uwocsd.uwo.ca 

Abstract 

Earlier approaches to execute generalized alternative/repetitive comma.nds of 
Communicating Sequential Processes (CSP) attempt the selection of gua.rds in a. 
sequential order. Also, these implementations a.re ba.sed on either shared memory 
or message pa.ssing multiprocessor systems, which exploit pa.ra.llelism only among 
the processes of a. CSP program. In contrast, we propose a. data flow implemen
tation for CSP with generalized guarded commands in which both inter-process 
a.nd intra-process concurrencies a.re exploited. A significant feature of our imple
mentation is tha.t it attempts the selection of guards of a process in pa.ra.llel. A 
simulated model empirica.lly demonstrates correctness properties, namely 'safety' 
a.nd 'liveness', of our implementation. The simulation experiments are also helpful 
in obtaining certain efficiency and fairness parameters of the implementation. 

1 Introduction 

Hoare's Communicating Sequential Processes (CSP) [14] ha.s been widely accepted as a 
paradigm for programming pa.rallel computation. But the initial definition of CSP does 
not allow output commands to appear in the alternative/repetitive commands. Not only 
is this a hindrance to the symmetry of the language, but this considerably constraints the 
expressibility [6, 7, 14, 15, 18]. This can be easily understood from the bounded buffer 
program or the dining philosopher program, where the inability to use output guards in 
the guarded commands necessitate additional signals. Following these arguments, the 
guarded commands of CSP have been generalized to allow even the output command to 
appear in them. While such a generalization is -easy to perceive, an implementation is 
quite involved and requires reaching an agreement among the communicating processes. 
We explain this with the following example. 



www.manaraa.com

Process P1 

+[ true;P2!x1 --> 51 
[] true;P37x2 --> 52 
] 

373 

Process P2 

+[ true;P17y1 --> 53 
[] true;P3!y2 --> 54 
] 

Process P3 

+[ true;P1!z1 --> 55 
[] true;P27z2 --> 56 
] 

The guarded statements in P1, P2 and P3 can be executed only if (i) both P1 and P2 
agree to select the first guard (in their respective repetitive commands), or (ii) both 
P2 and P3 agree to select the second guard, or (iii) the processes P3 and P1 agree to 
select, respectively, the first and second guards. Let Pl and P2 make the agreement (or 

rendezvous). Then it is clear that P3 should not initiate a rendezvous with either Pl or 
P2. Thus the agreement is not only between the processes that rendezvous, Pl and P2 in 
the above example, but also with other processes, process P3 in this example, with which 
P1 and P2 can potentially communicate in the alternative/repetitive command. Thus a 
global agreement among mutually communicating processes is required to select a guard 
in the generalized guarded .command. 

Proposing an implementation for the generalized guarded command has been of con
stant interest to the research community [2, 3, 4, 7, 10, 18, 20]. Fujimoto's solution 
[10] was based on a shared memory model while the others employ a loosely-coupled 
architecture. A commonality observed in all these solutions is they are based on the con
ventional von Neumann framework, adopting either shared memory or message passing 
architecture. Also, the selection of guards in a particular process has so far been done 
sequentially. In contrast to the earlier proposals, we use data-driven evaluation [21] as 
the basic computation model for executing CSP programs and propose an implementa
tion which parallelizes the selection of guards in a process. Attempting guards in parallel 
can significantly reduce the execution time of an alternative/repetitive command. It is 
important to note that our implementation does not sacrifice the semantics of the guarded 
commands. Other advantages of our implementation include exploiting fine-grain concur
rency, allowing parallelism not only among the various processes of a program but also 
within a single process. Also, in our implementation, Processing Elements (PEs) do not 
busy wait for synchronization of guarded commands. 

This paper is organized as follows. In the following section, we present the basic ar
chitecture and discuss the issues related to implementing generalized guarded commands. 
Section 3 describes the implementation scheme. A simulated model is developed to empir
ically demonstrate the correctness of our implementation. Further, certain performance 
parameters concerning efficiency and fairness of our implementation are also obtained 
from the simulation experiments. These results are reported in Section 4. Finally, we 
conclude by comparing our implementation with related works. 



www.manaraa.com

374 

2 The Architecture and Related Issues 

2.1 The Architecture 

Data-driven evaluation has been chosen as the model of computation for our implemen
tation for the following two reasons. Firstly, data flow model does not impose any order 
(other than what is dictated by data dependency) on the execution. The guards in a pro
cess can thus be concurrently attempted in a natural way. Further, fine grain asynchronous 
concurrency exploited by data flow machines ensures both inter- and intra-process par
allelisms in a CSP program. The reader is referred to [1, 13, 21] for an introduction to 
data-driven evaluation. 

Though the our implementation is suitable for any data flow computer, Manchester 
multi-ring data flow machine [5] is used as the base architecture in this paper. On top of 
the data flow architecture, we assume a shared memory module accessible to the Process
ing Elements (PEs) of the machine through an interconnection network. The architecture 
with the shared memory is shown in Fig.l. In order to increase the memory bandwidth 
- for obvious performance improvement reasons - the shared memory is low-order in
terleaved. The PEs are connected to the memory modules by means of a multi-stage 
interconnection network. Lastly, we assume the availability of a synchronization primi
tive such as the fetch and increment [11]. 

SWITCH 

M. U. •• Matching Unit 

N. S. •• Node Store 

I. N. •• Interconnection Network 

M. M. •• Memory Module 
P. E. •• Processing Element 

Jii&. 1 A Multi-Ring Data Flow Machine 



www.manaraa.com

375 

2.2 Implementing CSP 

A CSP program consists of a set of communicating processes. We propose to execute 
a CSP program by converting each process into a data flow graph; the resulting graphs 
are executed on a data flow machine. The processes of a CSP program can be executed 
concurrently. A distributed execution of the data flow graph ensures both inter- and intra
process concurrencies. The implementation of the simple commands of CSP, namely skip, 
assignment, and parallel commands, is straightforward. Also, work on implementing CSP 
with constrained guarded commands (i.e., allowing only input commands in the guards) 
has already been reported [17]. Hence we restrict our attention to the implementation of 
the generalized guarded commands. 

2.3 Notations 

In a CSP program, the processes are given distinct process identifiers, called process-ids. 
Each invocation of an alternative or repetitive command is referred as a transaction. A 
unique identi:fier, called trans-id, is generated by concatenating the process identifier (of 
the process which invokes the transaction) and a sequence number. The trans-ids are 
totally ordered. In a transaction, there are a number of guarded commands, each guard 
having a distinct index. Consider a guarded statement b; c -+ S appearing in a process P;, 
where b and c are the boolean and IO guards respectively. If c addresses the process P;, 
then P; is the communicating complement (or simply complement) of P; and vice-versa. 

As there can be many guarded commands in a transaction, there are many potential 
communicating pa.irs. So, implementing a generalized alternative or repetitive command 
is equivalent to reaching an agreement among the potential communicating processes. If 
processes P; and P; agree to communicate, then we say Pi and P; rendezvous. When Pi 
and P; rendezvous, it is implicit that the IO guards of them are complementary (that is, 
one is an input guard and the other an output guard). 

2.4 Related Issues 

In the first place, data flow implementation forbids the possibility of a process owning a 
Processing Element (PE). Also, since we allow parallel execution within a single process, 
various instructions (constructs) belonging to a process can reside on a number of PEs. 
As a consequence, a single (process) state cannot be assigned to a process. This is in 
contrast to the earlier implementations [2, 7, 10, 18] which rely heavily on the existence 
of a unique state for each process. 

The execution of input/output commands in CSP warrants the synchronization of 
the communicating processes. If a PE executing a communication construct is allowed 
to 'busy wa.it', then this may lead to a deadlock situation: a situation where each PE 
executing a. communication construct is waiting for synchronization, but the corresponding 
communicating complements are denied of PEs due to non-a.va.ila.bility. Thus, to a.void 



www.manaraa.com

376 

deadlocks busy waiting in PEa should be prohibited. That is, a PE must be set free while 
the communication construct executed by it (PE) waits for synchronization. The details 
of the construct have to be stored in the shared memory to enable the execution of the 
construct later when its complement becomes ready. 

3 The Implementation 

Let us first consider the implementation of an alternative command; the same arguments 
can be extended to repetitive commands. Also, only those guards whose boolean com
ponents succeed are considered. In the following discussion, /l refers the local process 
executing the guard 91 in transaction t1. The process P. addressed by the guard 91 is 
called the remote process. 

Before we go into the details of the implementation, the basic principle is briefly 
described below. An alternative command of a process is converted into a data flow 
graph as shown in Fig.2. The execution proceeds by attempting the guards. The guard 91 
of a process/lis attempted by executing a Try9uard actor (to be explained subsequently). 
The actions performed by this actor are as follows: 

1. First, the arrival of guard 91 is marked by writing an entry in a data structure stored 
in shared memory. 

2. Then a matching guard for 91 is searched in the shared data structure. 

3. A failure to find a matching guard results in termination of execution of the Try9uard 
actor. However, if a match is found, then the PE executing the Tryguard actor 
attempts to capture the respective processes (in the strict order of their trans-ids). 
This is done using the synchronization primitive fetch and add. 

4. If the PE cannot capture either of the processes, then the execution of the Try9uard 
actor terminates. Otherwise (i.e., when the PE captures both the processes), the 
rendezvous occurs. 

It may be observed that execution of a Tryguard actor may or may not result in a 
rendezvous. However, when all the guards of a process fail to effect a rendezvous, the 
process gets into a state similar to the 'waiting' state of [10]. It is guaranteed that, 
eventually, some other process will find the 'waiting' process willing to rendezvous with 
it. At that time, the 'waiting' process is woken up by means of tokens. 

3.1 Alternative Commands 

We store the following variables in shared memory for each transaction t1• 



www.manaraa.com

377 

Committed (t1): A boole&n variable indicating whether tr&naaction t1 is committed to 

some other tr&nsaction. 

Ezcl (t,): If a transaction t1 w&nta to rendezvous with tr, then the PE attempting the 

rendezvous must acquire exclusive access to the Committed variables of both t1 &nd tr. 
To accomplish this, the Excl flags are used. The rendezvous takes place only if the 

PE successfully acquires exclusive access to the Committed variables of t1 and t., and 

the Committed flags remaining False when the access was acquired. The capturing of 

local and remote processes goes by strict trans-id order to avoid cyclic dependencies and 

deadlocks. 

iupul 
a.rp;um011ta 

lupat 
a.rpmeuta 

Fig.2 Data Flow Graph for (bl; P2?z -+ S10b2; P3!11 --+ S2) 



www.manaraa.com

378 

G-list (t1): G-list (t1) is an array of linked lists indexed on the processes. For each process 
P., irrespective of whether P1 wishes to communicate to P. or not, there is an entry G
list ( t1, Pr )1 • Initially all entries of G-list ( t1) will contain nil pointers. When a guarded 
command 91 is attempted for execution, a new entry will be linked to G-list (t1, P.), 
where P. is the remote process addressed by 91· The entry is a tuple (91, c), where 91 is 
the guard index and c provides the communication details of 91· Typically, c stores the 
remote process name, signal name, and a bit to identify whether the command is input 
or output. An entry (9r,c) in G-list (tr,Pr) indicates that the IO guard 91 in process P1 is 
willing to rendezvous with P., provided Committed (t1) is False. 

The following variables are associated with each process. 

Seq-no (.PI): The integer variable Seq-no (P1), initialized to zero, is used for generating a 
unique trans-id for each active transaction in process P1. 

Active-trans (Pz): This variable stores the trans-id of the active transaction in P1. If no 
tra:nsaction is currently active, the variable stores a null value. 

An alternative command can be executed by converting it into a data flow graph 
as shown in Fig. 2. Certain abstractions have been followed in the data flow graph for 
simplicity. For example, a set of input arguments is passed to a guarded statement through 
a single True gate. In practice a number of True gates have to be used for this purpose. 
Also, we have assumed unlimited fanout for each data flow actor. A few new data flow 
actors have been introduced in Fig.2. These data flow actors with their respective input 
and output arguments are shown in Fig. 3. To understand their operational semantics, 
we need to know about the following two procedures. 

Store (P., t1, 91,c): This procedure links the entry (91, c) to G-list (tz, Pr ). 

Checkguard (91, P., c): This procedure is responsible for searching a 'matching' and 'com
patible' entry for gz in G-list ( t. ), where tr is active transaction in P.. The 'matching' 
condition ensures the remote guard is a potential communicating complement. Two en
tries are 'compatible' if the IO commands specified in them are complementary in nature. 
When this procedure succeeds (in finding the matching and compatible guard), it outputs 
g., the guard index in the remote transaction. A failure is indicated by outputting 0. 

The operational semantics of the new data flow actors used in our implementation is 
presented below. 

Get-id: The invocation of an alternative command commences with this actor. When the 
Get-id actor is invoked from a process Pz, the PE executing this actor fetches the Seq-no 
(P1) and increments its contents by one using the synchronization primitive fetch and 
increment. A unique trans-id is generated by concatenating P1 with the fetched Seq-no. 

1The arguments for indexing G-li!t (tz) on proces!-id!, rather than on guard indices are: (i) more than 
one guard can address the same process; (ii) when a complement process checks G-li!t(t1), all guards of 
tz which are ready and willing to communicate with the complement process need to be tried; and (iii) a 
linked list representation is an efficient way to access all available guards (i.e., guards ready and willing 
to rendezvous with the complement process) compared to a scheme where the G-li!t is indexed by the 
guard indices. 



www.manaraa.com

379 

'Jiryguard: An IO gua.rd is attempted by executing a 'Jiryguard actor. The details of the 
communication guard a.re specified by the input cas shown in Fig. 3. Note that the values 
P1 and c1 are constants derived and associated with the node at compile time. This actor 
invokes the Checkguard procedure to determine whether the corresponding guard is ready 
to rendezvous. If a matching guard is waiting, then an attempt to capture the Committed 
flags of the respective transactions is made. Successful capturing marks a rendezvous. 
Failure results in releasing captured transaction, if any. The operational semantics of this 
actor is presented in Fig. 4. 

<g,,g,t,;> 

(a) Get-id Actor (b) Tryguard Actor 

< g,, g, t,;> < g,.t,;> 

(c) Split Actor (d) Ext-Info Actor 

Fig.3 New Data Flow Actors 

Split: The Split actor receives a triple (91, 9r, tr} as its input from a 'Jiryguard actor.2 This 
actor splits the triple and outputs the 91 value on one output a.rc and the pair (9r, tr} on 
the other output a.rc. The value of 91 is used to enable the appropriate guarded statement. 
The {9r, tr} pair provides the necessary information for the extraction of input data in 
the IO guards whenever the guard is an Input command. 

Ezt-Info: When the IO guard is an input command, the corresponding Tryguard actor 
only achieves the synchronization. The actual communication (reception of data) has 
to be performed with the help of an Ezt-lnfo (meaning, extract information) actor. As 
the necessary synchronization has already been achieved, the data can be input without 
further synchronization delay. 

20r from a Fal6~gate when all boolean guards of a transaction are Faue. 



www.manaraa.com

380 

The semantics of other data flow actors is same as that presented in [8]. 

PROCEDURE trygu11rd(t~,g,,c); 
(* for executing the Trygu11rd actor the following information are aaaummed available at the PE 
P~, t1, g1 : local proceaa id, trana-id, and guard index; 
c: communication details of the IO guard; •) 
(* P., t., g. refer to remote proce~~-id, tr11n.s-id, and gu11rd index *) 
begin 

Store (P., tr, gr, c); (• store an entry in G-list (tr) •) 
t. := Active-tro~ ( P. ); 
if t. = 0 then 

akip; 
else 
begin 

g. := Checkgu11rd (gr, c); 
if g. 'f 0 then 
begin 

tmin :=min (tr, 4); 
t...... :=max (tr, t.); 
flag := 0; 
while ((fla.g=O) AND (NOT Committed (t.,.;n)) AND (NOT Committed (tmoc))) do 

flag:= fetch-and-increment (Excl (t.,.;n)) 
(• capture the transaction with a lower tran.s-id •) 

if (fiag=l) AND (NOT Committed (t,...,)) then 
begin relea.ae (tm;n) := TRUE; 

flag := 0; 
while ((fiag=O) AND (NOT Committed (t,_))) do 

Bag :=fetch-and-increment (Excl (t......,)); c· capture the other transaction •) 
if (flag= 1) then 
begin relea.ae (t......,) := TRUE; 

Committed (t.,.;n) :=TRUE; 
Committed (t......,) := TRUE; 
output-token ( (g.,4), Split-Node (tr)); 
(• output a token to the Split actor of tr •) 
output-token ((g.,t,), Split-Node (t.)); 
(• output a token to the Split actor of 4 *) 

end 
end 

end 
if releaae (t.,.;n) then Excl (t.,.;n):= TRUE; (* releaae captured transactions, if any •) 
if relea.ae (t,_) then Excl (t......,):= TRUE; 

end 
end; 

Fig. 4. Operational Semantics of Tryguard Actor 



www.manaraa.com

381 

From Fig.2 and Fig.4, our implementation scheme can be understood as follows. The 
execution of an alternative command is started by sending a trigger token (see Fig.2) to 
the Get-id node in the data flow graph. The guards of a transaction t, are attempted 
concurrently by executing the Tryguard actor. This results in writing an entry in G
list(t,, P.), where Pr is the remote process addressed by 91· If there is an active transaction 
t. in process P., then a search in G-list (t., P,) is carried out for a matching compatible 
entry. The execution of the Tryguard actor terminates if this search is unsuccessful. 
Otherwise the PE executing the Tryguard actor tries to acquire exclusive access to the 
Committed flags of t, and t. in strict order of their trans-ids. If one of the Committed flags 
is True the execution of the Tryguard actor terminates, releasing captured transaction, if 
any. A rendezvous takes place when both Committed ( t,) and Committed ( t.) are False 
and have been successfully captured. The success in capturing the transactions results in 
outputting the triples (g1, g., tr} and (g., g1, t1) on the input arc of the Split actors in t1 and 
tr respectively. When all the Tryguard actors oft, fail to find a complement transaction 
willing to rendezvous, the transaction gets into a state similar to the 'waiting' state of 
[10]. Eventually, some other transaction will find t, willing to rendezvous, and trigger t, 
through a token to its Split actor. Following the data flow graph of Fig.2 it can be easily 
understood how the appropriate guarded statement gets executed. When all the boolean 
guards fail, the alternative commands results in a runtime error. The data flow actor 
UND is used for this. 

It may be observed that more than one guard of a transaction can be executing the 
respective Tryguard actors in parallel; some of them may even succeed in finding their 
respective partners. However, only one guard can succeed in committing the rendezvous. 

3.2 Repetitive and 10 Commands 

The above scheme can be extended to implement repetitive and simple IO commands. 
The data flow graph for a repetitive command is similar to the one shown in Fig.2, except 
for the recirculation of input arguments and trigger token at the end of execution of each 
iteration. The execution of a repetitive command terminates when all the guards in that 
command fails. A repetitive command is executed loop sequentially. It may be observed 
that the semantics of the repetitive command imposes such a loop sequential execution. 

Finally, an input command Pr ?rz: generated by a process P, is implemented by consid
ering it as an alternative command 

True; P. ?x -+ skip. 

Similarly, an output command P.!y is translated as: 

True; P.!y -+ skip. 

The reason for considering a simple IO command as an alternative command in the im
plementation is given below. Consider the situation in which a guard of some transaction 
has its complement as a simple 10 command. This guard will never succeed, as the 



www.manaraa.com

382 

proposed implementation searches the matching compatible guards only in other alterna
tive/repetitive commands. To take care of this situation, the above search (for matching 
and compatible guard) should be extended to simple 10 commands as well. Instead, 10 
commands are considered as alternative commands to make the implementation simple 
and uniform. 

4 Simulation 

It is necessary to ensure that the proposed scheme correctly implements the semantics 
of guarded commands. This can be established by proving the following: during the 
potentially infinite execution, all processes (of the application program) and their inter
play maintain the invariant properties, namely 'safety' and 'liveness' (10, 16, 19]. The 
first property safety means any rendezvous that occurs is correct. Liveness ensures two 
processes which should rendezvous, eventually will, provided either of them does not 
rendezvous with any other. 

Besides safety and liveness, in general, it is desirable to support 'fairness' in imple
mentations involving non-deterministic choices. In particular two kinds of fairness, weak 
and strong fairness, have been defined in literature (9, 10]. An implementation of guarded 
commands is weakly fair, if it can be guaranteed that during an infinitely repetitive execu
tion, a guard that remains continuously available (i.e., enabled and complement process 
ready to communicate) will eventually rendezvous. If it can be guaranteed that a guard 
which is available infinitely often (though not necessarily continuously) will eventually 
rendezvous, then the implementation is strongly fair. 

In (12], it has been formally proved that our implementation maintains safety and 
liveness properties. However, proving fairness (either strong or weak) is a difficult task, 
basically due to the absence of an order of execution of the guards. The guards of a single 
process can be executed in any order, possibly concurrently. Hence no assumption can be 
made on their execution order, leaving no basis for proving fairness. 

In this paper, we establish safety, liveness, and fairness properties empirically using 
a simulation approach. Another motivation for conducting simulation experiments is to 
obtain certain performance parameters, concerning efficiency and fairness of our imple
mentation. In this section we highlight the details of the simulation and the results. 

4.1 Simulation Details 

As mentioned earlier we have chosen the multi-ring data flow machine (5]. The memory 
modules are connected to the PEs through a multi-stage interconnection network. For 
simplicity, the number of rings (or PEs) in the data flow machine is made the same as the 
number of interleaved memory modules. Further buffering of memory requests/responses 
between the stages of the network has been assumed to avoid contention in a switch. The 
multi-ring data flow machine is simulated using a discrete event simulation approach. 



www.manaraa.com

383 

Constant service times have been assigned to the functional units. This is based on our 
knowledge of the time taken to process a. token by these functional units [5]. Shared mem
ory access cost involves buffering delay, if there is any contention in the interconnection 
switches, in addition to the logarithmic delay in the multistage network. 

Input Parameters 

The application program that we run on this simulator is a repetitive command involving 
m processes and n guards per process. The repetitive commands in the m processes are 
such that the I/0 guards in one have matching and compatible guards in the complement 
processes. Also, all guards in all processes are enabled; that is, their boolean components 
always evaluate to True. The number of rings in the multi-ring data flow machine (or the 
number of interleaved memory module) can be varied and is an input parameter for the 
simulation. 

Output Parameters 

First, let us concentrate on proving safety, liveness, and fairness properties. We supple
ment this result with performance parameters which are measures for the efficiency and 
fairness of the implementation. 

In the simulation run we record· a log-file for the transactions that successfully ren
dezvous. Using the log-file, we ensure that each rendezvous is safe. To establish liveness, 
let only one pair (chosen randomly) of matching guards be available and check whether 
the rendezvous takes place within a finite time. The implementation is said to be live, if 
the rendezvous takes place no matter which pair of complement guards is enabled. Fur
ther, this should remain true irrespective of the variations in the number of rings. Lastly, 
to prove (weak) fairness of our implementation, we enable all the guards continuously 
and expect each of them to participate in a rendezvous, at least once, during a finite 
simulation time. 

Apart from the three properties, we define the following six output parameters which 
are measures for the efficiency and fairness of the implementations. 

(i) Average Tries: Average tries is an important performance parameter from efficiency 
viewpoint. It can be evaluated as the ratio of the sum of the number of guards tried 
(before a rendezvous) in each transaction to the total number of transactions. The value 
of average tries for our implementation could be between 2 (corresponding to one guard 
in each of the complement processes) and 2*n (where n is the number of guards per 
transaction). The value of average tries can be normalized by dividing it by 2*n. 

(ii) Best Case Figure: As mentioned above, in the best case, a transaction can succeed 
by attempting just two guards, one in each of the complement processes. Best case figure 
is the ratio of the number of rendezvouses that took place with just 2 tries to the total 
number of transactions in the simulation time. 



www.manaraa.com

384 

(iii) Worst Case Figure: A rendezvous that occurs after all guards in the complement 
transactions have been tried corresponds to a worst case occurrence. Counting the number 
of such rendezvouses and normalizing it by the total number of transactions gives the worst 
case figure. 

(iv) Relative Merit Figure: In other implementations [4, 10, 18] an agreement is reached 
only after all the n guards of one of the transactions have been attempted. So it is 
meaningful to count the transactions where an agreement is reached by trying fewer than 
n guards in the complement processes. Averaging this value over the total number of 
transactions in the simulation period gives the relative merit figure. 

( v) Guard Bias Figure: In a fair implementation each guard in a process is equally like 
to participate in a rendezvous involving that process. The number of times a guard has 
participated in a rendezvous, called the success count, is measured for each guard. Ideally, 
the success count for a guard should be equal to 

2 * total no of transactions 
number of guards 

The standard deviation of the success counts of guards in a process is a measure of 
biasing. This figure, referred as the guard bias figure, indicates the extent to which a 
guard is biased/favored. This value should be very low for a fair implementation. 

(vi) Process Bias Figure: The process bias figure is a measure to what extent a process 
has been biased/favored in all rendezvouses that took place during the simulation period. 
This figure is similar to the guard bias figure and can be obtained by computing the 
standard deviation of the success counts of various processes. 

4.2 Results 

The input program for the simulator was run several times with the following values of 
m m, the number of processes, and n, the number of guards per process: (i) m = 5 and 
n = 8, (ii) m = 5 and n = 16, and (iii) m = 9 and n = 16. All three properties, namely 
safety, liveness, and (weak) fairness have been checked for all of the above cases. The 
experiments are repeated on different configurations of the data flow machine having 1, 
2, 4, 8, 16, or 32 rings. To measure the performance parameters, we ran the application 
programs long enough for at least 100 rendezvouses to take place. 

Average Tries: Table 1 lists the normalized value of average tries (for a rendezvous) for 
various simulation runs. We observe that this value varies from 0.6 to 0.95 for the different 
runs. In particular, when the number of guards per process is smaller and the number 
of rings in the data flow machine is larger, the value of average tries is high. This can 
be reasoned as follows. When there is low parallelism (i.e., less number of guards to try) 
and high resource availability, the chances for more number of guards to be tried are high. 
Further, we have assumed (i) the alternative commands in all the processes are initiated 
at the same time, and (ii) it takes equal execution time for the all boolean guards. These 
two assumptions further add to the possibility that the Tryguard actors of a process can 
be executed simultaneously, accounting for the large value of normalized average tries. 



www.manaraa.com

385 

Table 1. Normalized Average Tries 
Input Programs Normalized Average Tries 

with Number of Rings 
Processes Guards 1 2 4 8 16 32 

5 8 0.694 0.690 0.727 0.795 0.822 0.833 
5 16 0.600 0.606 0.633 0.662 0.709 0.701 
9 16 0.666 0.669 0.639 0.689 0.755 0.750 

Best Case, Worst Case, and Relative Merit Figures: We do not observe the occurrence of 
the best case. As the guards of a process are attempted concurrently and as the Tryguard 
actors of a process are enabled more or less at the same time, it is more likely that at least 
two guards in a process are tried simultaneously, forbidding the best case occurrence. The 
worst case and relative merit figures for the various runs are tabulated in Table 2. The 
worst case figure drops steadily as the parallelism increases. When the parallelism is high, 
the worst case virtually never occurs. Also, the relative merit figure shows an increasing 
trend with an increase in the parallelism. 

Table 2. Worst Case and Relative Merit Figures 
Input Programs Performance Parameters 

with Parameters Number of Rings 
Processes Guards 1 2 4 8 16 32 

(in%) 
5 8 Worst Case 0.0 0.0 0.0 7.4 10.6 9.7 

Relative Merit 0.0 0.0 6.8 1.6 3.8 0.0 
5 16 Worst Case 0.0 0.0 0.0 0.0 0.0 0.0 

Relative Merit 0.0 0.0 6.7 4.9 0.0 0.0 
9 16 Worst Case 0.0 0.0 0.0 0.0 4.4 0.9 

Relative Merit 0.0 12.5 21.9 10.0 0.0 0.0 

Fairness Measures: The guard bias figures (in a typical process) and the process bias 
figures for various simulation runs are shown in Table 3. We notice these values are very 
low, at most 4 transactions out of nearly 100 transactions. Such a low degree of biasing 
is acceptable to an implementation involving non-determinism. 

Table 3. Fairness Measures 
Input Programs Bias Figures 

with Number of Rings 
Processes Guards 1 2 4 8 16 32 

(in number of transactions) 
5 8 Guard 1.14 0.97 1.68 2.19 1.93 2.63 

Process 1.67 1.20 1.36 0.97 2.56 2.65 
5 16 Guard 0.76 0.78 1.34 1.37 1.74 1.71 

Process 1.35 0.74 2.75 1.16 1.54 3.84 
9 16 Guard 0.41 0.64 0.80 1.46 1.21 1.60 

Process 0.49 0.56 1.03 1.07 0.66 1.52 



www.manaraa.com

386 

Variable Execution Time for Boolean Guards and Guarded Statements: 

As mentioned earlier, in the earlier simulation runs an equal execution time is assumed 
for all boolean guards and guarded statements (statements following the guards). To study 
the effect of variable execution times (of boolean guards and guarded statements) on the 
performance parameters, we use a uniformly distributed execution time. The range of 
the uniform distribution is from 0 time units to 100 time units. Due to this difference, 
the Tryguard actors may be activated at different time. This is expected to reduce the 
average tries. The performance results indeed show a decrease in the average tries and 
a significant increase in the relative merit figure (refer Table 4). The results are for the 
repetitive command involving 5 processes and 16 guards. 

Table 4. Results for Variable Execution Time 
Number of Variable Execution Time for 

Rings Boolean Guards Guarded Statements 
Normalized Normalized 

Average Tries Relative Merit Average Tries Relative Merit 
1 0.60 0.0% 0.58 0.0% 
2 0.57 11.1% 0.57 29.1% 
4 0.56 33.3% 0.52 59.1% 
8 0.54 35.8% 0.51 65.7% 
16 0.63 12.6% 0.59 75.8% 
32 0.60 23.7% 0.63 67.3% 

5 Related Works and Comparisons 

Our implementation, for the first time, uses data :Bow model of computation. As men
tioned earlier, data-driven computation facilitates fine grain asynchronous parallelism. In 
our implementation parallelism exploited is not only among processes but also within a 
process. A marked difference from other models is the concurrent execution of guards in 
a process. Further, processors do not busy wait during synchronization. 

5.1 Shared Memory Systems 

The work reported in [10] is based on shared memory model and resembles our implemen
tation in some aspects. However, our implementation performs better than the former in 
the following two ways. 

In [10], a rendezvous between two transactions takes place only after one of them enters 
the 'waiting' state. This means that all guards of one transaction have to be attempted 
before the rendezvous. That is, if there are n guards in each process, then at least ( n + 1) 
must be tried for a rendezvous. 2 * n tries wil be made in the worst case. The average 
case results are not reported in [10]. Theoretically, the best and worst case figures for 



www.manaraa.com

387 

our implementation are 2 and 2 * n respectively. Also, the simulation results predict an 
average of (0.6) * (2 * n) guards are tried for a rendezvous. The relative merit figure shows 
that our implementation indeed performs better than [10) in many cases. 

It is important to realize that the above comparisons are based only on the number of 
tries and not on the execution time. Given that the guards of a process are attempted con
currently in our implementation, it easily outperforms the other [10) in terms of execution 
time. The improvement in performance is not without its price. In our implementation, 
we store the guard index and communication detail for each attempted guard in theG-list 
(t1); whereas, only the guard details are stored in the Alt-List in [10). However, with the 
developments in VLSI technology, it can be argued that an improvement in execution 
speed at the expense of storage is affordable. 

5.2 Message Passing Systems 

The implementations presented in (2, 3, 4, 7, 18) use message passing architecture. Some 
of them [2, 7) are based on a two phase algorithm. Our implementation, like the ones 
presented in [4, 10, 18), involves only one phase. There is no need for a second phase as 
every Try9v.ard actor terminates with a definite answer. That is, non-committal replies 
and retries do not occur in our implementation. 

It is unfair to evaluate our implementation directly in the light of the six criteria listed 
in [2, 18) as these are essentially for a loosely-coupled multiprocessor system. However 
our implementation retains the spirit of these criteria. For instance, five of these six 
criteria3 can be appropriately redefined as: (i) the amount of system information stored 
(in the shared memory) should be minimal; (ii) when both t1 and tr are ready to select 
the guards 91 and 9r, respectively, then at least one of the transactions must select a 
guard (not necessarily 91 or 9r) within a finite time; (iii) the number of attempts made in 
selecting a guard of a transaction should be bounded; (iv) the time taken by a 'Jlry9v.ard 
actor to determine whether it can establish a rendezvous must be finite; and (v) if a 
process has a guarded command that is enabled continuously for an infinite time, then it 
should eventually succeed. It can be easily proved that our implementation satisfies these 
criteria. In fact it performs better than others [2, 3, 4, 7, 10, 18) with respect to (ii) and 
(iii), as parallelizing the selection of guards significantly reduces the execution time. 

6 Conclusions 

In this paper, we have presented a decentralized parallel implementation for the gener
alized guarded commands of CSP using data flow model of computation. A simulation 
study has been conducted to measure various performance and fairness parameters. Also, 
simulation experiments establish safety, liveness, and fairness of our implementation. Fi
nally, a comparison with the existing ones reveals the superiority of our model. We have 

3Criterion (i) of [18] is not relevant to the discussion. 



www.manaraa.com

388 

not addressed the issue of process termination. However, the implementation can be easily 
extended to take care of process termination. 

Acknowledgments 

The authors acknowledge Dr.R.A. Nicholl and Dr.V.S.Lakshmanan for their useful com
ments. The authors are thankful to Bhama for her comments on the initial draft of this 
paper. 

References 

[1] Arvind and Gostelow, K.P., "The U Interpreter", IEEE Computer, vol.15, no.2, 
pp.42-49, Feb. 1982. 

[2] Back, R.J.R, Ekslund, P., and Kurki-Suonia, R., "A Fair and Efficient Implementa
tion of CSP with Output Guards", Technical Report, Ser. A, No. 38, Abo Akademic, 
Finland, 1984. 

[3] Bagrodia, R., "A Distributed Algorithm to Implement the Generalized Alternative 
Command in CSP", in Proc. of the 6th International Conference on Distributed 
Computing Systems, pp. 422-427, 1986. 

[4] Bagrodia, R., "Synchronization of Asynchronous Processes in CSP", ACM Transac
tions on Programming Languages and Systems, vol.11, no.4, pp.585-597, Oct.1989. 

[5] Barahona, P.M.C.C., and Gurd, J.R., "Processor Allocation in a Multi-ring Data 
Flow Machine," Journal of Parallel and Distributed Computing, vol.3, no.3, pp.305-
327, 1986. 

[6] Bernstein, A.J., "Output Guards and Nondeterminism in Communicating Sequen
tial Processes", ACM Transactions on Programming Language and Systems, vol.2, 
no.2, pp.234-238, April 1980. 

[7] Buckley, G.N. and Silberschatz, A., "An Effective Implementation for the Gener
alized Input-Output Construct of CSP", ACM Transactions on Programming Lan
guages and Systems", vol. 5, no. 2, pp. 223-235, 1983. 

[8] Davis, A.L. and Keller, R.M., "Data Flow Program Graphs", IEEE Computer, 
vol.15, no.2, pp.26-41, Feb. 1982. 

[9] Francez, N., Fairness, Springer-Verlag, New York, 1986. 

[10] Fujimoto, R.N. and Hwa-chung Feng, "A Shared Memory Algorithm and Proof for 
the Generalized Alternative Construct in CSP", International Journal of Parallel 
Programming, vol. 16, no. 3, pp. 215-241, 1987. 



www.manaraa.com

389 

[11] Gottlieb, A., Grishman, R., Kruskal, C.P., McAuliffe, Rudolph, L., and Snir, M., 
"The NYU Ultracomputer - Designing an MIMD Shared Memory Parallel Com
puter", IEEE 1ransactions on Computers, vol.C-32, no.2, pp.175-189, Feb. 1983. 

[12] Govindarajan, R. and Yu. S, "Attempting Guards in Parallel: A Data Flow Ap
proach to Execute Generalized Guarded Commands", Technical Report # 273, De
partment of Computer Science, University of Western Ontario, London, May 1990. 

[13] Gurd, J.R., Watson, I., and Kirkham, C. C., "The Manchester Prototype Data Flow 
Computer", Communications of the ACM, vol.28, no.1, pp.34-52, Jan.1985. 

[14] Hoare, C.A.R., "Communicating Sequential Processes", Communications of the 
ACM, vol. 21, no. 8, pp. 666-677, Aug. 1978. 

[15] Kieburtz, R.B. and Silberschatz, A., "Comments on Communicating Sequential 
Processes", ACM 1ransactions on Programming Language and Systems, vo1.1, no.2, 
pp.218-225, Oct. 1979. 

[16] Owicki, S. and Lamport, L., "Proving Liveness Properties of Concurrent Programs", 
A OM 1ransactions on Programming Languages and Systems, vol. 6, no. 2, pp. 455-
495, July 1982. 

[17] Patnaik, L.M. and Basu, J., "Two Tools for lnterprocess Communication in Dis
tributed Data Flow Systems", The Computer Journal, vol. 29, no. 6, pp. 506-521, 
Dec. 1986. 

[18] Ramesh, S., "A New Implementation of CSP with Output Guards" in Proc. of the 
7th International Conference on Distributed Computing Systems, pp. 266-273, 1987. 

[19] Reed, D.A., Malony, A.D., and McCredie, B.D., "Parallel Discrete Event Simula
tion: A Shared Memory Approach", in Proc. of the ACM SIGMETRIC S Conference 
on Measuring and Modeling Computer Systems, vol. 15, no.1, pp. 36-38, May 1987. 

[20] Silberschatz, A., "Communication and Synchronization in Distributed Systems" 
IEEE 1ransactions on Software Engineering, vol.SE-5, no. 6, pp.542-546, Nov.1979. 

[21] Treleaven, P.C., Brownbridge, D.R., and Hopkins, R.P., "Data-Driven and Demand
Driven Architecture", Computing Surveys, vol. 14, no. 1, pp. 93-143, Mar. 1982. 



www.manaraa.com

ON THE DESIGN OF DEADLOCK-FREE ADAPTIVE ROUTING 

ALGORITHMS FOR MULTICOMPUTERS: DESIGN METHODOLOGIES 

Abstract 

J. Duato 
Dept. de Ingenierla de Sistemas, Computadores y Automatica 
Facultad de Informatica. Universidad Politecnica de Valencia 

P.O.B. 22012. 46071 -Valencia, Spain 

Second generation multicomputers use wormhole routing, allowing a very low channel 
set-up time and drastically reducing the dependency between network latency and internode 
distance. Deadlock-free routing strategies have been developed, allowing the implementation 
of fast hardware routers that reduce the communication bottleneck. Also, adaptive routing 
algorithms with deadlock-avoidance or deadlock-recovery techniques have been proposed 
for some topologies, being very effective and outperforming static strategies. 

This paper develops the theoretical background for the design of deadlock-free adaptive 
routing algorithms for wormhole as well as store-and-forward routing. Some basic 
definitions and four theorems are proposed, developing conditions to verify that an adaptive 
algorithm is deadlock-free, even when there are cycles in the channel dependency graph. 
Also, two design methodologies are proposed. The first one supplies algorithms with a high 
degree of freedom, without increasing the number of physical channels. The second 
methodology is intended for the design of fault-tolerant algorithms. Some examples are 
given, showing the application of the methodologies. 

1. Introduction 

Multicomputers [1] rely on an interconnection network between processors to support 
the message-passil).g mechanism. The network latency [1] can be defined as the time from 
when the head of a message enters the network at the source until the tail emerges at the 
destination. In first generation multicomputers, a store-and-forward mechanism has been 
used to route messages. Each time a message reaches a node, it is buffered in local memory, 
and the processor interrupted to execute the routing algorithm. Accordingly, the network 
latency is proportional to the distance between the origin and the destination. 

However, second generation multicomputers are most distinguished by message routing 
hardware that makes the topology of the message-passing network practically invisible to 
the programmer. The message routing hardware uses a routing mechanism known as 

This work is partly supported by CICYT grant number TIC 87-0655 



www.manaraa.com

391 

wormhole routing [9]. As messages are typically at least a few words long, each message is 
serialized into a sequence of parallel data units, referred to as flow control units, or flits [8]. 
The flit at the head of a message governs the route. As the header flit advances along the 
specified route, the remaining flits follow it in a pipeline fashion. If the header encounters a 
channel already in use, it is blocked until the channel is freed; the flow control within the 
network blocks the trailing flits. 

This form of routing and flow control has two important advantages over the 
store-and-forward packet routing used in first generation multicomputers. Firstly, it avoids 
using storage bandwidth in the nodes through which messages are routed. Secondly, this 
routing technique makes the message latency largely insensitive to the distance in the 
message-passing network. Since the flits move through the network in a pipeline fashion, in 
the absence of channel contention, the network latency equals the sum of two terms: 

- T~ is the time associated with forming the path through the network, where TP is the 
delay of the individual routing nodes found on the path, and D is the number of nodes 
traversed. 

- LIB is the time required for a message of length L to pass through a channel of 
bandwidth B. 

In second generation multicomputers, the network latency is dominated by the second 
term for all but very short messages. 

Another improvement in message performance results from selecting the optimal 
topology for the implementation on printed circuit boards or VLSI chips. As message 
latency is dominated by the term LIB, more wirable network topologies will increase the 
bandwidth B at the expense of increasing the network diameter. An analysis [5,7] shows 
that, under the assumption of constant number of wires through the network bisection, a two 
dimensional network minimizes latency for typical message lengths for up to 1024 nodes. 
For larger sizes, a three dimensional network achieves better performance. Among these 
networks, meshes are preferred because they offer useful edge connectivity, which can be 
used for 1/0 controllers. Also, meshes partition into units that are still meshes, simplifying 
the design of routing algorithms that are independent of the network size, as well as the 
implementation of space-sharing techniques. 

However, deadlocks may appear if the routing algorithms are not carefully designed. A 
deadlock in the interconnection network of a multicomputer occurs when no message can 
advance toward its destination because the queues of the message system are full. The size 
of the queues strongly influences the probability to reach a deadlocked configuration. First 
generation multicomputers buffer full messages or relatively large packets. By contrary, 
second generation machines buffer flits, being more deadlock-prone. So, the only practical 
way to avoid deadlock is to design deadlock-free routing algorithms. 

Many deadlock-free routing algorithms have been developed for store-and-forward 
computer networks [12,14,20]. These algorithms are based on a structured buffer pool. 
However, with wormhole routing, buffer allocation cannot be restricted, because flits have 
no routing information. Once the header of a message has been accepted by a channel, the 
remaining flits must be accepted before the flits of any other message can be accepted. So, 
routing must be restricted to avoid deadlock. 



www.manaraa.com

392 

Dally [9] has proposed a methodology to design static routing algorithms under general 
assumptions. He defines a channel dependency graph and establishes a total order among 
channels. Routing is restricted to visit channels in decreasing or increasing order to 
eliminate cycles in the channel dependency graph. This methodology has been applied to the 
design of routing chips for multicomputers [8] and multicomputer nodes with integrated 
communication support [2]. It has also been applied to systolic communication [19,2]. 

The restriction of routing, although avoids deadlock, can increase traffic jams, specially 
in heavily loaded networks with long messages. In order to avoid congested regions of the 
network, an adaptive routing algorithm can be used. Adaptive strategies have been shown to 
outperform static strategies in store-and-forward routing [3] and in packet-switched 
communications [18,21]. In general, adaptive routing needs additional hardware support. 

Several adaptive algorithms have been developed for wormhole routing. A deadlock
free adaptive algorithm for the hypercube is the Hyperswitch algorithm [4], which is based 
on backtracking and hardware modification of message headers to avoid congestion and 
cycles. Another deadlock-free adaptive algorithm has been proposed for the MEGA [13]. 
This algorithm always routes messages, sending them away from their destination if 
necessary, like the Connection Machine [15]. If a message arrives to a node without free 
output channels, deadlocks are avoided by storing the message and removing it from the 
network. In this respect, it is similar to virtual cut-through [17]. Jesshope [16] has proposed 
an algorithm for n dimensional meshes, by decomposing them into 2n virtual networks. 
Inside each virtual network, displacements along a given dimension are always made in the 
same direction, thus avoiding cycles and deadlock. 

An alternative way consists of recovering from deadlock. Reeves et al. [22] have used 
an abort-and-retry technique to remove messages blocked for longer than a certain threshold 
from the network. Aborted messages are introduced again into the network after a random 
delay. In [22] three adaptive routing strategies have been proposed and evaluated for a 
binary 8-cube. 

In [10] we have proposed a very simple methodology to design deadlock-free adaptive 
routing algorithms for wormhole networks. The routing algorithms obtained from the 
application of that methodology to 2D and 3D-meshes have been evaluated by simulation. 

Also, in [11] we have presented a first version of a theory for the design of 
deadlock-free adaptive routing algorithms. Some basic definitions and three theorems have 
been proposed, as well as a design example. However, that theory is only valid for single 
flit messages, contrary to one of the assumptions stated in the paper, being useful for 
store-and-forward routing. 

This paper develops the theoretical background for the design of deadlock-free adaptive 
routing algorithms. For wormhole routing, some basic definitions and two theorems are 
proposed and proved, developing conditions to verify that an adaptive algorithm is 
deadlock-free, even when there are cycles in the channel dependency graph. For 
store-and-forward routing, the theory presented in [11] is updated. Also, two design 
methodologies based on the above mentioned theorems are proposed. The first one supplies 
adaptive algorithms with a high degree of freedom, without increasing the number of 
physical channels. The second methodology is intended for the design of fault-tolerant 
algorithms. 



www.manaraa.com

393 

Section 2 develops the new theory for wormhole routing. Section 3 summarizes the 
theoretical aspects for store-and-forward routing. Section 4 proposes two design 
methodologies, giving some examples of their application. Finally, some conclusions are 
drawn. 

2. Definitions and theorems for wormhole routing 

This section develops the theoretical background for the design of deadlock-free 
adaptive routing algorithms for networks using wormhole routing. 

The basic assumptions are very similar to the ones proposed by Dally [9], except that 
adaptive routing is allowed. These assumptions are the following: 

1) A node can generate messages destined for any other node at any rate. 

2) A message arriving at its destination node is eventually consumed. 

3) Wormhole routing is used. So, once a queue accepts the first flit of a message, it 
must accept the remainder of the message before accepting any flits from another message. 

4) A node can generate messages of arbitrary length. Packets will generally be longer 
than a single flit. 

5) An available queue may arbitrate between messages that request that queue, but may 
not choose among waiting messages. 

6) A queue cannot contain flits belonging to different messages or packets. After 
accepting a tail flit, a queue must be emptied before accepting another header flit. Then, 
when a message or packet is blocked, its header flit will always occupy the head of a queue. 

7) The route taken by a message depends on its destination and the status of output 
channels (free or busy). At a given node, the routing function supplies a set of output 
channels based on the current and destination nodes. A selection from this set is made based 
on the status of output channels at the current node. So, adaptive routing will be considered. 

Before to propose the theorems, some definitions are needed: 

Definition 1: An interconnection network I is a strongly connected directed 
multigraph, I = G(N, C). The vertices of the multigraph N represent the set of processing 
nodes. The edges of the multigraph C represent the set of communication channels. More 
than a single channel is allowed to connect a given pair of nodes. Each channel ci has an 
associated queue denoted queue(ci) with capacity cap(cj). The source and destination nodes 
of channel ci are denoted si and dj, respectively. 

Definition 2: Let B be the set of valid channel status, B = {free, busy}. Let 
T: C --7 B be the status of the output channels in the network. 

Definition 3: An adaptive routing function R: N x N --7 cP supplies a set of p 
alternative output channels to send a message from the current node nc to the destination 
node nd, R(nc, nd) = { cl> c2, .•• cp}. In general, p will be less than the number of output 
channels per node to restrict routing and obtain deadlock-free algorithms. As a particular 
case, p = I defines a static routing function. Also, the channels in the set supplied by R are 
not necessarily different. So, p is the maximum number of choices. In particular, 



www.manaraa.com

394 

R(n, n) = 0, V n E N. 

Definition 4: A selection function S: cP x BP ~ C selects a free output channel (if 
any) from the set supplied by the routing function. From the definition, S takes into account 
the status of all the channels belonging to the set supplied by the routing function. The 
selection can be random or based on static or dynamic priorities. Also, in the same way the 
result of a static routing function may be a busy channel, if all the output channels are busy, 
any of them is selected. The decomposition of the adaptive routing into two functions 
(routing and selection) will be critical while proving the theorems, because only the routing 
function determines whether a routing algorithm is deadlock-free or not. Then, the selection 
function will only affect performance. Moreover, it is possible to extend the definition of the 
selection function by taking into account additional information, either local to the node or 
remote. We will comment on this in section 4. 

Definition 5: A routing function R for a given interconnection network I is connected 
iff 

V i, j E N i "# j, 3 cl> c2, ... ck E C 3 

C1 E R(i, j) 1\ Cm+l E R(dm, j) V m E { l,k-1) 1\ dk = j 

In other words, it is possible to establish a path between i and j using channels 
belonging to the sets supplied by R. Notice that the interconnection network is strongly 
connected, but it does not imply that the routing function must be connected. 

Definition 6: A routing subfunction R1 for a given routing function R and channel 
subset C1 ~ C, is a routing function 

R1: N x N ~ Cf, 0 < q ~ p 3 

R1 (i, j) = R(i, j) n C1 V i, j E N 

Definition 7: Given an interconnection network I, a routing function R and a pair of 
channels ci, ci E C, there is a direct dependency from ci to ci iff 

ci E R(si, n) A ci E R(t4, n) for some n E N 

that is, ci can be used immediately after ci by messages destined to some node n. 

Definition 8: Given an interconnection network I, a routing function R, a channel 
subset C1 c C which defines a routing subfunction R1 and a pair of channels ci, ci E C1, 
there is an indirect dependency from ci to ci iff 

3 Cl, C2, ... Ck E C- C1 3 

ci E R1(si, n) A c1 E R('4, n) A 

Cm+l E R(dm, n) V mE {1, k-1} 1\ 

dk = si A ci E R1(sj, n) for some n E N 

that is, it is possible to establish a path from si to di for messages destined to some node 
n. ci and ci are the first and last channels in that path and the only ones belonging to C1. 
Then, ci can be used after ci by some messages. As ci and ci are not adjacent, some other 
channels belonging to C - C1 are used between them. It must be noticed that, given three 
channels Cj, Ck E C1 and Cj E C - Cl> the existence of direct dependencies between Cj, Cj and 
ci, ck, respectively, does not imply the existence of an indirect dependency between ci, ck. 



www.manaraa.com

395 

Definition 9: A channel dependency graph D for a given interconnection network I 
and routing function R, is a directed graph, D = G(C, E). The vertices of D are the channels 
of I. The edges of D are the pairs of channels (c;, cj) such that there is a direct dependency 
from c; to ci. Notice that there are no 1-cycles in D, because channels are unidirectional. 

Definition 10: An extended channel dependency graph DE for a given interconnection 
network I and routing subfunction R1 of a routing function R, is a directed graph, 
DE = G(C1, EE>. The vertices of DE are the channels that define the routing subfunction R1• 

The edges of DE are the pairs of channels (c;, cj) such that there is either a direct or an 
indirect dependency from c; to cj. 

Definition 11: A sink channel for a given interconnection network I and routing 
function R is a channel c; 3 

V' j e N, c; e R(s;. j) ~ j = ~ 

In other words, all the flits that enter a sink channel reach their destination in a single 
hop. As a result, there are no outgoing arcs from a sink channel in any channel dependency 
graph, as can be easily seen from the definitions. 

Definition 12: A configuration is an assignment of a set of flits to each queue, all of 
them belonging to the same message or packet (assumption 6). The number of flits in the 
queue for channel c; will be denoted size(c;). The destination node for a flit fj will be 
denoted dest(9· If the first flit in the queue for channel c; is a header flit destined for node 
nd, then head(c;) = nd. If the first flit is not a header and the next channel reserved by its 
header is ci, then next(c;) = ci, that is, each flit must follow the same path as its header. A 
configuration is legal iff 

V' c; e C, size(c;) S cap(c;) 1\ 

c; e R(s;, dest(9) V' fj e queue(c;) 

that is, the queue capacity is not exceeded and all the flits stored in the queue have 
been sent there by the routing function. 

Definition 13: A deadlocked configuration for a given interconnection network I and 
routing function R is a nonempty legal configuration verifying the following conditions: 

1) V' c; e C 3 head(c;) e N ~ head(c;) * ~ " size(cj) > 0 V' cj e R(~. head(c;)) 

2) V' c; e C 3 next(c;) e C ~ size(next(cj)) = cap(next(c;)) 

The first condition refers to channels with a header flit at their queue head 
(head(c;) e N). The second condition refers to channels containing a data or tail flit at their 
queue head, not destined to ~ (next(c;) e C). No condition is imposed to empty channels. In 
a deadlocked configuration there is not any header flit one hop from its destination. Header 
flits cannot advance because the queues for all the alternative output channels supplied by 
the routing function are not empty (see assumption 6). As a particular case (for disconnected 
routing functions), the routing function may not supply any output channel. Data and tail 
flits cannot advance because the next channel reserved by their message header has a full 
queue. It must be noticed that a data flit can be blocked at a node even if there are free 
output channels to reach its destination. Also, in a deadlocked configuration, there is no 
message whose header flit has already arrived to its destination. 



www.manaraa.com

396 

Definition 14: A routing function R for an interconnection network I is deadlock-free 
iff there is not any deadlocked configuration for that routing function on that network. 

Two theorems are proposed. The first one is a straightforward extension of Dally's 
theorem for adaptive routing functions. The second one allows the design of adaptive 
routing functions with cyclic dependencies in their channel dependency graph. For each 
theorem, a sketch of the proof as well as the full proof are given. 

Theorem 1: A connected and adaptive routing function R for an interconnection 
network I is deadlock-free if there are no cycles in the channel dependency graph D. 

Proof sketch: 

¢::: As the channel dependency graph for R is acyclic, it is possible to establish an order 
between the channels of C. As R is connected, the rninimals of that order are also sinks. 
Suppose that there is a deadlocked configuration for R. Let ci be a channel of C with a 
nonempty queue such that there are no channels less than ci with a nonempty queue. If ci is 
a minimal (that is, a sink) then the flits are not blocked and there is no deadlock. Otherwise, 
using the channels less than ci, the flit at the queue head of ci can advance and there is not a 
deadlock.• 

Proof: 

¢::: Suppose that there are no cycles in D. Then, one can assign an order to the channels 
of C so that if (ci> ci) e E then ci > ci. Consider the channel(s) ci 3 

V ci e C, (ci, ci) e: E 

Such a channel ci is a minimal of the order. Let us prove that it is a sink. If it were not 
a sink, as the routing function is connected, for any legal configuration with a header flit 
stored in the queue head of ci 

d; * head(ci) ==> 3 ck e C 3 ck e R(d;, head(ci)) 

As the configuration is legal then 

ci e R(si, head(cj)) ==> (ci, ck) e E 

contrary to the assumption that ci is a minimal. So, d; = head(cj) and ci is a sink of D. 

Suppose that there is a deadlocked configuration for R. Let ci be a channel with a 
nonempty queue such that there is not any channel less than ci with a nonempty queue. If ci 
is a minimal, it is also a sink and then, all the flits stored in its queue will be destined to d; 
and the flit at the head of the queue for ci is not blocked. If ci is not a minimal then 

size(cj) = 0 V ci e C 3 ci > ci 

Thus, the flit at the head of the queue for ci is not blocked, regardless it is a header or a 
data flit, and there is no deadlock. • 

There are some interesting considerations: 

1) The theorem gives a sufficient but not necessary condition for an adaptive routing 
function to be deadlock-free. As will be seen later, the existence of cycles in the channel 
dependency graph does not imply the existence of a deadlocked configuration. 

2) For most networks and routing functions, even for static ones, only a partial order 



www.manaraa.com

397 

between channels can be defined, based on the set E. In general, there will be more than a 
single sink in D. 

3) As indicated above, in a legal configuration all the flits stored in a given queue have 
been sent there by the routing function. Otherwise, the theorem cannot be proved. Consider, 
for instance, a configuration in which the queues of all the sink channels in D are full of 
flits destined to nodes not directly connected to those channels. 

Theorem 2: A connected and adaptive routing function R for an interconnection 
network I is deadlock-free if it exists a subset of channels C1 !:: C that defines a routing 
subfuncti.on R1 which is connected and has no cycles in its extended channel dependency 
graph DE· 

Proof sketch: 

¢::: The case C1 = C is trivial. Otherwise C1 c C. As the extended channel dependency 
graph for R1 is acyclic, it is possible to establish an order between the channels of C1. As 
R1 is connected, the rninimals of that order are also sinks. Suppose that there is a 
deadlocked configuration for R. There are two possible cases: 

a) The queues for channels belonging to C1 are empty. As R1 is connected and the 
header flits are at queue heads, they can be routed using channels belonging to C1 and there 
is no deadlock. 

b) The queues for channels belonging to cl are not empty. Let Cj be a channel of cl 
with a nonempty queue such that there are no channels less than ci with a nonempty queue. 
Again, there are two possible cases: 

bl) If ci is a minimal (sink) then the flits are not blocked and there is no deadlock. 

b2) If ci is not a minimal, all the channels of C1 less than ci will have empty queues, 
existing three possible cases: 

b2.1) If ci has a header at the queue head, it can be routed because R1 is connected and 
there is no deadlock. 

b2.2) If there is a data flit at the queue head of ci and next(ci) belongs to C1, that flit 
can also advance. 

b2.3) If next(ci) belongs to C - C1, we have to use the indirect dependencies in the 
extended channel dependency graph. Let ck be the channel containing the header of the data 
flits contained in ci. Then, it is possible to find a channel cj belonging to C1 to route that 
header, because R1 is connected. In that case, there is an indirect dependency from ci to cj 
(ci > cj), implying that cj is empty and there is no deadlock.• 

Proof: 

¢:::Suppose that R1 is connected and there are no cycles in DE· If C1 = C then DE= D, 
because C - C1 = 0. Thus, there is not any cycle in D and R is deadlock-free by theorem 1. 
Otherwise C1 c C. As there are no cycles in DE, one can assign an order to the channels of 
cl so that if (Cj, Cj) E EE then Cj > Cj. Similarly to theorem 1, it can be proved that the 
rninimals of that order are also sinks. 

Suppose that there is a deadlocked configuration for R. There are two possible cases: 



www.manaraa.com

398 

a) The queues for channels belonging to C1 are empty. Then, there will be channels 
belonging to C - C1 with header flits at their queue heads. Let ci be one of those channels. 
As R 1 is connected then 

head(ci) ¢ c4 ~ 3 Cj E C1 3 Cj E R1(c4, head(ci)) ~ 

3 Cj E C 3 Cj E R(c4, head(ci)) 

Also size(cj) = 0 and R does not have a deadlock. 

b) The queues for channels belonging to C1 are not empty. Let ci be a channel 
belonging to C1 with a nonempty queue such that there are no channels less than ci with a 
nonempty queue. Again, there are two possible cases: 

b1) ci is a minimal. As shown above, it is also a sink and then, all the flits stored in its 
queue will be destined to c4 and the flit at the head of the queue for ci is not blocked. 

b2) ci is not a minimal. Then 

size(cj) = 0 "f Cj E C1 3 Ci > Cj 

existing three possible cases: 

b2.1) ci has a header at the queue head. Taking into account that R1 is connected 

head(ci) "# c4 ~ 3 Cj E C1 3 Cj E R1(di, head(ci)) ~ 

3 cj e C 3 ci e R(c4, head(ci)) 

Also 

ci > ci ~ size(ci) = 0 

and R does not have a deadlock. 

b2.2) ci has a data flit at the queue head, not destined to c4 and next(ci) belongs to cl. 
Then 

ci > next(ci) ~ size(next(ci)) = 0 

and R does not have a deadlock. 

b2.3) ci has a data flit at the queue head, not destined to c4 and next(ci) belongs to 
C - C1. Let c1, c2, ... ck e C - C1 be the set of channels reserved by the message after 
reserving ci, ck containing the message header. Those channels belong to C - C1, because 
there are no channels less than ci with a nonempty queue. 

3 C1, Cz, ... Ck E C- Cl 3 

ci e R1(si, head(ck)) 1\ c1 e R(c4, head(ck)) 1\ 

Cm+l e R(~, head(ck)) V me {1, k-1} 

As R1 is connected 

head(ck) ¢ dk ~ 3 Cj E C1 3 Cj E R1(dk, head(ck)) ~ 

3 ci e C 3 ci e R(dk, head(ck)) 

Thus, there is an indirect dependency from ci to ci (ci > ci), implying that size(cj) = 0. 
Then, the header at the queue head for ck is not blocked and R does not have a deadlock.• 



www.manaraa.com

399 

Again, there are some interesting considerations: 

1) The basic idea behind theorem 2 is that one can have an adaptive routing function 
with cyclic dependencies between channels, provided that there are alternative paths without 
cyclic dependencies to send a given flit towards its destination. As messages are several flits 
long, the extended channel dependency graph must be used to take into account the indirect 
dependencies. 

2) If it were not necessary emptying a queue before accepting the header of another 
message, then it would be no guarantee that header flits occupy the queue heads and the 
theorem would not be valid. Consider, for instance, a set of three or more channels with 
cyclic dependencies between them and a configuration in which the queues of those 
channels are full, each one containing the tail of a message followed by a fragment of 
another message destined two nodes away. The rest of that message occupies part of the 
next channel queue and so on. That configuration is deadlocked because the header flits do 
not occupy the queue heads and cannot be routed using the alternative paths offered by the 
routing function. 

3) If the routing function were defined as R: C x N ~ CP, then the theorem would not 
be valid. Consider, for instance, two subsets of C, namely, C1 and C - C1, and a routing 
function defined in such a way that all the messages arriving to a given node through a 
channel belonging to c - cl are routed through a channel belonging to the same subset. 
Suppose that there are cyclic dependencies between the channels belonging to C - C1 and 
that C1 defines a routing subfunction which is connected and has no cycles in its channel 
dependency graph. That routing function is not deadlock-free. 

4) The routing subfunction R1 is not necessarily static. It can be adaptive. 

3. Definitions and theorems for store-and-forward routing 
This section develops the theoretical background for the design of deadlock-free 

adaptive routing algorithms for networks using store-and-forward routing. This theory is 
almost directly derived from the theorems proposed in section 2 for the particular case of 
messages consisting of a single flit. Thus, this theory avoids deadlock by restricting routing 
instead of buffer allocation. 

The basic assumptions are very similar to the ones proposed in section 2, except that 
store-and-forward routing is used and then, all the packets have routing information and full 
packets are stored in each queue buffer. The assumption 6 has no meaning here. 

The definitions are also identical, except those ones referring to deadlocked 
configurations. 

Definition 12: A configuration is an assignment of a list of nodes to each queue. The 
number of packets in the queue for channel c; will be denoted size(c;). The destination node 
for a packet ~ will be denoted dest(9. If the first packet in the queue for channel c; is 
destined for node nd, then head(c;) = nd. A configuration is legal iff 

\;/ c; e C, size( c;) S cap( c;) " 

c; e R(s;, dest(9) \;/ fj e queue(c;) 



www.manaraa.com

400 

that is, the queue capacity is not exceeded and all the packets stored in the queue have 
been sent there by the routing function. 

Definition 13: A deadlocked configuration for a given interconnection network I and 
routing function R is a nonempty legal configuration verifying the following condition: 

V ci e C 3 head(ci) e N => head(cj) '1:- c4 1\ 

size(cj) = cap(cj) V cj e R(c4, head(ci)) 

In a deadlocked configuration there is not any packet one hop from its destination. 
Packets cannot advance because the queues for all the alternative output channels supplied 
by the routing function are full. As a particular case (for disconnected routing functions), the 
routing function may not supply any output channel. 

The theorem 1 proposed in section 2 is also valid for store-and-forward routing, the 
proof being almost identical. In this section, two theorems are proposed. The first one is 
similar to theorem 2 for wormhole routing, except that the channel dependency graph is 
used instead of the extended one. The second theorem makes the design of adaptive routing 
functions more flexible. For each theorem, a sketch of the proof is given. 

Theorem 3: A connected and adaptive routing function R for an interconnection 
network I is deadlock-free if it exists a subset of channels C1 ~ C that defines a routing 
subfunction R1 which is connected and has no cycles in its channel dependency graph D1• 

Proof sketch: 

<== The proof is basically the same as in section 2, changing nonempty queue by full 
queue and empty queue by nonfull queue. Also, cases b2.2 and b2.3 do not exist Then, only 
the channel dependency graph for R1, instead of the extended one, is required to be acyclic. 

Theorem 4: A connected and adaptive routing function R for an interconnection 
network I is deadlock-free if it exists a subset of channels C1 ~ C that defines a connected 
and deadlock-free routing subfunction R 1• 

Proof sketch: 

<== If C1 = C the proof is trivial. Otherwise C1 c C. Suppose that there is a deadlocked 
configuration for R. There are two possible cases: 

a) The queues for channels belonging to C1 are empty. As R1 is connected, a given 
packet can be routed using an empty channel belonging to C1 and there is no deadlock. 

b) The queues for channels belonging to C1 are not empty. As R1 is deadlock-free, one 
can find a channel ci e C1 such that cj e R1(c4, head(ci)) and size(cj) < cap(cj). As C1 c C 
and R1 c R then there is not a deadlock, contrary to the initial assumption. 

4. Design methodologies 
In this section we propose two methodologies for the design of deadlock-free adaptive 

routing algorithms. Although the same methodologies can be applied for both, wormhole 
and store-and-forward routing, there are some differences that will be highlighted. 

The generation of static deadlock-free routing algorithms requires to restrict routing by 



www.manaraa.com

401 

removing edges from D to make it acyclic. H it is not possible to make D acyclic without 
disconnecting the routing function, edges can be added to D by splitting physical channels 
into a set of virtual channels, each one requiring its own buffer. This technique was 
introduced by Dally [9] to remove cycles from the .channel dependency graph. 

However, a physical channel can be split into more virtual channels than the ones 
strictly necessary to avoid deadlock [6,10]. In such a case, the router can choose among 
several channels to send a message, reducing channel contention and message delay. 
Alternatively, more physical channels can be added to each node, increasing the network 
bandwidth and allowing the design of fault-tolerant adaptive routing algorithms. 

A design methodology must supply a way to add channels following a regular pattern, 
also deriving the new routing function from the old one. A design methodology based on 
theorem 1 has been presented in [10]. Although the algorithms designed with it behave 
better than the static ones, a higher degree of freedom can be obtained basing the design 
either on theorem 2 (wormhole) or on theorems 3 and 4 (store-and-forward). Here we will 
present some more general methodologies for the design of deadlock-free adaptive routing 
algorithms. 

Methodology 1. This methodology is intended to increase the number of valid 
alternative paths to send a message towards its destination without increasing the number of 
physical channels. In general, it will reduce channel contention and message delay but it 
will not increase fault-tolerance significantly. The steps are the following: 

1) Given an interconnection network 11, define a minimal path connected static routing 
function R1 for it, following Dally's methodology and splitting physical channels into virtual 
ones, if necessary, to guarantee that R1 is deadlock-free. Alternatively, define a minimal 
path connected adaptive routing function R1 and selection function S1, verifying that R1 is 
deadlock-free using either theorem 2 or theorem 3. Let C1 be the set of channels at this 
point. 

2) Split each physical channel into a set of additional virtual channels. Let C be the set 
of all the (virtual) channels in the network. Let ~j be the set of output channels from node i 
belonging to a minimal path from i to j. Define the new routing function R as follows: 

R(i, j) = R1(i, j) u (~j n (C- C1)) 'v' i, j e N 

that is, the new routing function can use any of the new channels belonging to a 
minimal path or, alternatively, the channels supplied by R1• The selection function can be 
defined in any way. 

3) For wormhole routing only, verify that the extended channel dependency graph for 
R1 is acyclic. 

Step 1 establishes the starting point. We can use either a static or adaptive routing 
function as the basic one. Dally's theorem and theorems 2 and 3 can be used to verify that 
the basic function is deadlock-free. Step 2 indicates how to add more (virtual) channels to 
the network and how to define a new adaptive routing function from the basic one. Step 3 
allows us to verify that the new routing function is deadlock-free. This step is only required 
for wormhole routing. 

For store-and-forward routing, it is easy to see that the proposed methodology directly 
supplies a deadlock-free routing function R, because 



www.manaraa.com

402 

R1 (i, j) = R(i, j) n C1 V i, j e N 

So, it exists a routing subfunction R1 of R, which is connected and deadlock-free. Then, 
by theorem 4, R is deadlock-free. 

It must be noticed that the methodology can also be applied by adding physical 
channels instead of virtual ones. The resulting network will be faster and more expensive, 
but the effective fault-tolerance will not increase. The reason is that the new routing 
function relies on the set of channels C1 to guarantee that it is deadlock-free. 

Methodology 2. This methodology is intended to increase fault-tolerance in a network. 
It will add physical channels, instead of splitting channels into virtual ones. Of course, it 
will also reduce channel contention and message delay. The steps are the following: 

1) Given an interconnection network I1, define a static or adaptive connected routing 
function R1 for it, following Dally's methodology, the above proposed methodology or 
verifying that R1 is deadlock-free using either theorem 2 or theorem 3. Let C1 be the set of 
channels at this point. 

2) Duplicate each physical channel. If the original channel was split into several virtual 
channels, the duplicated channel will also be split into the same number of virtual channels. 
Let C2 be the set of duplicated channels and C the set of all the channels. Let R2 be a 
routing function identical to R1, but defined using C2 instead of C1. Define the new routing 
function R as follows: 

R(i, j) = R1(i, j) u R2(i, j) Vi, j e N 

that is, the new routing function can use any of the channels supplied by both, R1 and 
R2. Define the selection function giving to the channels belonging to C1 and C2 the same 
probability of use. 

Again, step 1 supplies the basic routing function and step 2 adds alternative paths. As 
can be easily seen, R2 does not add any cycle neither to the channel dependency graph of R1 
nor to the extended one. Then, R is deadlock-free. 

The duplication of channels defines an interconnection network I2 =- G(N, C~, which is 
identical to 11 and shares the same set of nodes N. However, C1 and y are disjointed sets. 
R2 has the same properties as R1• Also, 

R1(i,j)=R(i,j)nC1 Vi,je N 

R2(i, j) = R(i, j) n C2 V i, j e N 

So, one can find, at least, two subfunctions of R, which allow us the application of the 
corresponding theorem to guarantee that R is deadlock-free. Then, the theorems can be 
applied even if we remove some channels either from C1 or from C2. 

However, the set of nodes is the same for I1 and I2. It seems that the proposed 
methodology is not tolerant to node faults. But, provided that R1 and R2 are adaptive routing 
functions, in general there will be alternative paths to reach the destination node (assuming 
that it is not the faulty one). Of course, some mechanism is needed to identify faulty 
channels, marking them as busy, and faulty nodes, marking all the channels connected to 
them as busy and avoiding to send messages to them. It must be noticed that if there is not 
any faulty node, the information about faulty channels is recorded locally. 



www.manaraa.com

403 

Finally, step 2 can be applied several times, duplicating each channel as many times as 
desired. 

The proposed methodologies are very simple to apply. They illustrate the power of the 
theorems. More complex design methodologies can be defined based on the same theoretical 
background. 

As an example, we will present a design based on the above proposed methodologies. 
Consider a binary n-cube. We will study three cases: a) applying methodology 1; 
b) applying methodology 2; c) applying methodologies 1 and 2. 

a) For the step 1 we can use the conventional static routing algorithm for the binary 
n-cube. It forwards messages crossing the channels in order of decreasing dimensions. It is 
well known that this routing function is connected and deadlock-free. 

For the step 2, consider that each physical channel ci has been split into two virtual 
channels, namely, ~ and bi. Let C1 be the set of 'b' channels. The algorithm obtained 
applying the step 2 can be stated as follows: Route over any useful dimension using 'a' 
channels. Alternatively, route over the highest useful dimension using 'b' channels. A useful 
dimension is one that forwards a message nearer to its destination. 

It can be seen that the extended channel dependency graph for R1 is acyclic. Then, R is 
deadlock -free. 

As virtual channels share a single physical channel, the former algorithm effectively 
allows messages to cross the physical channels corresponding to the n-cube dimensions in 
any order, increasing considerably the number of alternative paths and decreasing network 
contention. The simulation results for that algorithm are very promising. 

b) Assume that step 1 is applied as in case a), obtaining the conventional static routing 
algorithm. 

For the step 2, consider that each physical channel ci has been duplicated, obtaining a 
new channel c4. The algorithm obtained applying the step 2 can be stated as follows: Route 
over the highest useful dimension using 'c' channels. Alternatively, route over the highest 
useful dimension using 'd' channels. 

That algorithm increases the tolerance to faulty channels, but it does not take advantage 
of alternative minimal paths. 

c) Assume that we apply the methodology 1, obtaining the algorithm proposed in 
case a). That algorithm constitutes the step 1. 

For the step 2, consider that each physical channel ci has been duplicated, obtaining a 
new channel c4, which is split into two virtual channels, namely, ei and fi. The algorithm 
obtained applying the step 2 can be stated as follows: Route over any useful dimension 
using either 'a' or 'e' channels. Alternatively, route over the highest useful dimension using 
either 'b' or 'f channels. 

That algorithm has the advantages of the previous ones at the cost of a slightly more 
complicated circuitry. 

As stated in section 2, the selection function only affects performance. It is not 
necessary to give a higher priority to the channels in the acyclic dependency subgraph, 



www.manaraa.com

404 

because when the remaining channels are busy those ones will be used. In general, a higher 
performance is achieved when the channels in the cyclic dependency subgraph are given a 
higher priority, because they usually offer a larger number of alternative paths. 

Also, the selection function can be extended by including additional information in its 
domain. For instance, for the algorithm obtained in case a), it is possible to favour the 'a' 
channel connecting to the neighbour with a higher number of free channels in useful 
dimensions. This selection function is inspired in an algorithm proposed by Reeves et al. 
[22], the main difference being that our algorithm does not require a complex mechanism to 
abort messages because it is deadlock-free. 

Another interesting extension of the selection function is taking into account the time a 
message is waiting in a given node. This information can be used to prevent channel 
multiplexing when the network traffic is low. That extension gives good results when added 
to the algorithm obtained in case a). The simulation results will be presented in another 
paper. 

More examples could be presented for other topologies. However, the application of the 
above proposed methodologies is so easy that we consider that it is not necessary. The 
simulation under different load conditions will give some insight about the performance of 
the new family of adaptive algorithms. 

5. Conclusions 
The theoretical background for the development of deadlock-free adaptive routing 

algorithms has been proposed for both, store-and-forward and wormhole routing. Firstly, a 
straightforward extension of Dally's theorem has been presented, allowing the design of 
adaptive algorithms. However, the absence of cycles in the channel dependency graph is too 
restrictive. 

For wormhole routing, theorem 2 gives a more flexible condition for the development 
of adaptive algorithms, by allowing the existence of cycles in the channel dependency 
graph. The only requirement is the existence of a channel subset which defines a connected 
routing subfunction with no cycles in its extended channel dependency graph. 

For store-and-forward routing, theorem 3 develops a sufficient condition similar to 
theorem 2. Theorem 4 adds more flexibility. It simply requires the existence of a connected 
and deadlock-free routing subfunction. In tum, that subfunction can be proved to be 
deadlock-free using theorem 3. 

To simplify the application of the theorems, two design methodologies have been 
proposed. The first one supplies adaptive algorithms with a high degree of freedom. The 
second one gives a way to design fault-tolerant routing algorithms. Both methodologies can 
be combined easily. 

Finally, an example showing three alternative ways to apply the proposed design 
methodologies is presented. 



www.manaraa.com

405 

References 
[1] W.C. Athas and C.L. Seitz, Multicomputers: message~passing concurrent computers, 

Computer, Vol. 21, No.8. pp. 9-24, August 1988. 
[2] S. Borkar et al., iWarp: an integrated solution to high-speed parallel computing, 

Supercomputing' 88, Kissimmee, Florida, November 1988. 
[3] W. Chou, A.W. Bragg and A.A. Nilsson, The need for adaptive routing in the chaotic 

and unbalanced traffic environment, IEEE Trans. Commun., Vol. COM-29, No. 4, 
pp. 481-490, April 1981. 

[4] E. Chow, H. Madan, J. Peterson, D. Grunwald and D.A. Reed, Hyperswitch network 
for the hypercube computer, Proc. 15th Int. Symp. Computer Architecture, Honolulu, 
May-June 1988. 

[5] W.J. Dally, A VLSI architecture for concurrent data structures, Kluwer Academic 
Publishers, 1987. 

[6] W.J. Dally, Virtual-channel flow control, Proc. 17th Int. Symp. Computer 
Architecture, Seattle, Washington, May 1990. 

[7] W.J. Dally, Performance analysis of k-ary n-cube interconnection networks, IEEE 
Trans. Computers, Vol. C-39, No. 6, pp. 775-785, June 1990. 

[8] W.J. Dally and C.L. Seitz, The torus routing chip, Distributed Computing, Vol. 1, 
No. 3, pp. 187-196, October 1986. 

[9] W.J. Dally and C.L. Seitz, Deadlock-free message routing in multiprocessor 
interconnection networks, IEEE Trans. Computers, Vol. C-36, No. 5, pp. 547-553, 
May 1987. 

[10] J. Duato, Deadlock-free adaptive routing algorithms for multicomputers. Submitted to 
Tech. et Sci. Informatiques. 

[11] J. Duato, On the design of deadlock-free adaptive routing algorithms for multicom
puters: theoretical aspects, Proc. 2nd European Distributed Memory Computing 
Conference, Munich, April1991. 

[12] D. Gelernter, A DAG-based algorithm for prevention of store-and-forward deadlock in 
packet networks, IEEE Trans. Computers, Vol. C-30, pp. 709-715, October 1981. 

[13] C. Germain-Renaud, Etude des mecanismes de communication pour une machine 
massivement parallele: MEGA, Ph.D. dissertation, Universite de Paris-Sud, Centre 
d'Orsay, 1989. 

[14] K.D. Gunther, Prevention of deadlocks in packet-switched data transport systems, 
IEEE Trans. Commun., Vol. COM-29, pp. 512-524, April 1981. 

[15] W.D. Hillis, The connection machine, MIT Press, Cambridge, Mass., 1985. 
[16] C.R. Jesshope, P.R. Miller and J.T. Yantchev, High performance communications in 

processor networks, Proc. 16th Int. Symp. Computer Architecture, Jerusalem, Israel, 
May-June 1989. 

[17] P. Kermani and L. Kleinrock, Virtual cut-through: a new computer communication 
switching technique, Computer Networks, Vol. 3, pp. 267-286, 1979. 

[18] C.K. Kim and D.A. Reed, Adaptive packet routing in a hypercube, Proc. 3rd Conf on 
Hypercube Concurrent Computers & Applications, Pasadena, California, January 
1988. 

[19] H.T. Kung, Deadlock avoidance for systolic communication, Proc. 15th Int. Symp. 
Computer Architecture, Honolulu, May-June 1988. 

[20] P.M. Merlin and P.J. Schweitzer, Deadlock avoidance in store-and-forward networks
I: Store-and-forward deadlock, IEEE Trans. Commun., Vol. COM-28, pp. 345-354, 
March 1980. 

[21] S. Ragupathy, M.R. Leutze and S.R. Schach, Message routing schemes in a hypercube 
machine, Proc. 3rd Conf on Hypercube Concurrent Computers & Applications, 
Pasadena, California, January 1988. 

[22] D.S. Reeves, E.F. Gehringer and A. Chandiramani, Adaptive routing and deadlock 
recovery: a simulation study, Proc. 4th Conf on Hypercube Concurrent Computers & 
Applications, Monterey, California, March 1989. 



www.manaraa.com

A Toolkit for Debugging Parallel Lisp Programs 

Hermann Ilmberger, Sabine Thurmel 
EDS Project* 

Siemens AG, ZFE IS SOF 22 
Otto-Hahn-Ring 6, D-8000 MOnchen 83, Germany 

e-mail: thuermel@ztivax. uucp, hermann% moony@ztivax.uucp 

Abstract 

As part of the ESPRIT-II project EDS a toolkit (called Delphi) is under 
development for the debugging of !:,isp programs with explicit garallelism 
being executed on a homogeneous distributed machine. It assists in the 
detection of functional and synchronisation errors. It also helps to detect 
unexpected nondeterminacy and sources of poor program performance. 
Specific mechanisms allow the user to effectively control several processes in a 
debugging session. The paper introduces the basic concepts behind the tools 
and how the user may benefit from them. 

1 Motivation and Overview 

Many experts consider parallel computation the only promising approach to 
enhancing the performance of computer systems. This is not only true for 
numerical algorithms. Significant increases in performance are also expected 
for data intensive applications using nontrivial algorithms such as the 
translation of natural languages [EDS89]. This motivates to combine parallel 
computation and symbolic languages. Such a combination is the goal of the 
ESPRIT-II project 2025 EDS (European Declarative System). The project will 
produce the prototype of a homogeneous distributed machine supporting 
among other things a parallel Lisp dialect (EDS Lisp). In EDS Lisp processes are 
spawned by the future construct. Communication may be realized through 
mailboxes. EDS Lisp is intended to support large knowledge based systems, for 
example for the translation of natural languages or VLSI chip design. As a 
consequence there is the need for a toolkit that assists users of EDS Lisp in 
debugging applications consisting of several concurrent processes. 

This paper describes Delphi, a toolkit for the debugging and visualisation of 
EDS Lisp programs. Specifically Delphi addresses the problem of how the user 

* The EDS-Project (European Declarative System) is partially sponsored by the European 
Community under ESPRIT-II 2025. 



www.manaraa.com

407 

can keep an overview of the parallel program run and effectively control the 
debugging session. 

The paper begins with a short introduction to EDS Lisp and the EDS Machine. 
Chapter 3 focuses on basic issues in debugging parallel Lisp programs. In 
chapter 4 an overview of Delphi is presented. Its tools for distributed symbolic 
debugging are described. It is outlined how Delphi supports user controlled 
program execution for debugging purposes. We also present a visualisation 
facility supporting the user in the granularity analysis and the detection of 
inadequate communication structures. Chapter 5 is devoted to additional, 
planned features. A comparison to other approaches follows in chapter 6. 

2 EDS Lisp and the EDS Machine 

EDS Lisp is a parallel Lisp dialect supporting explicit parallelism. It is an 
extension of Common Lisp [Steele 84]. Common Lisp has been chosen as the 
base language of EDS Lisp because one goal of the project is to port real life 
applications to the EDS system. 

The following gives a brief overview of the main features of this language (for 
a detailed introduction see [HamHen90]): 
For the spawning of processes EDS Lisp has a single concept, the future 
construct, known from other parallel Lisp extensions (e.g. [Halst85]). It allows 
concurrent function evaluation. After spawning a process the newly spawned 
process immediately returns a placeholder for the result. If there is an access to 
the result of a spawned process while the return value is not yet computed the 
spawning process is forced to wait by an implicit synchronisation mechanism. 
One may also wait for the result of a process using the wait construct thus 
causing an explicit synchronisation. This construct can be used if one wants to 
wait for the sideeffects of a spawned process before resuming evaluation. 
In addition EDS Lisp contains two other concepts for explicit synchronisation, 
critical sections and mailboxes. Critical sections are particularly well suited to 
synchronise accesses to shared global variables. Processes can communicate via 
mailboxes which provide asynchronous buffered message passing. 

The EDS system is a homogeneous distributed multiprocessor. A prototype will 
consists of 63 processing elements and a diagnostic node. During the test 
phase the latter will serve as an interface between the 63 node EDS machine 
and the user's workstation. The Process and Store Model of EDS Lisp is 
described in detail in [HamHen90]. We won't refer to it in this paper because 
our debugging concepts are intentionally independent of the EDS system. So 
our ideas are also applicable to similar architectures. 



www.manaraa.com

408 

3 Basic Issues in Debugging Parallel Lisp Programs 

In this paper we want to address some of the basic issues in debugging parallel 
Lisp programs. They are listed below. The concepts we propose for their 
solution are introduced briefly. (Chapter 4 is devoted to their detailed 
description.) 

Detecting functional errors is usually necessary for the detection of 
synchronisation errors 

While debugging parallel Lisp programs the detection of functional errors 
(classically called bugs) cannot be neglected. For example, most 
synchronisation errors result from incorrect use of a combination of sequential 
and parallel constructs. 
Therefore we propose a straightforward extension to classical symbolic 
debugging tools. This allows us to extend well known debugging strategies for 
the parallel case. 

Concentrating on debugging one process at a time is not appropriate in 
debugging parallel programs 

Symptoms of a problem may show up on another process rather than on the 
one where the problem actually occurred. Thus a single debugger examining 
one process at a time makes debugging a clumsy affair. Tools for distributed 
symbolic debugging are needed. To provide the user with a detailed view of 
the program state the tools have to provide a mechanism to compute non local 
information. 

Observing and controlling process states by the user is necessary 

For the exact location and analysis of errors the programmer needs assistance 
in getting an overview of the general program state (e.g. which processes are 
active, what is their status}. In addition the user would like to control the 
amount of trace information to be displayed (there will be times when the 
user simply wants to discard trace output). Also it is helpful if broken processes 
can be continued individually after being inspected. Thus a mechanism for the 
observation and control of processes is necessary. 

Visual ising the process history gives a comprehensive overview of the 
runtime behaviour 

An overview focusing on a moment in time is not sufficient for the 
understanding of the possibly quite complex runtime behaviour of parallel 
programs. Graphical displays of the program execution have to be supported 
which allow getting an overview of the total program execution.We propose 
focusing on two essential aspects: the spawning/joining of processes and the 



www.manaraa.com

409 

Supporting user controlled execution enhances the error detection 

The debugging tools should enhance the detection of unwanted 
nondeterminacy. Nondeterminacy is not in itself an error and may be 
intentional. But careless unsynchronized access to global or dynamic variables 
may lead to nondeterminate results. Our clique model for the support of user 
controlled execution helps detecting sources of nondeterminacy. 

4 Delphi: A Toolkit for Debugging Parallel lisp Programs 

The EDS Lisp debugger Delphi supports various debugging techniques. It 
consists of 

* basic tools: stepper, tracer and break-mode, 

* a mechanism allowing the computation of nonlocal information by 
communicating sequential debuggers, 

* an interactive graphical process observation and control tool, 

* a process history visualizer, 

* the clique model for user controlled program execution. 

Stepper, tracer and break-mode are common for sequential Lisp debuggers. 
These tools have been extended for use in the parallel environment of EDS 
Lisp. Special treatment is necessary if stepping/tracing/debugging takes place 
in several processes. In order not to confuse the programmer, the information 
is handled in different windows on the terminal, controlled by the user via the 
graphical representation of the Lisp process tree. Additionally, the debuggers 
can communicate to compute nonlocal information. 

The visualizer offers two complementary views of a program execution, one 
focusing on the spawning of processes and one concentrating on the 
communication at mailboxes. 

A clique is a group of Lisp processes running quasiparallel. Grouping and 
scheduling is user controlled. The clique model supports the programmer in 
detecting communication errors and nondeterminacy and can be used in the 
testing phase to simulate extreme scheduling behaviour. 

4.1 Basic Tools 

Stepper 

The stepper interactively single-steps through the evaluation of a form. If the 
stepped form spawns a process, ~he user is asked whether the new process 
should be stepped, too. If yes, a new window is opened on the screen, and the 
user can single-step through both processes, thus controlling their relative 



www.manaraa.com

410 

progress. As this method is very intrusive, it is only recommended when no 
timing conditions are involved. 

Tracer 

The user can specify a set of Lisp functions to be traced. Both Common Lisp 
functions and the new extensions for parallelism in EDS Lisp can be traced. 
Each program run logs a minimal trace. There is a separate window for the 
trace output of each process. To avoid a confusing display, the user can control 
the window action via a graphical representation of the process tree (ch. 4.3). 

Break-Mode- the "Debugger" 

According to the semantics of error and break in EDS Lisp, an error in one 
process of a program causes all processes ofthe program to be broken. There is 
a separate debugger for each broken process. Using the graphical 
representation of the process tree (ch. 4.3), the user can open a window for 
selected debuggers. Each user-opened debugger communicates with the user 
via its own window. 

4.2 Communicating Sequential Debuggers to Gain Nonlocallnformation 

Since a program can consist of many processes, it is not convenient to open a 
window for all the corresponding debuggers. The programmer may want to 
handle all broken processes using only a few windows. Assume the following 
scenario: 

When a whole EDS Lisp program is broken because of an error, the bug can be 
located 

a) locally in the process A that raised the error, or 

b) in one or more other processes which transferred erroneous data to 
process A. 

In case b) the bug lies in other processes, but the error itself shows up in 
process A. So the programmer will probably first inspect process A, but will 
sooner or later realize that the real bug lies in some other process. If the 
process containing the bug is located, the programmer can simply open a 
window for the debugger of the process and continue debugging there. 

If process A is a process that communicates frequently with other processes, it 
may be more difficult to determine the process(es) containing the bug. For 
such cases the EDS Lisp debuggers can communicate with each other using the 
"nonlocal" commands. Each debugger can be remote controlled from any 
other. The responses from remote debuggers are displayed in the controlling 
debugger's window. For the nonlocal commands the user can specify from 
which remote debuggers the information is requested. 



www.manaraa.com

411 

Examples of non local commands are: 

* list the top-of-stack frames of all broken processes 

* continue all processes with name foo 

* list the value of the dynamic variable x in all processes (in EDS Lisp each 
process has its own view of the dynamic binding stack) 

The above commands simply broadcast a request to the other debuggers and 
gather the answers. But there are also more powerful nonlocal commands: 

* Which processes are executing the function foo? (requires searching 
through the backtrace of all processes) 

* With which processes did a process communicate? (not directly visible in the 
program because processes send messages to mailboxes, not to processes) 

Thus the nonlocal commands enable the user to get a global view of the 
intrinsics of a program. How are other existing parallel Lisp systems addressing 
the problem of debugging many processes? 

The parallel Lisp system Mult-T [Kranz89] supports the concept of process 
groups. If one process in a group raises an error, all processes of this group are 
stopped. There is one window to debug the whole group. Debugger 
commands by default refer to the process in which the error occurred. The 
commands also allow referring to other processes or other stopped groups. But 
there are no nonlocal commands in our sense; debugger commands influence 
always only one process. 

MultiScheme [Miller87] also stops all processes when an error occurs, but the 
user can debug only one process at all. Butterily Lisp [AIIen87] opens a 
separate window for each broken process. 

The EDS Lisp Debugger supports this as an option. But often this is not desired. 
Therefore the opening of windows can be controlled by the user as described 
in the next section. 

4.3 Graphical Process Observation & Control and Visualization of Runtime 
Behaviour 

For locating and analysing errors, the programmer needs assistance in getting 
an overview of the current program state. But often the current state is not 
sufficient. An overview of the past program behaviour is also necessary for 
efficient debugging. 



www.manaraa.com

412 

4.3.1 Graphical Process Observation and Control 

The graphical observation and control tool gives a global view of the process 
dependencies and states. It is based on a graphical representation of the 
program's process tree . .The behaviour of trace and debugger windows are 
controlled via the tree. 

Each node in the tree represents a process. The children of a node are the 
directly spawned future-processes of the parent process, ordered by their time 
of creation. The root of the tree is the EDS Lisp program's top level. 

The tree is kept in a separate window on the user's workstation screen. The 
pictorial representation of a node changes according to the state of the 
corresponding process. There are the following states: 

a} process running 
b) process wants to output trace information (but continues to run) 
c) process is broken, its debugger is active 
d) process completed 

In case b) and c) the user can open a trace resp. debugger window by selecting 
a node. Thus, the user can manage the opening and closing of windows. There 
is no abundance of tracer and debugger windows to handle. Only the window 
of the process' debugger where the error occurred is automatically opened. 
The debuggers for other suspect processes can be opened at will. Processes 
that are not suspect can be continued, changing to state a}. 

There is no separate node state for active steppers, because stepper windows 
are automatically opened by the system. This makes sense since usually only 
one form is stepped at a time and the user is asked if both processes should be 
stepped after a future-command. 

Opening a debugger or tracer window is one of many commands that may be 
performed on a node in the process tree display. Other commands are: 

* break the process 
* restart a broken process 
* discard the trace output (if the user does not want to see the trace} 
* list basic characteristics of the process (processing element, runtime, ... ) 
* visualize process history (see below) 

Thus the process tree in combination with the node commands is a powerful 
tool to get a general overview of the current program state and to customise 
the window management. 

4.3.2 Visualisation of Runtime Behaviour 

Visualisation of the dynamic behaviour of EDS Lisp programs 
* enhances the understanding of the possibly quite complex dynamic 



www.manaraa.com

behaviour of EDS Lisp programs, 
* assists in finding errors, 

413 

* is the basis for granularity analysis performed by the user, 
* supports the user in detecting inappropriate communication structures. 

Alternative representations of the runtime behaviour include the one favored 
in literature (e.g. [GeKr86], [Bag89]). It represents the processes that existed 
during program execution as horizontal bands with arrows between the 
processes indicating interactions. It seems to be very helpful when one wants 
to concentrate on certain aspects of an execution. But even when such process 
graphs are hierarchically organised with adequate operators for hiding 
processes and their descendants, such systems are limited in the size of an 
application they can deal with. 

Therefore we decided to offer two complementary views of program 
execution: 
The first view focuses on the spawning of processes in an EDS Lisp program 
execution. It displays a general overview of the possibly quite complex runtime 
behaviour. It may serve as a basis for granularity analysis. This view is called a 
process history tree. 
The second view depicts the use of EDS Lisp mailboxes. It assists in the 
detection of inappropriate communication structures in the EDS Lisp program. 

Such displays may be generated during execution, displaying the behaviour up 
to that time, or may be generated post mortem. The process tree displayed in 
the tool for process observation and control is a snapshot of the program 
behaviour (i.e. long dead processes are not visible). The process history tree 
allows the inspection of the runtime behaviour up to the moment when the 
tree was built. 

To produce these views, for every process a trace is generated consisting of 
basic events (as process creation and termination etc.) and user selected events 
during execution. At the user's workstation these traces are evaluated. 
Displays are generated upon request. Since the graphical representations are 
built offline, the delay of the program execution caused by the visualizer is 
minimal. 

Process History Trees 

A process tree for the execution of an EDS Lisp program shows the spawning 
structure of the EDS Lisp processes generated during the execution.This is 
exemplified in fig. 1. 

To navigate these displays, horizontal and vertical scrollbars are provided 
allowing depth first and breadth first search. For the hiding/unhiding of 
processes and their descendents appropriate operators are supported. 



www.manaraa.com

414 

Process Tree of manage-ESPRIT I 
manage-ESPRIT l (HW Lisp Prolog) 1 

I 

~ init-EDS-project l (HW Lisp Prol~~~) 
Minimal Trace of 
work-on-project ~ Lisp 

r-- work-on-project ~ HW 
I <start> 

I 
I 

start future state-of-the-art-report I 
I receive from manage-ESPRIT I 

f-- work-on-project ~ Lisp( send to mailbox time-schedule 
\ 

' wait for state-of-the-art-report 
f-- work-on-project l Prolog \, send to mailbox deliverable 

' ' \ 
I 

fig. 1: A sample process-tree and minimal trace. 
legend: l actual parameters of a process 

lA 

• 

For each process its process specific trace {process history) as well as some of its 
basic characteristics {like active and idle time) and number of remote accesses 
may be displayed upon request. 

The trace allows inspecting process specific events. In combination with its 
basic {system) characteristics, granularity analysis may be performed by the 
user: An extremely short active time will indicate that the process should be 
evaluated inline rather than in parallel. Long idle times in combination with a 
large amount of remote accesses may be a hint to look for inappropriate 
variable bindings. Thus this display may help the programmer to tune the 
performance on the EDS Lisp level. 

Display of Communication via Mailboxes 

The displays of the communication via mailboxes assist the user in finding 
inappropriate communication structures. Similar to [BuMil88] we want to 
display all send and receives to and from any user selected mailbox. In concrete 
terms: The y-axis presents time. The x-axis holds the information on the send 
and receive operations as demonstrated in figure 2. Every send operation 
increases the access counter, while a receive operation reduces the access 

, counter. So the region on the negative side of the chart gives an impression on 
blocked and waiting processes, while the positive side visualizes the number of 
stored messages. By clicking on a specific access counter value in the display the 
corresponding message resp. waiting queue is displayed {see fig. 2). For any 
message the following information is given: who sent the message and who, 
if any, received it and its identification on source code level {the latter is not 
represented in the example). Its contents are not displayed because it costs too 
much time recording it during runtime since any Lisp object may be sent. The 
waiting queue can be used to identify the processes waiting at that mailbox. 



www.manaraa.com

415 

Comparing the waiting queues of different mailboxes when all processes are 
broken or killed makes deadlock detection feasible. Upon request the 
representations of the processes involved in the traffic at a specific mailbox will 
be highlighted in the corresponding process tree. After detecting a 
disadvantageous communication structure in the mailbox display, the process 
specific traces of the process tree will help to improve it. 

4.4 Support of User Controlled Execution 

An EDS Lisp program can spawn several future-processes at runtime. A major 
problem in debugging parallel programs is that there is more than one process 
running at the same time. How can the programmer keep the overview and 
how cans/he handle the parallel processes to find bugs? 

One common method is to run the program and wait until it crashes. Using the 
state of the program (i.e. variable bindings, Lisp stacks, ... } at the moment of 
the crash, many errors can be detected post mortem. Support for this method 
was discussed in chapter 4.2 and 4.3. 

Sometimes this kind of post mortem detection is not sufficient. If an error 
occurs in one process of a Lisp program, the semantics of EDS Lisp says that all 
processes of the program will be broken. Suppose a Lisp program consists of 
two processes A and B running on different processing elements. If an error 
occurs in process A, A is broken immediately. Process B can still change its state 
in the time until the break signal reaches B's processing element. B can for 
example change the value of a global variable. Post mortem analysis will be 
difficult if just the former value of this variable caused the error in process A. 

We developped the clique model to address this problem. 

Mailbox deliverables 

waiting 

~ :;'J~~·· queue 

-------- Message queue of 

Waiting queue of ' ' 
deliverables 

' \ 
\ 

' 
\ m01, HW-manage-deliverables ' \ 

' \ 

,:>r:e \ ESP \ m01, Lisp-+manage-manage-ESPRIT \ 
\ 

ESP local-ESPRIT-manager \ _, f-- \ m01, Prolog-
- \ 

\ manage-ESP 
\ 

time 

fig. 2: A sample communication at a mailbox 



www.manaraa.com

416 

The Clique Model 

The EDS Lisp debugger allows the user to control the sequence of execution by 
grouping processes together (into "cliques") and forcing them to run in a 
quasiparallel manner with a user defined Lisp level scheduling. If an error 
occurs in one of the clique processes, the other clique members are not 
allowed to continue and thus cannot change the program state. 

Cliques support not only post mortem analysis but can be used even more 
profitably in the test phase. They can be used to test the program under 
unusual scheduling conditions (for example scheduling after each function 
call), and help programmers familiar with sequential languages get a better 
understanding how a parallel program works. 

Membership 

A "clique" is a group of processes which the programmer wants to serialise. 
Each Lisp process can become a member of (at most} one clique. A process 
which is not a member of a clique is" clique-free". (for an example see fig. 3) 

Scheduling 

At most one member of each clique is in the state 'computing' at any moment 
of time (quasiparallel run). Scheduling within a clique is controlled by the 
programmer, is visible at the source code level, and is repeatable. Timeslice 
scheduling is not reasonable, because the exact point of descheduling cannot 
be controled. Repeatability cannot be guaranteed either. 

The straightforward kind of scheduling is function based. The programmer can 
supply a list of function names, and scheduling takes place before the call or 

fig. 3: A sample of cliques 
legend:- communication link via a mailbox 



www.manaraa.com

417 

after the exit of each of these functions. Changing the list enforces a different 
scheduling. The scheduling can also be set to 'verbose'. In this mode each 
(de)scheduling action is printed out at runtime and the user can follow the 
program. 

Application Areas 

We see three main applications for cliques: 

1. Tracing communication and synchronisation errors: the programmer 
conjectures that a mailbox communication or a critical section does not 
work well. Scheduling after the suspected command makes it possible to 
test whether it cooperates well with the other clique members. 

2. Testing unusual scheduling: the programmer can simulate any possible 
scheduling in order to test highly communicating program parts and to 
detect unexpected nondeterminacy. 

3. Programmers familiar with sequential languages often have difficulties 
programming parallel applications. Serialization of a program with verbose 
scheduling may help in better understanding what happens in a program. 

Use 

What strategy should be used to group processes together? 

For programs with only a few processes where the programmer suspects 
nondeterminacies or communication errors, all processes can be grouped into 
one clique. There are two possibilities: 

1. Shared mode: The clique runs on one processing element. Thus all processes 
have real shared memory. Errors caused by inconsistent use of distributed 
memory cannot occur. Furthermore all processes have the same global time, 
making it possible to totally order the events in the program. 

2. Distributed mode: The processes are distributed to the processing elements 
"as in real life". This makes better use of the EDS machine's storage 
capacity. Now all the effects of distributed memory can occur. Total 
ordering is still possible since only one clique member runs at a time. 

If the program gets bigger, a bottom up test strategy can be used: In a 
program there are often groups of processes which cooperate more with each 
other than with the rest of the program. These processes can form a clique. 
Several such cliques may be found. These cliques can now be analysed 
separately, and the other processes are perhaps replaced with stubs. Larger 
program systems can be tested incrementally. A process is already tested, can 
be made clique-free and run asynchronously. 



www.manaraa.com

418 

5 Additional Features: Replay and Countercheck Sessions 

In general, concurrent program runs cannot be repeated exactly, because 
there may be races between processes. There are two main aspects why a 
programmer wants to repeat a run: 

a) After the occurence of an error it is very useful to be able to replay a 
program exactly in order to see how the error came into being: "replay". 

b) A program shall be tested for nondeterminism. In this case a first run 
("initial session") will be compared against a second, third etc. 
(" countercheck sessions") with same input data, the latter having for 
example different scheduling strategies and/or different machine load. 

Replay 

Replay techniques are an ideal approach to reproducing program 
execution([LeBI87], [Mill88]). Unfortunately they only allow reproducing such 
program executions where all shared data structures are known at compile 
time. This is usually not the case for programs written in parallel extensions to 
Common Lisp. Therefore we do not want to guarantee replay for 
unsynchronized global variable access (the effect of this is undefined in EDS 
Lisp anyway). We only want to guarantee replay for mailbox communication 
(mailboxes are created explicitely) and for access to critical sections (they are 
created explicitely, too). Inside the critical sections the programmer can access 
global variables in a well-defined manner. The replay does not need to know 
which variables are shared as long as all accesses happen within critical 
sections. 

Countercheck Sessions 

In a countercheck session the logged events of the initial session are compared 
to the current run. Any deviation signals a nondeterminism in the program. It 
is selfevident that countercheck sessions can only help to find nondeterminism, 
not to prove the absence of nondeterminism. Countercheck sessions seem to 
come almost for free with replay. 

6 Other Approaches to Debugging Parallel Programs 

Although there exists a variety of parallel Lisp dialects ([Tar89]) only very few 
pointers to debugging concepts for these languages can be found. We know 
of several people working in this field. For example, Bert Halstead is working 
on visualising Multilisp program execution based on [Bag89]. Later on, other 
debugging techniques will be integrated into this tool [Halst90]. 

Apart from work in progress there exists a traditional debugging toolkit 



www.manaraa.com

419 

Lisp [Topl89]. It runs in a shared environment and supplies assistance for 
debugging several processes simultaneously in a traditional manner. 

In contrast to the debugging of parallel lisp dialects there exists a whole 
variety of debugging techniques for sideeffect free languages or for 
languages where shared data structures are known at compile time ([Jell90]). 
Behavioural abstraction techniques, replay mechanisms and static analysis 
tools are among the most well known. 

Behavioural Abstraction ([Bate88], [Baia86]) allows comparing the expected 
and actual runtime behaviour using specifications based on predefined event 
classes and operators for their combination. Filter- and clustering techniques 
make it possible to abstract from unimportant details. But all possibly 
interesting events have to be specified before program execution. 

To reproduce runtime behaviour replay techniques were developed. In 
[leBI87] only accesses to shared data are logged. These protocols then control 
the reexecution. Additional techniques are necessary for the actual 
debugging. The same is true for [Mill88]. Here a (minimal) program graph is 
constructed during the (initial) execution. The thus obtained information can 
by extended by partial reexecution (incremental tracing). The adaption of this 
concept for EDS Lisp is briefly outlined in chapter 7. 

Static analysis techniques were developed to parallelize programs 
automatically (e.g. [Harr89]). Other approaches allow the detection of 
potential nondeterminacy in procedural languages ([Emra88], [Bala88], 
[Call88]). Potential Nondeterminacy means that by solely using the proposed 
techniques of static analysis it is not decidable whether a certain statement 
may contribute to a nondeterminate program result. In such cases tracing is 
necessary. We are investigating how such techniques could be helpful for EDS 
lisp. Although static techniques are only of very restricted use in a language 
such as Common Lisp which is list oriented and which allows dynamic function 
definition we think such techniques an elaborate pendant to the use e.g. of 
masterscope ([lnter85]} in sequential lisp. 

7 Conclusion 

Delphi is a toolkit for debugging the parallel lisp dialect EDS lisp. Although 
being developed for the distributed EDS system, its debugging strategies are 
applicable as well to similar distributed systems and shared memory 
architectures. 

Delphi contains tools for distributed symbolic debugging. In addition to 
classical debugging strategies, the tools allow the computation of nonlocal 
information. Thus a detailed view of the global state of the parallel program 
may be obtained in break-mode, whereas the visualizer of the process history 
and mailbox communication offers a global view of the process dependencies 



www.manaraa.com

420 

their communication structure. The visualizer assists in the granularity analysis 
of parallel Lisp programs and allows the detection of inappropriate 
communication structures in the EDS Lisp program.Together these tools 
provide a comprehensive overview of the program. 
The debugging session is controlled by the user: The tool for observation and 
process control makes it possible to inspect the state of the different processes 
and reducing the amount of information displayed. The developped clique 
model is a mechanism for user controlled execution. It enhances the detection 
of unexpected nondeterminacy. 

Delphi contains flexible debugging tools that allow the programmer to focus 
on details as well as to get a general overview of a program execution. 

References 

[AIIen87] D. Allen, S. Steinberg, L. Stabile 
Recent developments in Butterfly Lisp, AAAI 87, Seattle, July 1987, 
pp. 2-6 

[Bag89] Laura Bagnell 
ParVis: A Program Visualization Tool for Multilisp, S.M. thesis, MIT 
E.E.C.S. Dept., Cambridge, Ma, Feb. 1989 

[Baia86] Fabrizio Baiardi, Nicoletta De Francesco, Gigliola Vaglini 
Development of a Debugger for a Concurrent Language, IEEE 
Transactions on Software Engineering, Voi.SE-12(4), April1986, pp. 
547-553 

[Bala88] Vasanth Balasundaram, Donn Baumgartner, David Callahan, Ken 
Kennedy, Jaspal Subhlok 
PTOOL: A System for Static Analysis of Parallelism in Programs, Rice 
University, Computer Science Technical Report TR88-71, June, 1988 

[Bate88] Peter Bates 
Debugging Heterogeneous Distributed Systems Using Event-Based 
Models of Behavior, Proceedings of the ACM SIGPLAN and SIGOPS 
Workshop on Parallel and Distributed Debugging, Madison, WI, 
USA, May 5-6, 1988, pp. 11-22 

[BuMil88] Helmar Burkhart, Roland Millen 
Performance-Measurement Tools in a Multiprocessor Environment, 
IEEE Transactions onComputers, Voi.38,No. 5, May 1989 

[Call88] David Callahan, Jaspal Subhlok 
Static-Analysis of Low-level Synchronization, Proceedings of the 



www.manaraa.com

421 

ACM SIGPLAN and SIGOPS Workshop on Parallel and Distributed 
Debugging, Madison, WI, USA, 1988, pp. 100-111. 

[EDS89] Carsten Hammer et al. 
Volume 5 {Part 2} Language Subsystems The Lisp Subsystem, 
ESPRITII EP2025, Document: EDS.DD.5S.0001, Dez. 1989 

[Emra88] Perry A. Emrath, David A. Padua 
Automatic Detection of Nondeterminism in Parallel Programs, 
Proceedings of the ACM SIGPLAN and SIGOPS Workshop on Parallel 
and Distributed Debugging, Madison, WI, USA, May 5-6, 1988, pp. 
89-99 

[Fid88] C. J. Fidge 
Partial Orders for Parallel Debugging, Proceedings of the ACM 
SIGPLAN and SIGOPS Workshop on Parallel and Distributed 
Debugging, Madison, WI, USA, May 5-6,1988, pp. 183-194 

[GeKr86] Patrick F. McGehearty, Edward J. Krall 
Potentials for Parallel Execution of Common Lisp Programs, 
Proceedings of the 1986 International Conference on Parallel 
Processing, IEEE, pp.696-702 

[Harr89] Williams Ludwell Harrison Ill 
The lnterprocedural Analysis and Automatic Parallelization of 
Scheme Programs, Lisp and Symbolic Computation, Vol.2 No3/4, 
Okt.1989,pp.185-391 

[Halst85] R. Halstead 
Multilisp: A Language for Concurrent symbolic Computation, ACM 
Transactions on Programming Languages and Systems, Okt. 1985 

[Halst90] R. Halstead 
private communication 

[lnter85] Xerox Cooperation 
lnterlisp-D Reference Manua II-III, Okt.1985 

[HamHen90] Carsten Hammer, Thomas Henties 
Parallel Lisp for a Distributed memory Machine, Proc. of the 
EUROPAL workshop on "High Performance and Parallel Computing 
in Lisp", Nov. 1990, Twickenham, UK 

[Jell90] Sylvia Jell 
Parallel Debugging - State of the Art Report, ESPRIT-II EP2025, 
Document: EDS.WP.8S.0002, Mar. 90 

[Kranz89] David A. Kranz, Robert H. Halstead Jr., Eric Mohr 
Mult-T: A High-Performance Parallel Lisp, SJGPLAN 1989 Sympo-



www.manaraa.com

422 

sium on Programming Language Design and Implementation, 
Portland, Oregon, June 1989 

[LeBI87] Thomas J. LeBlanc, John M. Mellor-Crummey 
Debugging Parallel Programs with Instant Replay, IEEE Transactions 
on Computers, Voi.C-36(4), April1987, pp. 471-482 

[Mill88] Barton P. Miller, Jong-Deok Choi 
A Mechanism for Efficient Debugging of Parallel Programs, 
Proceedings of the SIGPLAN '88 Conference on Programming 
Language Design and Implementation, Atlanta, Georgia, USA, June 
22-24, 1988,pp. 135-144 

[Miller87] J. Miller 
MultiScheme: A Parallel Processing System Based on MIT Scheme, 
Ph.D. Thesis, M.I.T. E.E.C.S. Dept., Cambridge, Mass., August 1987 

[Sto88] Janice Stone 
A graphical representation of concurrent processes, Proceedings of 
the ACM SIGPLAN and SIGOPS Workshop on Parallel and 
Distributed Debugging, Madison, WI, USA, May 5-6, 1988, pp. 226-
235 

[Stee84] Guy Steele 
Common LISP: The Language, Digital Press, 1984 

[Tar89] Jolan M. Targonski, Parallel Lisp Languages -the State of the Art, 
ESPRITII EP2025, Document: EDS.WP.SS.0001, Jul.1989 

[Tole90] Top Level, Inc. 



www.manaraa.com

Loosely-Coupled Processes 
(Preliminary Version) 

1 Introduction 

Jayadev Misra* 

Department of Computer Sciences 

The University of Texas at Austin 

Austin, Texas 78712 

{512) 471-9547 

misra@cs. utexas.edu 

1.1 Message Communicating and Shared-Variable Systems 

A system of processes in which the interactions are solely through messages is often called 

loosely-coupled. Such systems are attractive from a programming viewpoint. They are 

designed by decomposing a specification into its separable concerns, each of which could 

then be implemented by a process; the operation of the system can be understood by as

serting properties of the message sequences transmitted among the component processes. 

A key attribute of loosely-coupled systems is a guarantee that a message that has been 

sent cannot be unsent. As a consequence, a process can commence its computation upon 

receiving a message, with the guarantee that no future message it receives will require it 

to undo its previous computations. 

Processes that communicate through shared variables, where a shared variable may be 

read from/written to by an arbitrary number of processes, are often called tightly-coupled. 

In contrast to loosely-coupled systems, designs of tightly-coupled systems typically require 

deeper analysis. Since speeds of component processes are assumed to be nonzero and 

finite, but otherwise arbitrary, it is necessary to analyze all possible execution sequences, 

•This work was partially supported by ONR Contract N00014-90-J-1640 and by Texas Advanced 
Research Program grant 003658-Q65. 



www.manaraa.com

2 

however unlikely some of them may be, to guarantee the absence of "race conditions." 

Special protocols for mutual exclusion are of ten required for a process to access shared

variables in an exclusive manner. Yet, shared-variables of ten provide succinct, and even 

elegant, solutionsi for instance, broadcasting a message can of ten be implemented by 

storing the message in a variable that can be read by every process. 

1.2 Loosely-Coupled Processes 

To motivate the discussion, we consider two examples of shared-variable systems. In the 

first case, we have two processes sharing an integer variable Xi one process doubles X aud 

the other process increments x by 1, from time to timei both processes read x and assign 

it to their local variables. We contend that these two processes are tightly-coupled by Xi 

each process needs to know the exact value of x before it can complete its access-read or 

write-of Xi no process can proceed with its computation with only a partial knowledge 

of the value of x. Contrast this situation with a system in which two processes share an 

integer variable Vi the first process increments y by 1 from time to time and the second 

process, from time to time, decrements y by 1 provided y is positive, and then it proceeds 

with its computation. (The variable V implements a semaphore.) We contend that these 

two processes are loosely-coup1edi the second process can continue with its computation 

knowing only that y is positive but without knowing the exact value of y. Similarly, the 

first process need not know the exact value of Yj it may merely transmit the message 

that y should be incremented by 1, to the second procesSj the latter increments y upon 

receiving this message. The value of y at the second 'process is never more than the true 

value of y and it tends to "catch up" with the true valuei hence the system will not be 

permanently blocked. 

1.3 Contributions of This Paper 

The notions of tightly-coupled and loosely-coupled processes depends on the way the 

shared-variables are accessed. We propose a definition of loosely-coupled processes and 

show that a11 point-to-point message passing systems are loosely-coupled under our defi

nition. We argue that large-scale shared-variable programming is feasible only if processes 

are loosely-coupled. First, the action-sequences in different processes are then serializable 



www.manaraa.com

3 

(Eswaran et al [1976]). Therefore, it may be imagined that accesses to shared variables 

are exclusive even though explicit mutual exclusion is not implemented. Second, an im

portant class of progress properties-of the form, if p is true now then q is or will become 

true-holds in a loosely-coupled system if it is implemented in a "wait-free manner" by any 

component process of the system, and the post-condition q is falsified by no other process; 

this result does not hold for arbitrary-i.e., non-loosely-coupled-systems. Therefore, a 

possible programming methodology is to design a loosely-coupled system in which each 

property of the above form is implemented by a single process, with the restriction that 

no other process falsify the post-condition. 

A problem in hardware design, called cache-coherence (Lenoski et al [May 1990]), has 

its roots in shared-variable programming. Suppose that several processes hold copies 

of a shared-variable in their local caches. If processes write into their local copies au

tonomously then these copies may become inconsistent (and then the processes may read 

different values for the shared-variable). The traditional solutions to cache-coherence re

strict accesses to the caches at runtime so that the inconsistencies are avoided; one typical 

solution is to lock all caches prior to a write by any process, and then broadcast the new 

value to all processes after completion of the write. 

The cache-coherence problem vanishes for loosely-coupled processes. Each process 

that accesses a shared variable, x, initially keeps a copy of x in its local cache. Reads 

and writes are performed on the local copies. Whenever a local copy of xis changed the 

new value is transmitted, asynchronously, to all processes that hold a copy of x. Each 

process, upon receiving notification of a change, updates its local copy. We prove that 

this implementation scheme is correct. 

The suggested implementation allows the processes to compute asynchronously, us

ing only a partial knowledge of the values of the shared variables. Unlike traditional 

multiple-copy systems the copies of a shared variable will, typically, have different values; 

furthermore, no permission is ever sought by a. process from other processes nor are the 

caches locked before a. local copy is changed. Therefore, the performance of the system 

will not degrade if a shared-variable is accessed by a large number of processes; see Lenoski 

et al [February 1990] for some of the issues in scaling up shared-memory multiprocessors. 

Since the implementation by local copies is transparent to the programmer, programming 



www.manaraa.com

4 

loosely-coupled systems will retain much of the succinctness of expression while admitting 

efficient implementations. 

1.4 Related Work 

It is easy to see that read-only shared variables cause no race conditions; however, pro

cesses cannot communicate information about the progress of their computations through 

such variables. Several concurrent logic programming languages (Shapiro [1989]) support 

logic variables or write-once variables. A logic variable is initially undefined and it may 

be assigned a value at most once and by a single designated process, in any computa

tion. Logic variables have been used in the place of message-communicating primitives 

(Arvind et al [1989], Vishnubhotla [1989], Chandy and Taylor [1990]). In particular, the 

programming notation PCN by Chandy and Taylor [1990] makes a distinction between or

dinary program variables-called mutables-and logic variables-called permanents; con

currently executing processes (in one form of process composition) are prevented from 

changing the shared mutables, thus communicating through the permanents only. It can 

be shown that these processes are then loosely-coupled. A slightly general form of shared 

variables has been employed in Misra [1990]. A shared variable assumes an additional 

value, ..L, analogous to the undefined value. A value can be assigned to a shared variable, 

x, only if its current value is ..L; a value can be read from x only if its current value differs 

from ..L; the reading causes x to have the value ..L. The variable x may be viewed as a 

buffer of size 1 for which the writer,reader act as producer,consumer. Unlike logic vari

ables, such shared variables may be assigned value more than once. Processes employing 

such shared variables where each variable is shared between two processes only can be 

shown to be loosely-coupled. 

Gaifman, Maher and Shapiro [1990] have observed that by restricting the updates 

of the common store to be monotonic, nondeterministic computations can be replayed 

efficiently, for the purposes of debugging and recovery. They also propose an easy solution 

to the snapshot problem for such programs. 

Steele [1990] has argued that asynchrony can be made safe by requiring that the 

"causally-unrelated" actions of various processes commute. He argues that such restricted 

systems where also each process is deterministic and the computation is terminating, 



www.manaraa.com

5 

have some of the properties of SIMD systems (in which processes operate in lock-step) 

including determinacy. He shows how the violation of commutativity ca.n be detected at 

run-time. In Cha.ndy a.nd Misra [1988] we had proposed a set of access conditions for 

shared variables that allows the shared variables to be implemented by messages; the 

present work simplifies and generalizes those conditions. 

2 A Theory of Loosely-Coupled Processes 

2.1 Processes 

We consider a system consisting of a finite set of processes. Each process ha.s a. local store 

which only that process ca.n access, and there is a global store which all processes can 

access. (The control point of a process, i.e., the point in the process-text where control 

resides a.t some point in the computation, is a. part of its local store). Let A be the set 

of possible values that can be held in the global store, and L;, the set of possible values 

for the local store of some specific process, P;. The set of system states is the cartesian 

product A X; L;, ranging over all process indices i. 

The states of the stores are modified by the actions of the processes. An action in 

process P; is given by a function, I, 

I : A X L; -+ A X L; 

denoting that P; ma.y read only from the global store and its own local store, and ma.y 

modify only those stores. A function may be partial; dom.l is the subset of A x L; where 

I is defined. 

The effect of applying an action in a given system state is to evaluate the corresponding 

function, if it is defined, in that state and overwrite the appropriate part of the system 

state by the function value; if the function is not defined in a system state the action ha.s 

no effect. 

Each process consists of a set of actions. In each step, an action is chosen from some 

process and applied in the current state; both choices-the process and the action-are 

nondeterministic. The nondeterministic choice is constrained by the fairness rule that 

every action from every process is chosen eventually. 



www.manaraa.com

6 

This process-model is from UNITY {Chandy and Misra [1988]). At first sight, it 

may seem restrictive because the traditional control structures-if-then-else, do-while, 

sequencing, etc.-have been eliminated. Yet, this model has all the generality of the 

traditional models (except process creation and deletion), and it provides a simpler basis 

for reasoning and constructing theories. To see how traditional control structures are 

encoded within this model, consider two actions, f and g, that are to be applied in 

sequence. Let the program-counter (pc) be 0 when f is to be applied and 1 when g is 

to be applied. In our model, pc is a part of the local store of the process. We define 

a function f' at all system states where pc is 0 and f is defined; the effect of applying 

f' is the same as applying f except that the former results in additionally setting pc to 

1. Similarly, we define g' (for all states where g is defined and pc is 1). This scheme 

implements the desired sequencing implicitly. 

The reason we have chosen to work with this process-model is that the desired theory 

can be developed simply, by ignoring a number of issues having to do with program 

structures. 

Convention: If f.y = y, for some y, then the effect of applying the corresponding 

action in this state is a "skip"; the effect is the same as if y fl. dom.f. Therefore, we may 

remove y from dom.f without changing the program semantics. Henceforth, we assume 

that f.y f:. y for ally, i.e., all our functions are irrefiexive. 

Convention: A function /, 

f : A X L; _. A X L; 

has the same effect as a function f', that is defined on system states: 

!' : A X; L; _. A X; L; 

where/' simply does not "use" or "update" any Lj, j f:. i. Therefore, we view each 

function as a function from system states to system states. 

2.2 Definition of Loosely-Coupling 

A set of processes is loosely-coupled if for every pair of functions, /, g, whenever f.:c and 

g.:c are both defined, then so are f.g.:c and g.f.:c, and they are equal in value. D 



www.manaraa.com

7 

Observation: If the component processes are sequential, any two functions within a 

single process commute because there is no system state where both functions are defined 

(because the functions are defined at system states where the program counter, for this 

process, has different values). Now, consider two functions, /,g, from distinct processes. 

If variables accessed by both J,g are read-only variables, i.e., no variable written by an 

action is read or written by another action, then the functions commute. Therefore, the 

test of commutativity need be applied only to functions where one accesses (i.e., reads or 

writes) a global variable that the other writes into. 0 

2.3 Examples of Loosely-Coupled Processes 

We give several examples of processes that are loosely-coupled. We adopt the UNITY 

syntax for writing the process-codes (though the results are entirely independent of the 

syntax). 

counting 

An integer variable, c, is shared among processes Po ... PN. Process P;, 1 ~ i ~ N, 

accesses c in a statement, 

{P;} c := c+ d; if b; 

where b;, d; are local toP; and d; > 0. Process Po references c in 

{Po} 1 := true if c > 0 

where lis a local variable of P0 • 

The functions from P;, P;, i =/: j, 1 ~ i ::5 N, 1 ::5 j ::5 N, clearly commute (because b;, 

d; are local toP; and addition is commutative). The functions from Po and P;, 1 ~ i $ N, 

commute because, since d; > 0, 

b; 1\ c > 0 =? c + d; > 0 {Po can be applied after applying P;} 1\ 

b; {P; can be applied after applying Po} 

Also, (c',l') = (c+d;, true) 



www.manaraa.com

8 

where c', l' are the values of c, l after applying both operations in either order when both 

are defined. D 

parallel search 

N processes, N > 0, carry out a search in parallel. Shared variables are P, r, where 

P is a set of process indices, 1 through N (P holds the indices of all processes that have 

yet to complete the search) and r is the index of the lowest numbered process that has 

succeeded in the search; if no process has yet succeeded in the search then r > N. Initially, 

P ={ill$ i $ N} and r > N. The code of process i, 1 $ i $ N, is as follows: 

{li} 

~ {g;} 

P,r := P- {i},rmini 

p .- p- {i} 

if b;AiEP 

if c;AiEP 

Here b;, c; are local to process i that denote successful or unsuccessful completion of the 

search. Process 0 accesses the shared variables, using 

{h} d := r if p = <P 

where d is a local variable of this process. 

To see that these processes are loosely-coupled: 

• /;, g; commute because b; and c; cannot hold simultaneously, i.e., the search cannot 

be both successful and unsuccessful. 

• f;,!; commute because removing two items from a given set in either order results 

in the same set and min is commutative and associative. 

• f;, 9i commute for similar reasons. 

• g;, 9i commute for similar reasons. 

• h, f; (or h, g;) are not both defined in any state because P = <P A i E P never holds. 

Therefore, they commute trivially. 



www.manaraa.com

9 

point-to-point communication 

Two processes, a sender and a receiver, communicate using a FIFO channel, c. The 

sender sends messages; the messages are eventually delivered to the receiver in the order 

sent. It is not surprising that this pair of processes is loosely-coupled; we verify this, 

formally, below. 

We regard the channel, c, as a variable-of type message sequence-shared between 

the sender and the receiver. The action at the sender is of the form: 

{send} c := c;m if bs 

Here ";" denotes concatenation and m, bs are local to the sender denoting, respectively, 

the next message being sent and the condition for sending m. The action at the receiver 

is of the form: 

{receive} 1, c := head.c, tail.c if br " c # () 

Here l, br are local to the receiver (the received message is copied into l; the condition for 

receiving a message is given by br) and "()" denotes the empty sequence. 

The two corresponding functions commute in that they produce the same values for 

l, c when applied in either order. 

(head(c; m), tail(c; m)) 

= (head( c), tail( c); m)) 

{receive is defined only when c # ()} 
{first send then receive} 

{first receive then send} 

We leave it to the reader to show that if c is not FIFO, i.e., cis a bag into which 

the sender adds items and from which the receiver removes items, the processes are still 

loosely-coupled. D 

multi-input channel 

This is a variation of the previous example. Two senders use a single channel to send 

messages to a receiver. 

The send actions are 



www.manaraa.com

{S1} c .- c; m1 

and {S2} c .- c; m2 

if bs1 

if bs2 

10 

where m1, bs1 are local to Sender 1 and m2, bs2 to Sender 2. As before, the receiver 

action is 

{receive} 1, c := head.c, tail.c if br 1\ c =/: () 

S1, S2 do not commute because, under bs1 1\ bs2 

(c;m1);m2 =/: (c;m2);m1 

This reflects the possibility that relative speeds of the processes and the communication 

network could affect the outcome of the computation. If the multi-output channel is of 

type bag-the senders add items to the bag and the receiver removes some item from the 

bag-then the processes are loosely-coupled, because bag union is commutative. 

Note: The reader can show that one or more senders sharing a bag with multiple re

ceivers are not loosely-coupled; then receive actions in two different receivers do not 

commute. 

0 

broadcast 

The value of a shared variable x is to be broadcast to processes P1 ••• PN. Process 

Po stores a new value into x provided the previous value has been read by all processes. 

A process P;, 1 ::::; i ::::; N, records the value of x, in a local variable x;, provided it is a 

new value. In order to determine if a value is new and also if the processes have read 

the previous value, we introduce boolean variables b0 ••• bN, and the invariant: For any i, 

1 ::::; i ::::; N, P; has read the current value of x iff b; = b0 • Thus, if b0 equals every other b; 

then every P; has read the value of x; a new value may then be stored in x and b0 changed 

(so that it differs from every other b;). Also, P; reads x only if b; differs from b0 ; reading 

is accompanied by setting b; to b0 • Specifically, the write action in Po is 

{Po} x, bo := l, --.bo if (Vi : 1 ::::; i ::::; N :: b0 = b;) A cw 



www.manaraa.com

11 

where 1, cw are local to P0 ; variable 1 holds the next value to be broadcast and cw is the 

condition for broadcasting. The read action in P; is 

where x;, cr; are local to P;; the value read is stored in x; and cr; is the condition for 

reading. 

The functions in P0 , P;, 1 ~ i ~ N, commute because both the corresponding actions 

cannot be performed in any state: 

b; # bo A (Vi : 1 ~ i ~ N . . bo = b;) 

is false. 

The operations in P;, Pj, 1 ~ i ~ N, 1 ~ j ~ N, commute because common variables 

accessed by these two actions are x and b0 , and both are only read by these two actions. 

Hence the processes are loosely-coupled. 

As a consequence of loose-coupling, we can show that simultaneous access to all b;'s, 

as required in P0 's action, may be replaced by .asynchronous accesses. 0 

2.4 Serializability 

We show that a sequence of accesses to shared variables within a process (of a loosely

coupled system) may be regarded as non-preemptible or atomic. Thus, within a process it 

may be assumed that the process has exclusive access to all shared resources. Such exclu

sive accesses are typically implemented by explicit mutual exclusion algorithms. Hence, 

explicit mutual exclusion for exclusive access to shared variables is unnecessary for loosely

coupled systems. In particular, programming constructs such as monitors (Hoare [1974]) 

that enforce mutual exclusion are unnecessary; a monitor may be viewed as a mecha

nism to implement loose-coupling. Conversely, the mutual exclusion problem cannot be 

solved by loosely-coupled processes. It has been observed by many people-in partic

ular, Lamport (in private conversation)-that the mutual exclusion paradigm and the 

producer-consumer paradigm (i.e., loose-coupling, in our terminology) are two distinct 

notions; our results seem to justify this observation. 

We prove a number of results about loosely-coupled processes. In particular, if finite 

executions of two processes are defined in a particular system state then any interleaving 



www.manaraa.com

12 

of these executions is defined in that state, and all interleavings result in the same state. 

As an example, let J, g be the functions from one process and h be a function from another 

process. Suppose f.g.x, h.x are defined (where xis a system state). Then so are f.g.h.x, 

f.h.g.x and h.f.g.x, and they all have the same value. Also, if f.h.g.x and h.J.g.x are both 

defined-f.g.x, h.x may not be defined-then they have the same value. We show that 

the system state resulting from an interleaved execution, i.e., the value of f.h.g.x, say, can 

be computed in a lazy manner by applying the next function from either sequence-f g 

or h-if it is defined in the current state, and repeating this procedure. These theorems 

are used as the basis of design and implementation of loosely-coupled processes. 

2.4.1 Properties of Commuting Functions 

Henceforth, we deal with (partial) functions from D to D, for a fixed set D; in the 

context of loosely-coupled processes D is the set A X; L;-the set of system states-and 

each function corresponds to an action in some process. Functions J, g commute iff for 

every x in D, 

f.x and g.x defined 

=> f.g.x and g.f.x defined, and f.g.x = g.f.x 

Let a be a finite sequence of functions. If a is the empty sequence then a.x is defined 

for every x in D and a.x = x. If a is the sequence a'J, then a.x is defined iff f.x is defined 

and a'.(f.x) is defined, and a.x = a'.(f.x). Two sequences, a,(3, of functions commute if 

every function from a commutes with every function from (3. 

Notational Convention: For expressions e, e' we write 

e = e' 

to denote that both e, e' are defined and they are equal. Thus, the commutativity condi

tion for j, g can be written: 

f.x and g.x defined => f.g.x = g.f.x 



www.manaraa.com

13 

Lemma 1: Let g be a function that commutes with every function in sequence a. For 

any x in D, 

g.x and a.x defined => g.a.x = a.g.x 

Proof: Proof is by induction on the length of a. 

(1) 

a is the empty sequence: Since g.x is defined 

g.a.x = g.x and a.g.x = g.x 

Hence, the result follows. 

a= a'f: 

f.x defined , a.x defined 

g.x defined , given 

f.g.x = g.f.x , J,g commute 

a'.(f.x) defined , a.x defined and a = a' f 

g.(f.x) defined , from (1) 

a'.g.(f.x) = g.a'.(f.x) , using inductive hypothesis on the above two 

a'.f.g.x = g.a'.f.x , replacing g.f.x in the lhs of the above by 

f.g.x, using (1) 

a.g.x = g.a.x , using a= a'f 0 

Theorem 1: Suppose a, {3 commute a.nd 'Y is a.n interleaving of a, {3. For any x in D, 

a.x a.nd {3.x defined => "f.X defined 

Proof: Proof is by induction on the length of 'Y (i.e., on the combined lengths of a a.nd 

[3). 

I'YI = 0: "f·X is defined (a.nd "f.X = x). 

1"11 > 0: If 1!31 = 0 then 'Y = a a.nd hence "f.X is defined because 

a.x is defined. Therefore, let {3 be nonempty, say {3 = {3'g. Since 'Y 

is a.n interleaving of a, {3 

"f=AgB 

where A, B a.re sequences of functions a.nd B is a. suffix-possibly empty-of a. 



www.manaraa.com

14 

Furthermore, the sequence AB is an interleaving of a, {3'. For any :z: in D, 

g.:z: defined 

a.:z: defined 

, f3 .x defined and f3 = /3' g 

, given 

a.g.:z: defined , using Lemma 1 on the above two 

f3'.g.:z: defined , f3.:z: = f3'.g.:z: 

(1) (AB).(g.:z:) defined , using inductive hypothesis, any interleaving of a,/3'-in 

particular AB-is defined at g.x 

B.:z: defined 

g.:z: defined 

, B is a suffix of a and a.:z: is defined 

, f3.:z: defined and f3 = f3'g 

B.g.:z: = g.B.:z: , using Lemma 1 on the above two 

A.B.g.:z: = A.g.B.:z: , from (1) and the above 

A.B.g.:z: = -y.:z: , replacing 'Y by A g B in the rhs of the above 

Therefore, 'Y .:z: is defined. 0 

It should be understood that if one of a, f3 is undefined at :z:, their interleaving 'Y may 

or may not be defined at :z:. For instance, consider the functions /, g over natural numbers. 

f.:z:- :z:+1 

g.:z:- :z:-1 if :z: > 0 

f,g commute (note that both are defined at all positive numbers). However, f.g.O is 

undefined whereas g.f.O is defined. We show, below, that whenever two interleavings of 

a, f3 are defined at :z: they have the same value. 

(Also, it is interesting to note that -y.:z: may be defined even though neither a.:z: nor 

f3.:z: is defined. To see this consider the functions /, g given above and let 

f'.:z: - :z: -2 

g'.:z:- :z:+2 

if :z: ?: 2 

Let a=/'/, f3 = g'g, 'Y = f'g'gf. It is easy to see that a,/3 commute, and that 'Y is 

an interleaving of o:,/3. Neither a.O nor /3.0 is defined, though -y.O is defined.) 

Theorem 2: Suppose a, f3 commute. Let -y, 8 be interleavings of a, {3. For any :z: in D, 

-y.:z: and fJ.:z: defined => -y.:z: = 8.:z:. 



www.manaraa.com

15 

Proof: Proof is by induction on 11'1 (note that 11'1 = 181). 

11'1 = 0: Then, both/, 8 are empty sequences and the result holds, trivially. 

11'1 > 0: Let 1 = 1'! and 8 = 8'g. 

case 1) f = g: Then, 

/·X= / 1.(j.x) and 8.x = 8'.(j.x). 

Since 1',8' are both defined at J.x and they are both interleavings of 

some subsequences of cr.,/3, applying induction hypothesis, 

,'.(f.x) = 8'.(f.x) 

i.e., /·X= 8.x 

case 2) f # g: Suppose f is from cr.. Then g is from {3, i.e., {3 = f3'g. We can 

write 1 =A g B where B is a suffix of cr.. Note that AB and 8' are 

both interleavings of cr., {3'. 

(1) 

B.x defined , /·X defined and 1 =A g B 

g.x defined 

g.B.x = B.g.x 

,.x = A.g.B.x 

/·X= A.B.g.x 

(AB).(g.x) = 8'.(g.x) 

/·X= 8.X 

l 8.x defined and 8 = 8'g 

, using Lemma 1 (since g is from {3 and 

all functions in B are from cr., 

g commutes with B) 

,/=AgE 

, replacing g.B.x by B.g.x using (1) 

, from the above, (AB).(g.x) is defined. Also, 

8'.(g.x) is defined, because it is 8.x. Both AB 

and 8' are interleavings of cr., {31• From the 

induction hypothesis. 

, from the above two 0 

Theorem 3: Let cr., f3 commute. Let 1 be an interleaving of cr., {3. Suppose f3 = f3'g, for 

some {3' and g. 

g.x and /·X defined :::::? /·X = 1'.g.x 

for some interleaving 1' of cr., {3'. 



www.manaraa.com

16 

Proof: Let"'= A g B. Here, B is a suffix of ex because g is the least element of {3. 

g.x defined 

B.x defined 

g.B.x = B.g.x 

A.g.B.x = A.B.g.x 

"f.X = (AB).g.x 

, given 

, "(.X defined and"'= A g B. 

, g, B commute. Use Lemma 1. 

, from the above and "(.:& = A.g.B.:c 

, from the above 

This completes the proof with 7' = AB. 

Corollary 1: Let ex, {3 commute. Let "' be an interleaving of ex, {3. 

{3.x and "(.X defined => "(.:& = ex.{3.x 

0 

Proof: Repeated use of Theorem 3 substituting each proper prefix of {3, from the longest 

to the shortest, for {3' in the above theorem. 0 

The next theorem says that given "(, an interleaving of ex, {3 that commute, if {3.x is 

defined and"(.:& is undefined then"' is undefined because of a function from ex, i.e.,"' has 

a suffix f"'' where "f'.x is defined, f."f'.x is undefined and f is from ex. The theorem below 

states the contrapositive of this result. 

Theorem 4; Let ex and gf3 commute. Let"' be an interleaving of ex,{3. 

g.f3.x and "(.X defined => g."(.X defined 

Proof: Since {3.x is defined (from g.f3.x is defined) and "(.X is defined, we have "f.X = 

ex.{3.x, from Theorem 3. Now, 

g.{3.x 

ex.{3.x 

defined 

defined 

g.ex.{3.x defined 

g."(.:& defined 

, from the antecedent 

, from the above argument 

, Lemma 1 applied to the above two 

, "(.:& = ex.f3.:c 0 

Note: Our theorems readily generalize to interleavings of several sequences where each 

pair of sequences commute. In fact, we will be normally dealing with this more general 

form in all cases. o 



www.manaraa.com

17 

2.5 Compositional Designs of Loosely-Coupled Systems 

We show how properties of a system of loosely-coupled processes may be deduced from 

the properties of the component processes. These deduction rules can be used as a basis 

for system design. 

We compose processes using the union operator of UNITY; for processes F, G their 

union, written as F ~ G, is a process in which actions from F, G are executed concurrently 

and asynchronously. In each step of the execution ofF ~ G an action from either For G 

is chosen and executed; the choice is to be made fairly, in the sense that every action is 

chosen eventually for execution; see Chandy and Misra [1988] for details. 

The two classes of program properties-safety and progress-are expressed using the 

operators, unless and leads-to. (UNITY employs another operator, ensures, as the basis 

for the inductive definition of leads-to; we won't be needing that operator for the theory 

developed in this paper.) 

The basic safety property is of the form, p unless q, where p, q are predicates (defined 

on the state space of the program). The operational interpretation of p unless q is 

. that once p is true it remains true as long as q is false. An important special case is 

p unless false which means that p remains true once it becomes true; we write p stable 

for p unless false. A predicate p is invariant in a program if p is initially true and pis 

stable. 

The basic progress property is of the form p H q (read p leads-to q); its operational 

interpretation is: Once p is true, q is or will become true. See Chandy and Misra [1988] 

for formal definitions of these operators. 

union theorem 

Safety properties of composite programs can be deduced from the safety properties of 

their component processes, as given below. This result applies to all processes, not just 

loosely-coupled processes. 

Theorem 5 (for safety): (See Chandy and Misra [1988, Sec. 7.2.1]) 

p unless q in F ~ G = p unless q in F 1\ p unless q in G 0 



www.manaraa.com

18 

This theorem provides a basis for designing a composite system: A system satisfying 

p unless q can be designed as a union of two components in each of which p unless q 

holds. 

There is no corresponding result for progress properties. Indeed, a progress prop

erty established by one component process may be affected by the operations of another 

process, as shown in the following example. 

Example: Processes F, G share a variable x that can take three possible va.lues-0, 1 

or 2. Each process has a single action. 

F .. x := (x + 1) mod 3 

G .. x .- (x + 2) mod 3 

The initial value of x is irrelevant. It is easy to see that 

x=O 1--+ x=2 inF 

x=O 1--+ x=2 inG 

However, 

x=O ....... x=2 inFOG 

does not hold: To see this consider the repeated execution ofF followed by G, starting 

in a state where x = 0. Note that F, G are loosely-coupled according to our definition. D 

(A part of the union theorem can be used to deduce a special Class of progress prop

erties, of the form p ensures q; the theorem says that p ensures q holds in a composite 

program iff p ensures q holds in at least one component and p unless q holds in all other 

components. No such result holds for p 1--+ q.) 

The lack of a theorem for progress, analogous to the union theorem for safety, is a 

serious drawback for concurrent program design. In order to design a system in which 

p 1--+ q holds, we cannot easily partition the design into several processes each satisfying 

some safety and progress properties. Conversely, to assert a progress property for a 

given system, all its components have to be considered together. A major simplification, 



www.manaraa.com

19 

proposed by Owicki and Gries [1976], is to ascertain that the proof constructed for a 

single process is not affected by the executions of the statements in the other processes; 

construction of such a. proof is still an expensive procedure. 

We show a theorem below which can serve as the basis for designing loosely-coupled 

systems. The essence of the theorem is: If process F establishes p 1-+ q in a "wait-free" 

manner (defined below), a.nd F is a. component in a. system of loosely-coupled processes 

where every other process preserves q, then p 1-+ q holds in the entire system. Thus, a 

progress property, p 1-+ q, of a loosely-coupled system can be implemented by designing a 

single process to implement this property in a. wait-free manner, requiring other processes 

to preserve q (i.e., having "q stable"). 

Process F is wait-free for (p, q) if once p A -.q holds, every action ofF is effective 

(i.e., execution of the action changes state) a.t least until q holds. This property ca.n be 

established as follows. Let c; be the condition under which the iu. action in F executes 

effectively. Then, 

p A -.q => (A i :: c;) {all actions can be executed effectively under p A -.q} 

(A i .. c;) unless q { a.ll actions ca.n be executed effectively a.t 

least until q holds} 

The notion of wait-freedom captures our intuitive understanding that once p holds in 

F, process F ca.n execute autonomously without waiting for any external signal. 

Theorem 6: Let F, G be loosely-coupled. 

p 1-+ q inF, 

F is wait-free for (p, q) , 

q stable in G 

p 1-+ q inFOG 

Proof (sketch): Consider a.n infinite execution, u, ofF ~ G starting in a. sta.te where p 

holds; ca.ll this starting sta.te z. We show that u has a finite prefix, 1', at the end of which 

q holds. 

Let up be the sequence obtained by retaining only a.nd all the F-actions of u. Since 

u is a. (fair) execution ofF ~ G, up is a (fair) execution of F. From p 1-+ q in F, we 



www.manaraa.com

20 

know that every (fair) execution ofF starting in a state where p holds has a prefix at the 

end of which q holds. Therefore, there is a prefix a of up after which q holds. Since F is 

wait-free for (p, q), a.x defined. 

Let T be a prefix of u such that Tp = a. We deduce the system state by applying T to 

state x, as follows. First, remove all actions from T that are undefined in the corresponding 

state (those that behave as a skip); let the new sequence be r'. Clearly, the system states 

by applying T and r' to x are identical; furthermore, r'.x is defined. We show that q holds 

for r'.x. 

Since T is an interleaving of a and some sequence of G-actions, and a.x is defined, 

according to Theorem 4, the removed actions from T are G-actions only. Therefore, r' is 

an interleaving of a and a sequence, say {3, of G-actions. Since F, G are loosely-coupled, 

a, f3 commute. We know that r'.x and a.x are defined. From Theorem 3, 

r'.x = {J.a.x 

We know that q holds for a.x and q is not falsified by any action from f3 (because q is 

stable in G and f3 consists of G-actions). Hence, q holds for r'.x. 0 

A Programming Methodology for Loosely-Coupled Processes 

Theorem 5 provides a basis for programming loosely-coupled processes. We implement 

a. progress property p ~--+ q by a. single process in a. wait-free manner; then we require 

that the other processes not falsify q. The methodology for constructing a program from 

its specification, consisting of safety a.nd progress properties, is as follows: 

Require that 

• the component processes be loosely-coupled, 

• each safety property hold for each component process, a.nd 

• each progress property, of the form p ~--+ q, hold in a. specific process (in a. wait-free 

manner) a.nd q be stable in the other processes. 

This design methodology is driven by consideration of the progress properties; the 

safety properties merely serve as the restrictions in designing the individual processes. 

Note that we may decompose a progress property p 1-+ q into, sa.y, p 1-+ r and r 1-+ q 

and have them be implemented by different processes. 



www.manaraa.com

21 

3 Implementing Loosely-Coupled Processes: 

The Cache -Coherence Problem 

We show in this section that the cache-coherence problem vanishes for loosely-coupled 

processes. An implementation can employ an asynchronous communication system to 

bring the caches into coherence, and it is not required for a process to lock other process 

caches or ask for permission in updating its own cache. The implication of this observation 

is that loosely-coupled processes can be implemented very efficiently in a distributed, 

message-passing type architecture. Consequently, such systems are highly scalable, a 

property that is not enjoyed by arbitrary shared-variable systems. Even when a. system 

is not loosely-coupled, it pays to identify the processes that are loosely-coupled because 

their interactions ca.n be implemented asynchronously, as described above. {In fact, with 

slight assistance from the programmer, compilers ca.n generate code that minimizes cache

locking.) 

The implementation of loosely-coupled processes employing a point-to-point commu

nication network is as follows. Initially, each process holds the contents of the global store 

a.nd the local stores of a.ll processes in a local cache; hence, a.ll caches a.re initially coherent. 

A process computes by reading values from its local cache a.nd writing new values into 

its local cache. Whenever a process changes a. value in its local cache it sends an update 

message to every other process informing them of the change. Upon receiving a.n update 

message a. process updates its local cache appropriately (the exact mechanism of update 

is explained in the sequel). 

We show that this implementation is correct. Observe that the caches ma.y never 

be coherent beyond the initial state. Therefore, we cannot show that for every finite 

execution of the original system there is a. finite execution in the implementation that 

has the same final state. Instead, we show that whatever could be proven in the original 

system ca.n be proven in the implementation. More precisely, if A denotes the original 

system and B the implementation, we prove that 

p unless q in A => p unless q in B 

pt-+q inA=>p~-+q inB 

Let s denote the entire system state (the content of the global store and the local 



www.manaraa.com

22 

stores) during the computation of A. An action in a process i is of the form, 

s := f.s if f.s is defined 

(Note that the action can only modify the contents of the global store and the local store 

of process i.) In the implementation, B, let s; denote the local cache contents of process 

i. Initially, all s;'s are equal to s. The above action is implemented by 

S • ·- fs· I.- • I if f.s; is defined 

and sending an update message "!" to all other processes. 

Messages are delivered in FIFO order along a channel directed from one process to 

another. Process i removes the next message, g, from an incoming channel only if g.s; is 

defined; it then executes 

s; := g.s; 

We assume that if g.s; remains defined continuously it will be removed. If g.s; is undefined, 

the message is left in the channel. 

The sequence of messages in the channel from process j to process i (sent by j and 

unremoved by i) is ch(j, i). Initially, all ch(j, i) are empty. 

In order to prove the correctness of the impleme~tation we consider yet another system, 

C 1 which is obtained by augmenting B with the auxiliary variable s denoting the "true" 

system state; the action in process i is replaced by 

s, s; := f.s, f.s; if f.s; is defined 

(We will show that f.s is defined.) Our correctness proof consists of showing that all 

properties of A hold in C. (Next, since sis auxiliary, it may be removed from C, to obtain 

B.) We show that at every point in the computation, s may be obtained by applying 

the update messages in the incoming channels of i to s;. Specifically, the following is an 

invariant for C. 

invariant For process i there is a sequence, 1, where 1 is an interleaving of ch(j, i), for 

all j, j =f; i and 

s = ,.s; 



www.manaraa.com

23 

Proof: Initially, the invariant holds with 1 as the empty sequence. To prove that every 

change to s or s; preserves the invariant, we observe that these variables may be changed 

by: applying an action in process i (which may change both s, s;), applying an action in 

process j, j =I i (which may changes and ch(j,i), but does not changes;) or, process i 

receiving an update message, g (thus changing s; but leavings unchanged). 

Action in process i: Executing 

s, s; := f.s, f.s; if f.s; is defined 

preserves the invariant, trivially, if f.s; is undefined. Otherwise, prior to the execution 

f.s; defined 

'Y·Si defined 

(1) f.,.s; = 1.f.s; 

f.s defined 

, assume 

, s = 'Y·Si from the invariant 

, Lemma 1 (f commutes with 'Y) 

, from the above using s = 'Y·Si 

Thus assigning f.s to s is legal. Next, observe that 

f.s 

= {s = ,.si} 

f·/·Si 

={from (1)} 

'Y·f.s; 

Hence, the invariant holds with f.s;, f.s in place of s;, s; also ch(j, i) does not change 

for any j, j =I i. 

Action in process j, j =I i: 

s,si := g.s,g.si if g.si is defined 

has the effect that s may be changed; also ch(j, i) is extended by appending "g" to it. 

g.s 

= {s = ')'.s;} 
9·/·Si 



www.manaraa.com

24 

Hence, the invariant is satisfied with the sequence g"(. 

Receiving a message: Process i executes 

s; := g.s; if g.s; is defined 

and removes g from a sequence ch(j, i), j ':/: i. Since "(.S; is defined prior to the execution, 

ch(j, i) is of the form f3'g and g.s; is defined, then using Theorem 3 we have 7.s; = "(1.g.s;. 

Therefore, the above action preserves the invariant, by replacing s; by g.s;, and 7 by 7'. 

0 

Communication Axiom 

There is another property of G that captures the essence of the underlying commu

nication. Assume that the message network delivers every message eventually, and that 

process i eventually removes the head message g of an incoming channel if g.s; remains 

defined. Consider some point in the computation when the values of 

s;, s are S;, S 

From the invariant, there is an interleaving,"{, of all incoming-channel contents such that 

S = "f•Si 

In order to compute 7.S;, we may start by applying any function g where g is the head 

message of a channel and g.S; is defined (from Theorem 3). It can be shown that our rule 

of removing messages from channels will eventually result in 

s; = 7'.S; 

where 7 is a subsequence of 7'· Applying Theorem 3 (as in Corollary 1) we have, 

7'.S; = S."f.S; 

or, s; = S.S 

We observe the following fact about S. For function f in process i, 

• either f.s; remains undefined throughout until s; becomes S.S. In that case, function 

f is never applied to s; and hence, S does not contain f. 



www.manaraa.com

25 

• or f.s; becomes defined somewhere during this period. 

Combining these observations, we have the communication axiom: 

CA :: For each process i, 

s = S ~---+ (si = c.S 1\ c does not contain f) V f.si is defined 

Using the invariant and the communication axiom we can establish, 

Theorem 7: p unless q in A ::} p unless q inC 

Theorem 8: p ~---+ q in A ::} p ~---+ q in C 

4 Conclusion 

The notion of loose-coupling promises to simplify programming and implementations of 

a class of shared-variable systems. 

References 

• Arvind, Nikil, R.S. and K. K. Pingali [1989]. "!-Structures: Data Structures for 
Parallel Computing," ACM TOPLAS, Volll, No. 4, October 1989, 598-632. 

• Chandy, K. M., and J. Misra [1988). Parallel Program Design: A Foundation, 
Reading, Massachusetts: Addison-Wesley, 1988. 

• Chandy, K. Mani and Stephen Taylor; "A Primer for Program Composition Nota
tion," Caltech-CS-TR-90-10, June 20, 1990. 

• Eswaran, K. P., Gray, J. N., Lorie, R. A. and I. L. Traiger, "The Notions of Consis
tency and Predicate Locks in a Database System," C. ACM19{11):624-633, Novem
ber 1976. 

• Gaifman, H., Maher, M. J., and E. Shapiro [1990. "Replay, Recovery, Replication 
and Snapshot of Nondeterministic Concurrent Programs," Department of Applied 
Mathematics and Computer Science, The Weizmann Institute of Science, Rehovot, 
76100, Israel, July 1990. 

• C. A. R. Hoare, "Monitors: An Operating System Structuring Concept," C. ACM, 
Vol. 17, No. 10, 549-557, October 1974. 

• Lenoski, D., Gha.rachorloo, K., Laudon, J., Gupta., A., Hennessy, J., Horowitz, M. 
and Lam, M., "Design of Scalable Shared-Memory Multiprocessors: The DASH 
Approach," Proc. ACM, Compcon, February, 1990. 



www.manaraa.com

26 

• Lenoski, D., Laudon, J., Gharachorloo, K., Gupta, A. and Hennessy, J., "The 
Directory-Based Cache Coherence Protocol for the DASH Multiprocessor," Proc. 
IEEE, 17th Annual International Symposium on Computer Architecture, 148-159, 
Seattle, WA, May, 1990. 

• Misra, J. (1990). "Specifying Concurrent Objects as Communicating Processes," 
Science of Computer Programming 14 (1990), 159-184. 

• Owicki, S., and ,D. Gries (1976). "An Axiomatic Proof Technique for Parallel Pro
grams I," Acta Informatica, 6:1, 1976, 319-340. 

• Shapiro, E. [1989]. "The Family of Concurrent Logic Programming Languages," 
ACM Computing Surveys, 21:3, 412-510, 1989. 

• Steele, Guy L. Jr., "Making Asynchronous Parallelism Safe for the World," Proc. 
17th Annual ACM Symposium on Principles of Programming Languages, San Fran
cisco, CA, January 17-19, 1990, pp. 218-231. 

• Vishnubhotla, Prasad [1989). "Concurrency and Synchronization in the ALPS Pro
gramming Language," TR56, Ohio State University, 1989. 



www.manaraa.com

RENDEZ-VOUS WITH METRIC SEMANTICS 

J. W. de Bakker1 

CWI, Postbus 4079, NL-1009 AB Amsterdam 
& Vrije Universiteit 

E.P. de Vink 
Department of Mathematics and Computer Science, Vrije Universiteit 

De Boelelaan 1081a, NL-1081 HV Amsterdam 

Abstract 

A comparative semantic study is made of an element of the family of concurrent 
object-oriented programming languages. Particular attention is paid to two notions: 
(i) dynamically evolving process structures, including a mechanism to name andre
fer to processes and a means to create new processes, and (ii) rendez-vous between 
processes involving the sending and answering of messages and the induced execu
tion of method calls. The methodology of metric semantics is applied in the design 
of operational and denotational semantics, as well as in the proof of their equiva
lence. Both semantics employ domains which are determined as fixed points of a 
contracting functor in the category of complete metric spaces. Moreover, fruitful use 
is made of tli.e technique of defining semantic meaning functions as fixed points of 
contracting higher-order mappings. Finally, syntactic and semantics continuations 
play a pervasive role. 

1 Introduction 
We shall present a comparative semantic study of a language of the COOP (concurrent 
object-oriented programming) variety. Particular attention will be paid to the following 
two phenomena 

- dynamically evolving process structures, including a mechanism to name and refer 
to processes and a means to create new processes; 

- a version of rendez-vous between processes involving the sending and answering of 
messages and the ensuing execution of method calls. 

The language we consider is a slightly simplified version of the language POOL - the 
parallel object-oriented language designed by America [Ame89]. Several semantic inves
tigations of this language have appeared already: operational semantics ([ABKR86]), 
dl'notational semantics ([ABKR89]), and a comparison of these two ([Rut90b]). Cf. also 
[AR89a] for a somewhat streamlined version of parts of [ABKR86, ABKR89, Rut90b] 
- excluding the more difficult sections of the comparison -, and [AR90], where an im
provement of POOL's denotational semantics which is organized in three layers (for 
statements, objects and programs) is described. The latter paper is intended as well as 
a contribution to the issue of the fv.ll abstractness of the POOL semantics. 

1 Partially supported by ESPRIT Basic Research Action 3020: Integration 



www.manaraa.com

28 

The treatments in [ABKR89, Rut90b] are rather complex and demand much from the 
uninitiated reader. The first aim of the present paper is to provide a more comprehensible 
version of these investigations, with special emphasis on the comparative issues. Partly, 
this is achieved by a presentation in two stages, both dealing with dynamically evolving 
processes, but only in the second one with a facility to name and refer to processes. 
Also, a careful tuning of the design of the operational and denotational definitions -
in particular by the systematic use of so-called syntactic and semantic continuationa 
- results in a transparent view of the relationship between the two models. Maybe 
more importantly, we propose a substantial simplification in the way the rendez-vous 
concept is handled. Firstly, the operational semantics rule for the rendez-vous is nQw 
appealingly simple and, secondly, some of the complexities in the denotational models of 
[ABKR89, Rut90h], in particular in the definition of the merge operator, are to a large 
extent avoided. Related to this we find that the equation determining the domain used in 
POOL's denotational semantics is essentially simplified in our approach. (In the domain 
equation P = F(P), F(P) has no more subtcrms of the form (P-+ · · ·). See Section 2 
for background on this.) In addition, the somewhat extraneous use of the denotational 
meaning function V as part of the intermediate operational semantics in [Rut90b] is no 
more necessary. 

The second aim of our paper is to provide a case study in the usc of metric semantics. 
Let us first devote a few words to its basic principles. Consider two computations PI. 
P2. A natural distance d(p1, P2) may be defined in terms of the notion of initial segment 
p(k) of p- roughly, that part of p consisting of the first k steps (if present, otherwise p 
itself). Now we put d(p1.p2) = 2-n, where n is the length of the longest common initial 
segment of Pl and P2 (i.e., n = sup{k I Pl (k) = p2(k)} ). Details vary with the form of 
the Pl, P2. If computations are given as words (finite or infinite sequences of atomic 
actions), we take the standard notion of prefix; if Ph P2 are trees, we use truncation at 
depth k for p(k). Other kinds of computations, e.g. involving function application, may 
be accommodated as well. 

Complete metric spaces (ems's) have the characteristic property that Cauchy se
quences always have limits; this motivates their use for a smooth handling of infinite 
behaviour. In addition, each contracting function f : (!vi, d) -+ (.M, d), for (!vi, d) a 
ems, has a unique fixed point (by Banach's theorem; see Section 2 for the definition of 
contracting). Uniqueness of fixed points may conveniently be exploited in a variety of 
situations: 

Firstly, it has bE>cn shown that ems's may be used to solve domain equationa of the 
form 

P = F(P) (1.1) 

or, rather, (P,d) ~ F(P,d), with (P,d) the ems to be determined,~ isometry, and Fa 
mapping (functor) built from given ems's (A,dA), the unknown (P,d), and composition 
rules such as 0 (disjoint union), x (cartesian product), -+ (function space), and Pc~(·), 
PcoO (the power sets of all closed or compact subsets of ·). See [BZ82], [AR89b] for 
mathematical details. As an advantage over the more usual cpa framework when used 
to solve (1.1) we mention that the notions of closed and, especially, compact subset arise 
very naturally for (the me<mings of) many programming constructs. In a cpa setting, 
one has to choose between the Plotkin-, Smyth-, and Hoare powerdomains (cf. [GS90] 
for definitions), and it may not he so readily seen how to motivate a choice among these 
on the basis of a programming (rather than a mat~ematical) intuition. 



www.manaraa.com

29 

Secondly, both denotational (V) and operational (0) semantics may be obtained as 
fixed points of (contracting) higher-order mappings, say 'Is and <I>. For V this is fairly 
traditional: in fact, it subsumes the classical fixed point treatment of recursion. For 0 it 
is less standard: Starting from a transition system 'T in the familiar Plotkin SOS style, 
one may assemble all transitions for a given program 1r into a meaning 0(1r). Here the 
choice as to what kind of domain is used as range for 0 (e.g. linear time, branching time 
(cf. [BBKM84, BMOZ88]) or bisimulation, interleaving or noninterleaving ([BW90]), 
failure set semantics (cf. [Rut89])) is a separate decision, in most cases independent of 
the design of 'T. Maybe the most important advantage of this way of defining 0 as 
fix( <I>) is that is suggests a quite natural method to establish (*) 0 = V, viz. by proving 
that V = <I>(V), 'vhence the desired result follows by Banach's theorem (this important 
proof method is due to [KR90], cf. also [BM88]). Elsewhere ([Rut89, HBR90]) it is 
discussed how (*) may be strengthened to certain full abstractness results. Recently, 
investigations have begun concerning the possibility of obtaining V 'automatically' from 
a given transition system 'T. In restricted cases this is indeed possible ([Rut90a]), and it 
is an interesting problem how this idea may be generalized. We make one further remark 
on metric vs. cpo semantics: In the latter, one either uses least fixed points, and then 
has to impose additional conditions to cope with infinite behaviour (e.g. closedness and 
bov.ndedness of [MV88]), or one resorts to greatest fixed points and then continuity may 
be problematic (see e.g. [Par81]). In the metric framework, once contractivity is satisfied 
- which is mostly the case - infinite behaviour fits in quite naturally. 

Thirdly, unique fixed points may be used to define various semantic operators. In 
elementary settings, it is no problem to define e.g., sequential or parallel composition. 
However, if additional features such as infinite behaviour, possibly infinite alphabets, or 
rendez-vous as part of parallel composition are involved, it is non-trivial how to give 
rigorous definitions of such operations, and higher-order techniques again turn out to be 
quite useful. 

The present investigation is, partly, a companion to [BV91]. Whereas in that paper 
we concentrate on so-called uniform language notions (the atomic actions are uninter
preted or schematic, and there arc no individual variables), we here study a nonuniform 
(interpreted) language with full-fledged presence of individual variables and non-trivial 
expressions. The latter necessitate the use, besides of (syntactic and semantic) statement 
continuations, as well of (syntactic and semantic) expression continuations (in the form 
proposed in [AB88]). Since in the uniform case certain wcll-dcfincdncss arguments are 
more perspicuous, we shall occasionally refer below to [BV91] when in need of a justi
fication of some well-defincdness property. \Ve refer as well to [BV91] for references to 
papers where we have used metric semantics for (parallel) logic programming (LP). In 
[Eli91], metric semantics have been described for a language which exhibits, besides the 
COOP notions studied here, as well LP-likc notions such as clausal resolving of goals and 
backtracking. 

We conclude this introduction with a brief overview of the contents of the paper. 
Section 2 is primarily devoted to a concise presentation of the main ideas concerning 
the solution of domain equations over (i.e., in the category of) complete metric spaces. 
In Section 3 we develop comparative semantics for a language ( Lpp ) with 'parallel 
processes', here to be taken as a dynamically growing system of statements executing in 
parallel and communicating through {a skeleton version of) the rendez-vous concept. In 
Section 4 we add to these notions the facility to name and refer to processes, together 



www.manaraa.com

30 

with certain refinements of the rendez-vous. The resulting language we call .Cpo , a 
language with 'parallel objects'. Both for .Cpp and .Cpo we exhibit operational and 
denotational semantics. We prove that 0 = V, for .Cpp in some detail and for .Cpo 

in outline, in Section 5 .. Here we find the pay-off from our earlier efforts to obtain a 
transparent correspondence between the two models, in that the proof of 0 = V is 
largely syntax-directed, and docs not require particular ingenuity. 

Acknowledgements We owe much to Pierre America, the designer of the POOL language, 
and to Jan Rutten who, jointly with Pierre, was responsible for laying its semantics foun
dations. Jan Rutten also pointed out the need for articulating the notion of resumption 
in the present paper. V\'e arc indebted to Joost Kok for his contributions to the semantic 
studies of POOL, and, in general, to the members of the Amsterdam Concurrency Group 
for providing an expert and stimulating forum for discussion on our ongoing research. We 
thank Franck van Breugcl for detailed reading of an earlier version of our paper leading 
to various improvements. 

2 Mathematical preliminaries 

2.1 Notations 

We use the phrase "let (x E).M be such that ... " to introduce a set .M with variable x 
ranging over .M such that .... We use 'P'II'(-) for the collection of all subsets of· which 
have property 71'. We use f: X --t Y to define a function f with domain X and range 
(or codomain) Y. If X= Y and x EX is such that f(x) = x, we call x a fixed point of 
f. Iff has a unique fixed point we denote it by fix(!). For (x E).M any set, we usc x as 
a notation for a list (or vector) over M, with k ~ 1 clcmen ts. 

2.2 Domain equations 

As mathematical domains for our semantics we use complete metric spaces satisfying a 
so-called reflexive domain equation of the following form: 

P~ F(P) 

(The symbol ~ is defined below; it says that there is a bijection from P to F(P) that 
respects the metric defined on the spaces.) Here F(P) is an expression built from P 
and a number of standard constructions on metric spaces {also to be formally introduced 
shortly). A few examples are 

P ~ AU(B xP) 

P ~ A. U'Pco(B x P) 

P ~ A U (B --t P) 

(2.1) 

(2.2) 

(2.3) 

where A and B are given fixed complete metric spaces. In [BZ82] it is first described 
how to solve these equations in a metric setting Roughly, the approach amounts to the 
following: In order to solve P ~ F(P) they define a sequence of complete metric spaces 
(Pn)n by: Po = A and Pn+I = F(Pn), for n>O, such that Po ~ P1 ~ • • ·._ Then they take 
the metric completion of the union of these spaces Pn, say P, and show: P ~ F(P). In 
this way they are able to solve equations (2.1), {2.2) and (2.3) above. 



www.manaraa.com

31 

There is one type of equation for which this approach docs not work, namely, 

P ~ A U {P ~ G(P)) {2.4) 

in which P occurs at the left side of a function space arrow, and G{P) is an expression 
possibly containing P. This is due to the fact that it is not always the case that P,. ~ 
F(P,.). 

In [AR89b] the above approach is generalized in order to overcome this problem. The 
family of complete metric spaces is made into a category C by providing some additional 
structure. (For an extensive introduction to category theory we refer the reader to 
[Mac71].) Then the expression F is interpreted as a functor F : C -+ C which is (in 
a sense) contracting. It is proved that a,generalizcd version of Banach's theorem (see 
below) holds, i.e., that contracting functors have a fixed point (up to isometry). Such a 
fixed point, satisfying P ~ F(P), is a solution of the domain equation. 

We shall now give a quick overview of these results, omitting many details and all 
proofs. For a full treatment we refer the reader to [AR89b]. We start by listing the basic 
definitions and facts of metric topology that we shall need. We assume the following 
notions to be known {the reader might consult [Dug66] or [Eng89]): metric space, ultra
metric space, complete (ultra-)metric space, continuous function, closed set, compact set. 
In our definition the distance between two elements of a metric space is always between 
0 and 1, inclusive. 

An arbitrary set A can be supplied with a metric dA, called the discrete metric, 
defined by 

{ 0 if:c=y 
dA(:c,y) = 1 if X f. y 

Now (A, dA) is a metric space (it is even an ultra-metric space). 
Let (1\11, d1) and (1112, d2) be two complete metric spaces. A function f : M 1 -+ lvf2 is 
called non-expansive if for all :c, y E M1 

A function f : 1l11 -+ M2 is called contracting (or a contraction) if there exists an e<1 
such that for all x, y E M 1 

(Non-expansive functions and contractions are always continuous.) 
The following fact is known as Banach's theorem: Let (M,d) be a complete metric 

space and f : lvf -+ .U a contraction. Then f has a unique fixed point, that is, there 
exists a unique :c EM such that f(x) = x. This x can be obtained by taking the limit 
of f"(xo) for any arbitrary Xo EM {where f 0(y) = y and r+1(y) = f(f"(y))). 

We call M1 and M2 isometric {notation: M 1 ~ M2) if there exists a bijective 
mapping f: 1l11 -+ M2 such that for all x, y E M1 

d2(f(x),j(y)) = dt(:c,y) 

Definition 2.1 Let (M, d), (.MI. d1), ... , (M,., d,.) be metric spaces. 



www.manaraa.com

32 

1. We define a metric dF on the set M 1 --. ~M2 of all functions from Mt to :M2 as 
follows: For every ft , h E llf1 --. llf2 we put 

This supremum always exists since the values taken by our metrics are always 
between 0 and 1. 

2. With .M1 0 · · · 0 Mn we denote the disjoint union of M1, ... ,Mn, which can be 
defined as {1} x M 1 U · · · U {n} x !vln. We define a metric du on M 1 0 · · · 0 lvln as 
follows: For every :r,y E Mt 0 · · · 0 Mn, 

d ( )-{ di(:r,y) if:r,yE{j}xlvlj,l~j~n 
u :r' y - 1 otherwise 

If no confusion is possible we often write U rather than 0. 

3. \Ve define a metric dp on the Cartesian product Jvf1 X • • • X J.Un by the following 
clause: For every (:rt, ... , Xn), (Yl, ... , Yn) E Jvfi X • • • X Mn, 

4. Let 'Pcz(M) = {X : X s;;; M 1\ X is closed}. We define a metric dn on 'Pcz(M), 
called the Hausdorff distance, as follows: For every X, Y E 'Pc,(M), 

du(X, Y) = max{sup{d(x, Y)}, sup{d(y,X)}} 
zEX yEY 

where d(x, Z) = inf.,ez{d(x, z)} for every Z 5; M, x EM. (We use the convention 
that sup 0 = 0 and inf 0 = 1.) The spaces 'Pco(M) ={X s;;; M /\X is compact} and 
'Pnc(kf) ={X~ JI.11\X is non-empty and compact} are supplied with a metric by 
taking the restriction of d 11 • 

5. For any real number € with O<f ~ 1 we define 

id,((M,d)) = (M,d') 

where d'(x,y) = f ·d(x,y), for every x andy in .M. 

Proposition 2.2 Let (M,d), (Mt,dl), ... ,(Mn,dn), dF, du, dp and du be as in Defi
nition 2.1 and suppose that (JvJ, d), (Mt, dt), ... , (Mn, dn) are complete. Then 

(Mt __. M2,dF) 

(M1 0 ·· · 0 Mn,du) 
(Mt X .. • X Mn,dp) 

('Pcz(M), dll ), ('Pco(M), du ), ('Pnc(M), du) 
id< ( (M, d)) 

(a} 
(b) 

(c) 
(d) 

(e) 



www.manaraa.com

33 

are complete metric spaces. If (Jf, d) and (M;, d;) arc all ultra-metric spaces, then so are 
these composed spaces. (Strictly speaking, for the completeness of lvf1 -. lvf2 we do not 
need the completeness of M1. The same holds for the ultra-metric property.) 

Whenever in the sequel we write M1 -. M2, M1 0 · · · 0 Mn, M1 X • • • X Mn, Pc~(M), 
Pca(M), Pnc(.M), or id,(M), we mean the metric space with the metric defined above. 

The proofs of Proposition 2(a), (b), (c), and (c) are straightforward. Part (d) is 
more complex. It can be proved with the help of the following characterization of the 
completeness of (Pc~(M), du ). 

Proposition 2.3 Let (Pet (M), du) be as in Definition 1. Let (X;); be a Cauchy sequence 
in Pc~(M). We have 

.lim X;= {Jim x; : x; EX;, (x;); a Cauchy sequence in M} 
2-+00 a-oo 

Proofs ofPropositions 2.2(d) and 2.3 can be found in, for instance, [Dug66] and [Eng89]. 
The proofs arc also repeated in [BZ82]. The completeness of'Pca(lll) is proved in [Kur56]. 

Vl'e proceed by introducing a category of complete metric spaces and some basic 
definitions, after which a categorical fixed point theorem will be formulated. 

Definition 2.4 Let C denote the category that has complete metric spaces for its objects. 
The arrows t in C are defined as follows: Let Jv£1, lvh be complete metric spaces. Then 
lvf1 -.' M2 denotes a pair of maps lvft ;::t~ M2, satisfying the following properties: 

1. i is an isometric embedding, 

2. j is non-expansive, 

3. j '? i = idM1 • 

(We sometimes write [i,j] for t.) Composition of the arrows is defined in the obvious 
way. 

We can consider lvft as an approximation to lvf2: In a sense, the set llf2 contains more 
information than lvft, because lift can be isometrically embedded into M2 • Elements in 
lvf2 are approximated by elements in llf1• For an element m 2 E 1112 its (best) approx
imation in M1 is given by j(m2). Clause 3 states that M2 is a consistent extension of 
M1. 

Definition 2.5 For every arrow M1 -.' .M2 in C with t = [i,j] we define 

O(t) = dM2 _,M1 (i oj,idAh) ( = sup {dM2 (i oj(rn2),m2)}) 
m,EM2 

This number can be regarded as a measure of the quality with which M 2 is approximated 
by M1: the smaller 6(t), the better M2 is approximated by M1. 

As a category-theoretic equivalent of a contracting function on a metric space, we 
have the following notion of a contracting functor on C. 

Definition 2.6 \Vc call a functor F : C -. C contracting whenever the following holds: 
There exists an e, with 0 ~ e<l, such that, for all D-.' E E C, 

6(F(t)) ~ e · 8(t) 



www.manaraa.com

34 

We can now state the analogue of Banach's theorem. (Cf. [Mac71] for the notions of 
convergence and direct limit: 

Theorem 2.7 Let F be a contracting functor F: C ___. C and let Do _.,o F(Do) E C. 
Let the sequence (Dn, Ln)n be defined by Dn+l = F(Dn) and Ln+t = F(tn) for all n ~ 0. 
This sequence is converging, so it has a direct limit (D, bn)n)• We have D !?!! F(D). 
Let us now indicate how this theorem can be used to solve Equations (2.1) to (2.4) above. 
We define 

= AU id112(B x P) 

= AU 'Pco(B X idl/2(P)) 

= AU (B ___. idt/2(P)) 

(2.5} 
(2.6} 
(2.7) 

If the expression G(P) in Equation (2.4) is, for example, equal to P, then we define F4 
by 

(2.8) 

Note that the definitions of these functors specify, for each metric space (P,dp), the 
metric on F(P) implicitly (see Definition 2.1). 

Now it is easily verified that F1, F2, Fa, and F4 are contracting functors on C. 
Intuitively, this is a consequence of the fact that in the definitions above each occurrence 
of Pis preceded by a factor id112 • Thus these functors have a fixed point, according to 
Theorem 2.7, which is a solution for the corresponding equation. (We often omit the 
factor id112 in the reflexive domain equations, assuming that the reader will be able to 
fill in the details.) 

In [AR89b] it is shown that functors like F1 to F4 have unique fixed points (up to 
isometry). The results above hold for complete ultra-metric spaces too, which can be 
easily verified. 

3 Parallel Processes 

3.1 Introduction 

We study the language Cpp of 'parallel processes', with particular attention for the 
programming notions of process creation and rendez-vous. In Section 4, we shall extend 
Cpp to the language Cpa of 'parallel objects', the essence of the extension being the 

ability to name and refer to processes. 
In Cpp we firstly find several conventional and simple programming constructs: 

assignments, sequential composition, conditionals, and the while statement. Also, a 
simple block construct introducing initialized (for convenience) local variables is included. 
Moreover, simple expressions (terms over some signature) appear. Three more advanced 
notions are furthermore considered: 

- Process creation: Assuming that already n(~ 0) processes arc active (i.e. executing 
in parallel), the effect of the statement new(s) will be to create ann+ 1-st process, 
with body s, to be executed in parallel to the n already active processes. (Note 



www.manaraa.com

35 

that no other form of parallel execution, in particular no form of syntactic 'II', is 
present in £,.,. .) 

- Rendez-vous: This appears in the following 'skeleton' version: \Ve introduce so 
called methods m, m (with rrt = m}, together with an accompanying declaration d 
which assigns to each m a statement d(m) = s. Synchronized execution of m and m 
in two parallel processes results firstly in the execution of s, and, thereafter, in the 
resumption (in parallel) of the two remaining statements ('continuations') following 
m and m, respectively. (The effect of mlm = s(= d(m)) should be compared with 
similar rules clc = T (in CCS} or alb = c (in ACP), the essential difference being 
that, contrary to s, r or care atomic.) In Section 4, we shall dress up this skeleton 
with some further notions: transmitting parameters, returning a resulting value, 
and identifying, by the sender, of the receiving component. 

- Expressions with side-effects: We introduce here a simple version of side-effects, in 
order to motivate the mechanism of (syntactic and semantic) expression continua
tions. Again, a more interesting setting will be provided in Section 4. 

3.2 Syntax 

Throughout our paper, we use a self-explanatory BNF-like notation for syntactic defini
tions. We start with the introduction of four basic sets 

• (:~: E)!Var, a countable set of individual variables 

• (a,/3 E) Cons, a countable set of constants 

• (rp E)Func , a countable set of function symbols (each with some arity ~ 1) 

• (m E).M, a finite set of method names. On Af, a mapping-;: M -t M, satisfying 
m = m, is given. (Since it is customary to consider only finite systems of declara
tions, d's domain lvf is assumed to be finite. Mathematically, there are no obstacles 
to dealing l\ith infinite .M.) 

A program 1r = (d, s) in the language £,.., consists of .a declaration d in Decl,.,. and a 
statement s in Stat,.,.. A declaration is a mapping from M to Stat,.,.. Statements are 
conventional (see above), or have the form of the process creation new(8) or of a method 
call m. Expressions (in E:z;p,.,.) are conventional, or exhibit a side-effect, in the form of 
(8i e): an expression which first executes the statement 8 1 and then executes e. 

Definition 3.1 (syntax for £,.,. ). 
a. 8( E Stat,.,.) .. - :~: := e I m I {s1; s2 I if e then 81 else 82 fi I 

while e do sod I new(s) I begin varx := e; send 

b. e(E E:~:p,.,.) ::= a I xI rp(i!) I (s;e) 

c. (d E)Decl,.,. = .H --. Stat,.,. 

d. 1r(E £,.,.) .. - (d,s) 



www.manaraa.com

36 

3.3 Operational semantics 

The operational semantics for Cpp is derived from a transition system Tpp . Transitions 
are built using so-called syntactic continuations, which we usc in two varieties: 

• (r E)SySCo , the syntactic statement continuations 

• (g E)SyECo , the syntactic expression continuations. 

The design of these two classes has been motivated partly by our wish to obtain a smooth 
operational semantics for Cpp , partly by the desire to obtain a tractable link with the 
semantic continuations which play a key role in the dcnotational semantics. 

Definition 3.2 (syntactic continuations) Let E be a new symbol, standing for 'termi
nation'. 

a. r(E SySCo) ::= E I (s: r) I (e: g) I (rl! r2) I r<o:f:c> I 
if {3 then r1 else r2 fi I g(o:) 

b. g( E SyECo ) ::= >.o:.r 

The continuations ( s : r) and ( e : g) are of a sequential nature. They should be read as 
'executes and continue with r', or 'evaluate e, pass its value tog, and continue with the 
result', respectively. Next, (r1, r2) denotes (interleaved) parallel execution of r1 and r2. 
The if- then- else- fi construct and g(o:) should be clear. The construct r<o:fx> 
will play a role in elaborating an assignment. Syntactic expression continuations were 
first used in this way in [AB88]. 

For the definition of Tpp , we need the following' basic definitions: 

Definition 3.3 

a. Let (o:,{3 E)V = Z U { tt,ff} U •· be the set of basic values. Vis assumed to include 
at least the integers and the truth values tt, ff. Other basic values may be added, 
if desired. Y.le find it convenient to use the same variables to range over V and over 
the set of constants C. 

b. Let, for if> a function symbol with arity k, ~be some clement of yk- V. 

c. Let (u E)E = IVar - ll denote the set of states. 

d. Let the auxiliary set (r E)T be defined as T = E U M. 

e. Let r[o:/{3] denote the result of syntactically substituting the constant o: for the 
constant {3 in r. 

f. Let u[o:/x] denote the state which satisfies 

{ o: ifx::y 
u[o:fx](y) = u(y) if :c ;f: y 

Vve arc now ready for 

Definition 3.4 (transitions and transition systems) 



www.manaraa.com

37 

a. A transition is a five-tuple 
<r11u,d, r2, r> 

in SySCo x E x Declpp x SySCo x T. For (3.1) we usually write 

b. A transition system T is a finite set of rules of the form 

<rt,Ut>-td <r~ 1 Tt>, ··· ,<rn,Un>-td <r~,Tn> 
<r, u>-td <r', r> 

(3.1) 

for some n ~ 0. Such a rule should be read as: if we can establish (using T) that 
the n premises are satisfied, we may infer that the conclusion holds. If n = 0, we 
have an axiom, written simply as <r,u>-d <r',r>. 

c. Rules which share the same (list of) premise(s) may be combined into one rule 
(with more than one consequence). 

d. In a transition <r,u>-td <r',r> we shall usually suppress mentioning the d. No 
confusion will arise, since transitions are always to be taken with respect to one 
fixed d. 

e. A rule of the form 
<rt 1 u>--+d <r, r> 
<r2,u>--+d <r,r> 

will be abbreviated to <r2, u>--+o <r1, u> or even to r2 --+o r1. (Read: in order 
to execute r2 , find out how to execute r 1• The '0' expresses that this requires zero 
'steps'.) 

£. Each transition system T determines a relation n which is defined as the least 
relation (here subset of SySCo X E X Declpp X SySCo X T) satisfying the given 
axioms and rules. 

Next, we give the definition of the transition system Tpp which will be used to obtain 
the operational semantics 0 for Cpp • 

Definition 3.5 (transition system Tpp for Cpp ) The rules in Tpp are organized in 
groups, for easier structuring. This grouping is not part of the formal system itself. 

s-ru.les 

• zero-step 

(:c :=e) : r --+o e : >.Ot.(r<Ot/:c>) 
(sti82):r -to s1:(s2:r) 

if e then 81 else 82 fi : r --+o e : >.{3.if {3 then 81 : r else 82 : r fi 
new(8): r --+o (8: E,r) 

<begin var :c := e; 8 end: r,u> --+o <(:c := e;8): r<u(:c)f:c>,u> 



www.manaraa.com

38 

• axioms 

<m: r,a> --+ <r,m> 
<while e do sod : r, a> --+ 

<e : .>.p.if j3 then ( s; while e do sod) : r else r fi, a> 

e-ru.les 

• zero-step 

r[a/ ,13] a : .>.p.r --+o 

c/J(el! ··, e,.) : g --+o 
(s; e) : g --+o 

e1: .>.,l3I-{e2: • • (e,.: .>.,l3k.{fi(,l31! ··,(3,.): g)··) 

s : (e: g) 

• axioms 

r-rules 

• zero-step 

• axioms 

<x: g,a>--+ <a(x): g,a> 

if tt then r1 else r2 fi --+o r1 

if If then r1 else r2 fi --+o r2 

<r<a/x>,a>--+ <r,a[ajx]> 

• rules for parallel execution 

Explanation 

<r, a>-+ <r', r> 
<(r,r),a>--+ <(r',f),r> 
<(f,r),a>--+ <(f,r'),r> 

<rt,a>--+ <r',m>,<r2,a>--+ <r",m> 
( ) ( , ") , d(m) = s < Tl, T2 , a>-+ <s : T 1 T 1 a> 

(interleaving) 

(rendez-vous) 

{assignment): evaluating x := e amounts to first evaluating e, and transmitting the 

result a to the continuation which will eventually arrange that x is set to a. 

(new): the body s is supplied with the termination continuation E, and set in parallel 

tor (which itself may consist of several continuations in parallel) 



www.manaraa.com

39 

(begin •• end): evaluate :x := e; s, and next reset :x to the value (u(x)) it had upon 
block entrance 

(m): the method m is stored, available for subsequent use in in the rendez-vous rule 

(t/>(ej): the arguments et, •• ,e1c are evaluated from left to right, yielding fJt,-·,fJki the 
interpretation ~ of t/> is then applied to these {J11 •• , fJ1c 

(r<a./x> ): this handles the assignment of a. to x, resulting in u[a./x] 

(interleaving): the usual interleaving rule for parallel composition 

(rendez-vous): in case r 1 and r 2 can make an m and m-step, respectively, the rendez
vous succeeds, sis executed, and the execution continues with that of (r1 , r"). (See 
also the remark at the end of Section 3 for a possible refinement of the rule.) 

We next discuss how to assemble all successive steps prescribed by 7pp for some program 
(d, s) into one result O(d,s). Crucial here is the definition of the range P of the mapping 
0: £pp -. P. We shall determine Pas solution of a domain equation (in the category 
of complete metric spaces, cf. Section 2), viz. 

P = {Po} U (I:_. Pco((I: U M) x P)) (3.2) 

Equation {3.2) may be understood as follows: Each element pin P (to be called a process 
as well, but now a mathematical, and not a programming, entity) is either the nil-process 
po, or it is a function in I:-. Pco(·) which, when supplied with a state u as argument, 
yields an element X of 'Pea(·), i.e. a compact subset of (I:UM) X P. Thus, the elements 
of p(u) =X are of the form <u',p'> or <m,p1>. The first possibility delivers a next 
state u1 , together with a so-called resumption p1• This resumption tells us what to do 
next: In the operational or denotational setting this will be determined by the syntactic 
or semantic continuation, respectively. A second possibility for an element X is a pair 
<m,p1>; herem results from a method call, and p1 is as before. The rendez-vous rule 
resolves synchronized method calls. However, one-sided method calls which have not 
synchronized with their partner will leave such a pair <m,p1> as a trace in the result. 

The domain Pis used in the next definition which introduces (the intermediate) Od 
as fixed point of a contracting higher-order mapping (of meaning functions to meaning 
functions) «Pd. To understand the structure of the definition, the reader should look at 
Lemma 3.7.c. This is the result in the form which is most intuitive, and to justify it we 
employ the «Pd-mapping. 

Definition 3.6 Let F E SySCo -. P. 

a. We define «Pd : (SySCo -. P) -. (SySCo-. P) by putting 

«Pd(F)(E) = Po 
«Pd(F)(r) = ..\u.{<r,F(r')>l<r,u>-.<r',r>}, forr#;E 

where -. is determined by 7pp . 



www.manaraa.com

40 

We have 

Lemma 3.7 

a. q>d(F)(r) E P for each F, r. 

b. q>d is contracting in F. 

c. Od{E) = Po 
Od(r) = AO'.{<r,Od(r')> I <r,O'>-+ <r',r>}, for r -:f. E 

Proof 

a. Follows from the fact that 'Tpp is finitely branching, i.e. for each r , 0', we have 

l{(r', r) I <r,O'>-+ <r', r> }l<oo. 

b. Clear by the definition of <I?d(F), in particular by the <r, .. >-step in its definition. 

c. Immediate by the definitions of <I?d and Od. D 

Remark The domain P has rather more structure than is usual for an operational seman

tics. We use the same P for our denotational definitions in the next subsection; the proof 

that 0 = V {in Section 5) will considerably profit from it. On the other hand, it is not 

difficult to use the same Tpp to obtain a much simpler {i.e., less structured) operational 

meaning, say 0* : .Cpp -+ P*. Let 6 be a new symbol (standing for deadlock), and let 

:Ef = :E* U :Ew U :E* · { 6}, i.e., the set of all finite sequences over :E, possibly postfixed by 

6, and all infinite sequences over :E. We put 

and define 0~ to satisfy 

Od(E) 

{ 
AO'.U{O''.O;[(r')(D'1) I <r,O'>-+ <r',D''>} 

Od(r) = if the above set{·} f= 0 
{ 6} otherwise 

for r f= E. 

Od(r) exhibits three essential differences with Od(r). Firstly, it has lost the branching 

structure of the latter. Next, steps <r, 0'>-+ <r', m> do not contribute to the result 

{whence the possibillity that the set{·} might be empty). Thirdly, the resumptions have 

disappeared (instead of <D'' ,p'> we now simply employ p'(D'')). As a consequence, Od is 

not compositional. In particular, no relationship of the form O;[(rb r2 ) = Od(r!) II O;[(r2 ) 

holds. 

3.4 Denotational semantics 

We shall define the denotational semantics V for .Cpp in terms of the auxiliary semantic 

mappings Td and £d: 
Td : Statpp-+ SeSCo-+ P 
£d: ExpPP-+ SeECo-+ P 



www.manaraa.com

41 

Here (p E)P is as in Section 3.3, SeSCo =dt Pis the set of semantic statement continua
tions, and SeECo =df (f E)V-+ Pis the set of semantic expression continuations. The 
definition of the semantic parallel composition operator 'II' will be supplied in Definition 
3.9. 

Definition 3.8 ( denotational semantics for Cpp ) 

a. Id(x := e)(p) = £d(e)(>.a.>.u.{ <u[afx),p>}) 
Id(m)(p) = >.u.{ <m,p>} 

Id(s1; s2)(p) = Id(s1)(Id(s2)(p)) 
Id(if e then s1 else s2 fi)(p) = £d(e)(>.,B.if ,8 then Id(st)(p) else Id(s2)(p) fi) 
Id(while e do 81 od)(p) = 

>.u.{ <u, £d(e)(>.,8.if ,8 then Id(sl)(Id(while e do 81 od)(p )) else p fi)} 
Id(new(s1))(p) = Id(sl)(po) II p 

Id(begin varx := e;s1 end}(p) 
= >.u.Id(x := e; st)(M.{ <iT[u(x)fx],p>} )(u) 

b. £d(a)(f) = f(a) 
£d(x)(f) = >.u.{<u,f(u(x))>} 

£d(,P(el! .. , ek))(f) 
= £d(e1)(>.,81. · · · £d(ek)(>.f3k.f(¢(fJ1! .. ,,Bk))) · · ·) 

£d(s;e)(f) = Id(s)(£d(e)(f)) 

Some explanations may help. 

• s = x := e: e is evaluated, the result is passed on to the expression continuation 
f = >.a. • · ·1 and eventually a change of state- setting x to a- is performed, and 
f then continues (resumes) with p 

• s = m: the pair <m,p> will play a role in the definition of II· 
• s =while e do s1 od: A (silent} step is performed, leaving u unchanged, and then 

e is evaluated and the usual conditional for the while statement is given. Note that 
Id(while ... od) returns on the right-hand side. To turn this into a well-defined 
formula, we should in fact define Id as a (unique) fixed point of some higher-order 
contraction lit d. (Details of a related case can oc found in [BV91).) 

• s = new(s1): Id(s1 ) is supplied with the nil-continuation p0 , and executed in 
parallel with the already present continuation p. Note that Id uses II; below, we 
shall see that II uses Id. A comment on this follows later. 

• s = begin ... end: this amounts to executing the assignment and then the state
ment 811 and after that resetting x to the value u(x) it had upon entrance of the 
block. Thus, it mimicks the operational rule. 

• e = x: As in Tpp , a silent step is performed, and then the value u(x) is passed on 
to the expression continuation f. 

We proceed with the definition of the parallel composition operator. Let X, Y range 
over Pco(T X P). 

Definition 3.9 Let P11P2 E P. 



www.manaraa.com

42 

a. Pl II P2 = ..\u.({pl (u) lL P2) U CP2(u) lL pt) U {p1 (u) Ia P2(u)) 

b. X ll_p = {<r,p'll p> I <r,p>E X} 

c. X Ia Y = {<u,Id(s)(p'llp")> I <m,p'>E X,<m,p">E Y and d(m) = s} 

In executing PI II P2 for argument u, one either makes a simple step from the left- or 
right operand (this yields interleaved execution), or the two outcomes X= Pl(u) and 
Y = P2(u) communicate (in X Ia Y) by a rendez-vous of the two steps <m,p'> in X and 
<m,p"> in Y. This leads to the evaluation of Id(s), for s = d(m), with continuation 
p1 II p11 • The circularity in this definition, viz. II defined in terms of (11_ and Ia defined 

in terms of) II and Id, and Id defined in terms of II, may be circumvented by using a 
simultaneous higher-order mapping (in two arguments), and defining <Id, II> as unique 
fixed point of this mapping. Considerable detail about this approach is supplied in 
[BV91]; therefore, we omit this here. 

Finally, we put 

Definition 3.10 'D(d,s) = Id(s){po). 
In Section 5 we shall prove 

First Main Theorem For each 1r in Cpp , 0('11") = V(1r). 

Remark Though the rendez-vous rule (and the corresponding denotational definitions) 
yield precisely all successful computations, one might argue that it induces too many 
deadlock possibilities: Consider, e.g., the situation that d(m) = m1, and that r1 = (m: 
E,m': E), r2 = m: E. Since <rt,u>-. <(E,m': E),m> and <r2,u>-. <E,m>, we 
may infer that <(r1,r2),u>-t <m': (E,rn': E),u>. As a consequence, in the result 
<m' : (E, m' :E), u>, a rendez-vous between m 1 and m' is no longer possible (since m"s 
partner m' is not accessible in a parallel component, but has been 'hidden' to occur after 
m'). Thus, an extra deadlock possibility has arisen which should have been avoided. 
A way out of this problem is the introduction (taken from [ABKR89]) of a separation 
between so-called dependent and independent resumptions. This works as follows: Right
hand sides of transitions are now of the form <r', u'> or <r', <r", m> >. Here r1 is the 
independent resumption which may continue independently of the success of the rendez
vous involving m, and r" is the dependent resumption which may resume only after the 
rendez-vous form has taken place. The induced modifications in Tpp are 

• <m :r,u>-. <E,<r,m>> 

• (revised rendez-vous rule) 

<r1,u>-t <r~,<r~',m>> <r2,u>-t <r~,<r~,m>> 
<(rl,r2),u>-. <(s: (rq,rq),(rLr~)),u> d(m) = s 

Also, in the interleaving rule we now take T E :E U (SySCo x M). As a consequence, 
only the independent resumption (r') in <r', <r", m> > is involved in interleaving steps. 
Nc>.:t, in the definition of P we replace the M X P term by M X P X P. Finally, we 
change the definition of clid(F)(r), for r =/: E, to read 

clid(F)(r) = ..\u. {<u',F(r')> I <r,u>-t <r',u'>} U 
{<m,F(r"),F(r')> I <r,u>-t <r',<r",m>>}, 



www.manaraa.com

43 

with '~'with respect to the amended Tpp • 
As to the denotational definitions, we impose the following changes: 

• change in P as just given 

• change in definition of Id: Id(m)(p) = >.u{ <m,p,po>} 

• change in definition of II: 

X lL p = { <u,p' II p> I <u,p'>E X} U { <m,p",p' II p> I <m,p",p'>E X} 
X Ia Y = { <u,Id(s)(pf II p~) II p~ II p~> I <m,pf,p~>E X, <m,p~,p~>E Y,d(m) = s} 

\Ve leave to the reader to work out the required modifications in the equivalence proof 
of Section 5. 

4 Parallel objects 

4.1 Introduction 
The language .Cpo extends .Cpp with a mechanism to name and refer to processes. 
Such a named process will from now on be called an object. It includes an 'active' part -
comparable to the sin the new(s) construct of Section 3- and a declarative part. In the 
declarative part we find the information on how a method name m is to be supplied with 
a method body p., here taken in the form of a parametrized expression >.x.e. Individual 
variables may now refer not only to values such as integers or truth values (together 
called V in Section 3), but as well to (the names of) objects. To be precise we replace V 
by 

(a.,fJ,/ E)Obj = SObj U ObjN 

where SObj , the set of .standard objects, takes over the role of V, and ObjN is the set 
of object names. Objects arc created as instances of a class: the relevant information 
about a class cis contained in the declaration d(c). This is a pair <d(c)1, d(c)2>, where 
d(ch E M ~ Meth tells us how each method name m is provided with a method 
JL E Meth as its body (i.e., d(c)I(m) = p.), and d(ch E Statpo is the statement (the 
'process' of Section 3) execution of which is initiated (in parallel to the already existing 
objects) at the moment new(c) is executed. In other words, each execution of new(c) 
results in the creation of one more object as instance of class c, and all these objects arc 
executing the (same) body s (determined by c's declaration) in parallel. The execution 
of new(c) furthermore involves the creation of a new name, say a.', which is used to 
identify the newly created object (instance of c). Normally, this name will be stored in 
some individual variable (occurring in the creating object), for later reference. 

The snapshot in Figure 1 of a creating a. and created a.' may help (see next page). 
This picture assumes that d(c)I (m') = p.', ... , and that d(ch = s'. Details on how the 
new name a.' is to be determined follow in Section 4.3. The picture also reflects that 
individual variables (from now on rather call~rl instance variables) arc 'private' to the 
objects. Private variables are not accessible from other objects. In fact, the only way in 
which objects may interact is by the sending and receiving of messages. This takes place 
by an extended version of the rend<!Z-vous mechanism. Instead of the earlier synchronized 
execution of m and fh occurring in two parallel processes (leading to the execution of 



www.manaraa.com

44 

a. reference as result of (1) . a.' 1 object created by new(c) 
·. .._______ ... ····· ·· ... 

dec/. part 

body 

m<:;=;i-f:; .•. .· 
x·~Y~ ... 

s: 

~.·· ·. . . 

m' <=Jl' 1 ••• 

' ' X ,y' ... 

s': ... 

x :,;,(!) new(c) 

Figure 1: Two Objects 

dec/. part 

body 

parallel processes (leading to the execution of the body s = d(m) associated with m), we 
now have the following concept, execution of which is described in a number of steps: 

1. a statement answer(m), when occurring in the body of an object (named, say, by 
object name a) indicates willingness to execute the method p. (associated with the 
method name m in the declaration of the class of which a is an instance) upon 
request; 

2. a so-called send-expression e!m(e'), when occurring in the body of an object (named, 
say, by object name {J) is executed as follows: 

• the value of the expression e is determined, resulting in the object /i next 

• the values of the expressions e1, .. , ek are determined from left to right, result
ing in /b .. ,[ki 

• a request for execution of the method associated with method name m by the 
object name 1 is issued 

[Step 2 takes place in parallel to Step 1 ]; 

3. in case the issue of this request synchronizes with the execution of the answer 
statement answer(m) as meant under 1 (implying that a=/), and assuming that 
p. = >.x.e', next 

4. the values /l, .. 1 [k are assigned to the (formal parameters, i.e., the) instance vari
ables x1, .. , xk, the expression e' is evaluated, the Xi are reset to their earlier values 
(which they had just before the a.'lsignment), and the result a is returned to that 
position in object {J where the value of e!m(e) is required; 

5. execution is resumed with the parallel execution (in a) of the statement following 
answer(m) and (in {J) with the construct following e!m(e). 



www.manaraa.com

45 

All through the execution of 1. to 5., further parallel objects (different from a: or [3) will 
continue independently with their own activities. The only 'waiting' involved is (in a:) 
for completing the evaluation of the method JL , and (in [3) for the returning of the value 
a. 

This brief sketch of the informal semantic of Lpo should suffice here. More extensive 
explanations arc contained in various studies on POOL semantics ([ABKR86, ABKRB9, 
Rut90b, AR89a, AR90]. We have aimed at including, in .Cpo , of all essential features of 
POOL. Concepts not treated arc 

• temporary variables (in addition to instance variables) and the object nil; 

• the conditional answer statement, and an answer statement of the form 
answer(m1, .. , mk), k ~ 1; 

• the method call (not as part of a rendez-vous); 

• a few special cases of expressions; 

• (a full treatment of) the standard objects. 

Apart from the last item, the missing features can be dealt with without undue effort, 
by small extensions of the present definitions. Standard objects are more difficult since 
they are not, by nature, compact (cf. [Rut90b] for more information on this). 

4.2 Syntax 

The syntax for .Cpo may be inferred from that of .Cpp , as amended in the light of the 
extensions outlined above. Note that the new- and block constructs have been moved 
from the class of statements to that of expressions. 
The following basic sets are used 

• (x E)IVar, a countable set of (individual or) instance variables 

• (m E)M, a finite set of method names 

• (o:,f3,'Y E)SObj, the syntactic set of standard objects (to be identified later with the 
semantic set of standard objects including the integers, truth values, and maybe 
more) 

• ( c E) Class , a finite alphabet of class names. 

We have no more use for the set Fu.nc . Finiteness of M and Class is, as before, postu
lated in order to avoid declarations with infinite domain. 

Definition 4.1 (syntax for Lpo ) 

a. s(E Stat,o) .. - x := e I answer(m I (s1; s2) I if e then s1 else s2 fi I 
while e do sod 

a: I xI e!m(e') I new( c) I (s; e) I begin var i := e;e end 

c. (d E)Decl710 = Class --t ((M --t Meth) X Staf.p0 ) 

d. p.( E Meth ) .. - >.i.e 



www.manaraa.com

46 

e. 1r(E Lpo) (d, new( c)) 

In clause e., we see that the execution of a program starts with the creating of a first 
object as instance of some (initial) class c. 

4.3 Operational semantics 

As before, we base the operational semantics on a transition system, now named 'Ji,o . 
This will involve a somewhat extended notion of state, as well as an adapted notion of 
a, possibly labeled, syntactic continuation. 

We begin with the introduction of the sets of objects and states. 

Definition 4.2 

a. (a,fj,-y E)Obj = SObj U ObjN 
Here SObj is the set of standard objects, and ObjN is a (not further specified) set 
of object names. 

b. (a E):E = (IVar - Obj - Obj) x Pfin ( Obj ). 

c. The functions new : Pfin (Obi) X Class - ObjN and class : ObjN - Class will 
be introduced below. 

d. The notation a[.Bjx,a] abbreviates <al[a1 (x)[.B/a]/x],a2>: a is changed such that 
a[/3/z, a](x)(a) now equals P; elsewhere a is not changed. 

A state is a pair a = <a11a2>· For a given instance variable z and object name a, 
a1(x)(a) tells us the current value of x (in object a). Note that the 'same' x will 
have, in general, a different value a1(z)(a) in some other object a. Furthermore, a2 E 
'Pfin ( Obj) consists of a finite subset of Obj which may be read as the collection of 

all objects currently active. (If one so desires, one may consider some or all of the 
standard objects (for integers, truth values and the like) as already active and supplied 
with suitable standard methods. These issues are dealt with at length in [ABKR89], 
[Rut90b], and are not further treated here.) The function new delivers, for a current set 
of active objects {(E PJin (Obj)) and class c, a new name new({,c) not in{, which 
may be used to name a new instance of class c. The function class determines, for each 
object name a, the class c = class(a) of which a is an instance. 
We proceed with the definition of the various continuations. 

Definition 4.3 

a. (r E)SySCo is the set of syntactic statement continuations given by 

r E I (s: r) I (e: g) I r<a/z> lg(a) I if fjthenr1 elser2 fi I 
<P, m,il>: g. 

b. (g E)SyECo is the set of syntactic expression continuations given by 

g .. - .>.a.r I g<afx> I X 



www.manaraa.com

47 

c. (p E)LSySCo is the set of labeled syntactic statement continuations given by 

p .. - <a,r> I (pl,P2) I a: X I <{3,p> 

d. (x E)LSyECo is the set of labeled syntactic expression continuations given by 

X <a,g> I (x,p) I (p,x) 

Anticipating the denotational semantics, we already mention that each p will correspond 
to some (mathematical) process in P, and each X to some function in Obj _. P. Whereas 
<a, r> should be read as: haver executed by object a, the construct a : X has as intended 
meaning that the object a is passed as argument to (the function which is the meaning 
of) X· The constructe: x (special case of e :g) is normally evaluated by some object, say 
{3. The value of the expression e is determined (with respect to [3); eventually, its value, 
say/, is passed on to x (which itself may be a labeled construct, e.g., <a,g>). The 
construct <{3,p> is auxiliary; the role of {3 is (eventually) no more than to be thrown 
away. 

Below, we shall make extensive use of pairs <p,O'> - to be read as: execute the 
labeled continuation p with state 0' as argument. We adopt the convention that, in such 
a pair, p is always consistent with respect to 0'. This requires, by definition, that all 
a appearing as labels in p are element of 0'2 (the set of currently active object names). 
Here we say that 

• a appears as label in <a,r> or <a,g> 

• if a appears as label in p, Plo P2 or g, then a appears as label in (p1,P2), (p,x), 
(x,p), e: g or <{3,p>. 

A transition is a five-tuple (written in the arrow notation of Section 3) of one of three 
forms 

• <p,O'>-d <p',O''>, 

• <p,O'>-d </, <a,m>>, 

• <p,O'>-d <x,<f3,m,iJ>>. 

The first possibility reflects a 'normal' step, the second results from an answer statement: 
<a, m> indicates that object a is willing to execute the method named by m, and the 
third results from a send expression, asking object f3 to execute m with parameters jJ, 
with a result to be returned, upon completion of the method execution, to X· A transition 
rule has the general form as described in Section 3. Rules of the form 

<pi.O'>-d .. . 
<p2,0'>-d .. . 

with · · · standing for the same pair, will again be abbreviated to <P2, 0'> -o <P1, 0'> 1 

or even to P2 -o Pl· If p2, Pl are of the form <a, r2 >, <a, r1 >, respectively, we further 
simplify the notation to read r2 -o r1. 

We next present 

Definition 4.4 (transition system T,a for Lpo ) 



www.manaraa.com

8-ru.le8 

• zero-step 

48 

(x :=e) : r -+o e : >.o:..(r<o:.fx>) 
(s1; 82): r -+o 81 : (82: r) 

if e then 81 else s2 fi : r -+o e : >.,6.if ,6 then 81 : r else s2 : r fi 

• axioms 

<<o:.,answer(m): r>,cr> --+ <<o:.,r>, <o:.,m>> 
<<o:.,whileedosod,cr> --+ 

<<o:.,e: >.,6.if f3 then 8: while e do sad: r else r fi>,cr> 

e-ru.les 

• zero-step 

o:.: g -+o 
(s;e): g -+o 

e!m(e1, .. , ek) : g ->o 

g(o:.) 
s:(e:g) 
e: >.,6.(el: >.{31-(··· 

ek : >.j3k-( <,6, rn, f31, .. , f3k>: g)···)) 
<<o:., begin var x := e; e end: g -+o 
< <o:., ( (x1 := e 1; .. ; Xk := ek)i e) : g<cr1 (xi)(o:.)f x1 > .. <crl (xk)(o:.)/xk> >, cr> 

• axioms 

<<o:.,x: g>,cr> -> <<o:.,cri(x)(o:.): g>,cr> 
<<o:.,new(c): g>,cr> --+ <(<o:.,/3: g>,<f3,s: E>),cr'> 

where f3 = new(cr2,c), cr1 = <cr1,cr2 U {/3}>, and d(c)2 = s 

r' p, x-ru.les 

• zero-step 

• axioms 

if tt then r1 else r2 fi -+o rl 
if if then r1 else r2 fi -+o r2 

(>.o:..r)(/3) -+o r[,6fo:.] 
g<o:.fx>(/3) ->o g(f3)<o:.fx> 

<o:.,g>(/3) -+o <o:., g(f3)> 
(x, p)(f3) ->o (x(f3)),p) 
(p, x)(f3) ->o (p, x(f3)) 

<f3,p> -to· p 

<<o:., <,6,m,iJ>: g>,cr>-> <<o:.,g>, <{3,m,iJ>> 
<<o:., r</3/x>>,cr>--+ <<o:., r>,cr[/3/x,o:.]> 



www.manaraa.com

• rules for parallel execution 

49 

<p,u>-+ <p',u'> 
<(p,p),u>-+ <(p',p),u1> 
<(p,p),u>-+ <(p,p'),u'> 

(in ted caving) 

and similar rules with <a, rn> replacing u', or with x' replacing p' and <{3, m, /1> 
replacing u' 

(rendez-vous) 

<(Pl, P2), u>-+ <{J, begin var x := [3; e end : (x', p")>, u> 

where d(class(f3)h(m) = >.x.c 

Explanation. Most of the rules should be clear as refinement of those of Tpp . We 
emphasize that (even when no object label a is explicitly written) all calculations take 
place as part of named objects: eventually, all access to variables is through the function 
application u1(x)(a) in the axiom for <<a,x: g>,u>. The answer statement executed 
in a determines a step <a,m>; the send expression e!m(e') evaluates e and e11 .. ,eA: 
from left to right, and makes a step involving the outcome <{J, m, <fJ11 .. ,fJA:>>. The 
new(c) expression determines a new object na:me f3 (on the basis of the current set of 
names u2 and the class name c), and initiates execution of <{J, s : E>, where s, the 
body of class c, is retrieved from d(c)2. In the rendez-vous of Pl> p2, where Pl may make 
a send-step <x, <{J, m,iJ>> and P2 a (corresponding) answer step <p", <{J, m>>, the 
body of the method JL = >.i.e associated with m in the declaration is, after appropriate 
initialization with the parameters /i, executed, and the result is eventually passed back 
to x'. (If desired, one may refine the rendez-vous rule by the introduction of dependent 
and independent resumptions, cf. the remark at the end of Section 3.) 
We next discuss how to usc T,o to determine 0 for Lpo . First, we introduce the 
domain P which serves as range for CJ. Corresponding to the three kinds of right-hand 
sides of a transition (viz. <p',u'>, <p',<o,m>>, <x,<{J,m,P>>), it is natural to 
define P as solution of the equation 

P = {po} U (I:-+ 'Pco(I: X P U 

Obj X M X p u Obj X .M X Obj * X ( Obj -+ P))) 

Using this P, we define 0 as fixed point of a contracting higher order operator cl>d based 
on T,o . Since we now deal with transitions yielding both <p', .. > and <x', .. > results, 
we introduce cl>d as an operator on pairs of meaning functions F = <F11 F2>: 

Definition 4.5 

a. Let F1 E LSySCo -+ P, F2 E LSyECo -+ Obj -+ P, and let C)d have the type 
cl>d : (LSySCo -+ P) x (LSyECo -+ Obj -+ P) -+ 

(LSySCo -+ P) x (LSyECo -+ Obj -+ P), 
where C)d(Fl!F2) =df <F1,F2> is given as 



www.manaraa.com

50 

Ft (p) = p0 if all r occurring in p are equal to E, and otherwise 

Ft(P) = >.u. {<u',Ft(P')> I <p,u>-> <p',u'>} U 
{<<,8,rn>,FI(p')> I <p,u>-> <p',<,8,rn>>} U 
{<<,8,rn,iJ>,F2(X')> I <p,u>-> <x',<,8,m,iJ>>} 

and 

F2(x) = >.a.po if all r occurring in X arc equal to E, and otherwise 

F2(X) = >.a.>.u. {<u',Ft(P')> I <a: x,u>-> <p',u'>} u 
{<<,8,m>,Ft(P')> I <a: x,u>-> <p',<,8,m>>} u 
{<<,8,m,iJ>,F2(X')> I <a:: x,u>-> <x',<,8,rn,iJ>>} 

b. Od = fix(<Pd)t, O(d,new(c)) = Od(<o:,s : E>), where a: = new(0,c), and 
d(ch = s. 

Thus, in order to execute (d,new(c)), the first instance of cis named by a:- obtained 
when the set of active objects is still empty - and execution of the body of this object 
(given in the declaration of c) is initiated. 

4.4 Denotational semantics 

Similar to what we did in Section 3, we define the intermediate denotational mappings 

Id: Statpo-> Obj -> P-> P, 
ed : Exppo -> Obj -> ( Obj -> P) -> P. 

Let f range over Obj -> P. 

Definition 4.6 (dcnotational semantics for .Cpp ) 

• statements 

Id(x := e )(o:)(p) = ed( e )(o:)(>.,B.>.u.{ <u[,8 / x, a],p>}) 
Id(m)(o:)(p) = .-\u.{ <<a:, m>,p>} 

Id(sl; s2)(o:)(p) = Id( sl)(o:)(Id(s2)(a)(p )) 
Id(if e then s1 else s2 fi)(o:)(p) 

= ed(e)(>.,8.if ,8 thenid(st)(o:)(p) elseid(s2)(o:)(p) fi.) 
Id(while c do s od)(o:)(p) = >.u.{ <u,ed(e)(o:)(>.,a. 

if ,8 thenid(s)(o:)(Id(whilec do s od)(o:)(p)) elsepfi)>} 

• expressions 

£d(/3)(o:)(f) = !(,8) 
ed(x )(o:)(f) = ).u .{ <u,f(ul (x )(a:))>} 

£d(s;e)(o:)(f) = Id(s)(o:)(£d(e)(a)(f)) 
ed( e!m( e)) ( 0:) (f) = £ d( e) ( 0: )( ,\,8.(£d( et)( 0: )(,\,8t-( ... 

£d(ek)(a)(,\f3k.,\u.{ < <,8, m, iJ>,j>}) · · ·)))) 
ed(new(c))(o:)(f) = ,\u.{ <u'' /(,8) II Id(s )(/3)(po)>} 

where ,8 = new(u2 ,c), u' = <u1,u2 U {,8}> and d(ch = s 
£d(begin var x := e;e end)(o:)(f) = 
,\u.ed(x := e; e)(o:)(,\,(3,,\a-.{ <a[ul (x )(o:)/xt]• .. [ul (xk)(o:)/xk], !(,8)>} )(u) 



www.manaraa.com

51 

The '11'-operator used in the clause for new(c) is defined in 

Definition 4.7 Let P1,P2 E P, X, Y E Pea(·). We put 

where 

P1 II P2 = >.u.((p1 (u) \1.. P2) U (p2(u) \1.. PI) U (pl (u) lu P2(u))) 

X II p = { <u,p' II p> I <u,p'>E X} U 
{<<o:,m>,p'IIP> I <<o:,m>,p'>E X} U 

{<<{3,m,ff>,f liP> I <</3,m,ff>,f>E X} 

f II P = >.a.(f(a) II P) 

X lu Y = { <u, £d(begin var x := fj; e end)(/3)(! II p') I 
<<{3,m,/1>,f>E X,<{3,m,p'>E Y 
or vice versa, and d( class (/3) h ( m) = >.i.e} 

As in Section 3, the above definitions are circular in that £d depends on the definition 
of II, and II depends on the definition of £d. We again refer to [BV91] for a rigorous 
definition of a comparable problem. (In the present setting, contractivity of the relevant 
higher-order operator follows easily from the <u', ... > step in the clause for £d(new(c)) 
and the <u, ... > step in the clause for X lu Y.) Also, the definition of Id is not well
formed since it is circular in the case of the while statement. This problem as well may 
be dealt with by the familiar argument. 

We are, at last, ready for the final 

Definition 4.8 The denotational meaning V : .Cpo -> P is given by 

V(d,new(c)) = Id(s)(o:)(po), 

where a= new(0, c) and s = d(c)2. 
In Section 5, we shall sketch the proof of the 

Second Main Theorem For each 1r E .Cpa, 0(1r) = V(1r). 

5 Equivalence of 0 and 1J 

We shall provide a detailed presentation of the proof that 0 and V coincide on .Cpp • 

For .Cpa , we shall only outline the main ideas. 
We start with the equivalence proof for .Cpp • We assume the various definitions from 
Section 3; in addition we give several further definitions which will link the syntactic 
continuations r to their denotations involving semantics continuations. 

Definition 5.1 The mappings 

nd : SySCo _. P 
9d : SyECo -> V-> P 

are given as follows 



www.manaraa.com

52 
a. 

'Rd(E) = Po 
'Rd(s: r) = Id(s)('Rd(r}) 
'Rd(e: g) = £d(e)(Qd(g)) 

'Rd(Tl 1 T2) = 'Rd(rt} II 'Rd(r2) 
'Rd(if (3 then r1 else r2 fi) = if (3 then 'Rd(rt) else 'Rd(r2) fi 

'Rd(r<afx>) = ...\u.{ <u[a/:c]l nd(r)>} 
'Rd(g(a)) = 9d(g)(a) 

b. 

gd(...\a.r) = ...\f3.'Rd(r[(3fa]) 1 (3 fresh 

We now state a central lemma relating the transition system 'Tpp and the 'Rd-function: 

Lemma 5.2 If Tt -o T2 then nd(rt) = nd(r2)· 
Proof In all the cases this is immediate by the definitions of Tpp and of 'Rd. 0 

Next, we introduce complexity measures on SySCo and SyECo (and on Statpp, Exppp), 
which will play a role in an inductive argument in the proof of the key theorem below. 

Definition 5.3 The mappings II • llr : SySCo __. N (and analogously II • 1191 II • lis, 
II · lie) are defined by 

a. IIEIIr = 0, lls:rllr = llslls + llrllr, lle:ollr = llelle +Iloilo, ll(r11r2)llr = 
II T1 llr +II r2llr, II r<a/:c> llr = II r llr, II g(a) llr = II 0 llu +II 0! lie, 
II if (3 then r1 else r2 fi llr = max(ll rtllr, II r2llr) + 1. 

b. 11...\a.r 11 9 = II r llr· 

c. II X := e lis = II :c lie + II e lie + 1, II m lis = 1, II s1 j s2lls = II St lis+ II s2lls + 1, 
II if e then s1 else s2 fi lis = II e lie+ (max(ll s1 lis, II s2lls) + 1) + 11 
II while e do sod lis = II e lie+ II s lis + 1, II new(s) lis = II s lis + 11 
II begin var x := e; s end lis = II x := e; s lis + 1. 

d. II 0! lie = II X lie = 1, II 1/J(el, .. , ek) lie = 1 + II e1 lie + · · +II ek lie + 1, II Sj e lie = 
II S lis + II e lie + 1. 

It is not difficult to verify that 

Lemma 5.4 If r1 -o r2 then II r1 llr>ll r2llr· 

Proof By the various definitions. Note, e.g., that II 1/J(ei, .. , ek) lie = 1 + L::7=l II e; lie+ 1, 
but II ~(at, .. , ak) lie = 1, since ~(a1, .. , ak) is an clement of V. 0 

The main step leading to the proof that 0 = V on Cpp now follows. The key idea is 
to show (following a method from [KR90]) that the denotational mapping 'Rd is a fixed 
point of the contracting higher-order operator cl>d which we used earlier to define Od. 
This then implies that 'Rd = Od, from which 0 =Vis immediate. 

Theorem 5.5 ci>d('Rd)(r) = nd(r), for all T E SySCo . 
Proof Induction on II r llr· If r = E, the result is clear. We now discuss a selection of 
subcases for r, leaving the most difficult case that r = (r1 1 r2) to the last. 



www.manaraa.com

• r = (:~: :=e) : rt 

• r = while e do sod : rt 

53 

<Pd(nd)((x :=e): r1) 
= def. <Pd, def. Tpp 

<Prl(nrl)(e: >.o:.rt<o:/:~:>) 
= ind. hyp. 

nd(e : >.o:.rt <afx>) 
= Lemma5.2 

nd((x :=e) : rt). 

<Prl(nd)((st; s2) : rt) 
= def. <Pd, de£. Tpp 

<Pd(nd)(st : (s2 : rt)) 
= ind. hyp. 

nd(St : (s2 : Tt)) 
= Lemma 5.2 

nd({St j s2) : rl) 

<Pd(nd)(while e do sod : rt) 
= def. <Pd, def. Tpp 

Au.{ <u, nd(e : ).{j.if {j then (sj While e do Sod) : Tt else Tt fi)>} 
= de£. nd 

>.u{ <u, Erl(e)(>.{j.if {3 then Irl(s )(Ic~(while e do s od)(nd(rt))) else nc~(rt) fi)>} 
= de£. Ic~ 

Ic~(while e do s od)(nrl(rt)) 
= def. nd 

nc~(while e do 8 od: rt) 

r = (x: g) 
<Pd(nd)(x :g) 

= de£. <Pd, Tpp 
>.u.{ <u, nd(u(x) :g)>} 

= de£. nd 
>.u.{ <u, Ec~(u(x))(Qd(g))>} 

= def. Ed 
>.u.{ <u, Qc~(g)(u(x))>} 

= def. Ed 
Ed(x)(QJ(g)) 

= def. nd 
nd(x: g) 



www.manaraa.com

<.Pd('R.d)( r1, r2)( u) 
= def. <.Pd 

54 

{ <r, 'R.d(f)> I <(rl! r2), u>-+ <f, r>} 
= def. Tpp 

{<r','R.d(r',r2)> I <r1,u>-+ <r',r'>} U 
{<r11 ,'R.a(ri,r")> I <r2,u>-+ <r",r">} U 
{<u,'R.d(s: (r',r"))> I <r1,u>-+ <r',m>,<r2,u>-+ <r",m>,d(m) = s} 

= 
{<r','R.d(r')> I <ri,u>-+ <r',r'>} lL 'R.dh) U 

{<r",'R.d(r")> I <r2,u>-+ <r",r">} lL 'R.d(ri) U 

{ <u,Ia(s)('R.d(r') II 'R.d(r"))> I <rl!u>-+ <r',m>,<r2,u>-+ <r",in>,d(m) = s} 
= see below for (*) 

<.Pa('R.d)(rl)(u) lL 'R.a(r2) U <.Pa('R.d)(r2)(u) lL 'R.a(ri) U 

(*)<.Pd('R.d)(rl)(u) lu <I>d('R.d)(r2)(u) 
= ind. hyp. 

'R.a(rl)(u) lL 'R.u(r2) U 'R.d(r2)(u) lL 'R.a(rt) U 'R.d(rl)(u) Ia- 'R.a(r2)(u) 

= 

= 

where the step leading to (*) is justified as follows: 

= 
{ <u,Id(s)(p' II p")> I <m,p'>E <I>d('R.a)(ri)(u), 

<m,p">E <.Pd('R.a)(r2)(u),d(m) = s} 
= 

{ <u,Id(s)(p'll p")> I <m,p'>E { <r', Rd(r')> I <rl!u>-+ <r',r'> }, 
<m,p11 >E { <r", 'R.a(r")> I <r2, u>-+ <r11 , r"> }, d(m) = s} 

= 

Finally, we can prove 

First Main Theorem For 1r E Cpp , 0(1r) = 'D(1r). 

Proof O(d,s) = Od(s: E)= 'Ra(s: E)= Ia(s)(po) = V(d,s) 

0 

0 

Remark The above proof suggests that, once Tpp is in the 'right' form, and V and the 
semantic operators follow the structure of Tpp , then the proof that 0 = V follows more 
or less 'automatically', Le., it may be completely syntax driven without an appeal to 
additional arguments. In (Rut90a], it has been established that this is indeed the case 
for transition systems (and associated 'D) of a restricted format. We conjecture that 
the approach of (Rut90a] may be generalized to cover the present case as well. This 



www.manaraa.com

55 

would require, more specifically, a better understanding of how continuations might be 
incorporated in the method of [Rut90a]. 

We next outline how the proof that 0 = 'D on Cpo may be structured extending 
the above approach. We first provide the counterpart of Definition 5.1. 

Definition 5.6 

a. The mapping nd : SySCo -+ Obj -+ P is given by 

'Rd(E) = Po 
nd(s: r)(a) = Td(s )(a)('Rd(r )(a)) 

nd(e: g)(a) = £d( e) (a )(Q d(Y )(a)) 
'Rd(if {J then TI else T2 fi)(a) = if {3 then nd(rl)(a) else 'Rdh)(a) fi 

nd(r<fJ/x> )(a) = >.cr.{ <cr[{J/x,a], 'Rd(r)(a)>} 
nd(g(fJ))(a) = Yd(g)(a)({J) 

nd( <{J,rn,jj>: g)(a) = >.cr.{ <<{3, m,jj>, Yd(g)(a)>} 

b. The mapping Qd: SyECo -+ Obj -+ Obj -+Pis given by 

Yd(>.{J.r)(a) 

Yd(g<fJ/x> )(a) 
Yd(x)(a) 

= A/.'Rd(rb/fJ))(a),/ fresh 
= >.1.>.cr.{ <cr[{Jjx, a], Qd(g)(a)(/)> }, 1 fresh 

Rd(X) 

c. The mapping Rd : LSySCo -+ P is given by 

Rd(<a,r>) = 'Rd(r)(a) 

Rd(Pl!P2) = Rd(Pl) II Rd(P2) 
Rd( <{J,p>) = Rd(P) 

Rd(a: x) = Xd(X)(a) 

d. The mapping Xd: LSyECo -+ Obj -+Pis given by 

Again we have 

Xd(<a,g>) = Yd(g)(a) 
Xd(x,p) = Xd(x) II Rd(P) 
Xd(p,x) = Rd(P) I!Xd(X) 

Lemma 5.7 If TI -to T2 (with respect to 1j,o ), then nd(rt) = nd(r2)· 0 

Similar to the proof of Theorem 5.5 (assuming an appropriate generalization of the 
complexity measures II · II), we can now prove 

Theorem 5.8 <I>d(Rd,Xd)(p, x) = <Rd(p),Xd(x)>. 
From this, the second main theorem follows directly: 
Second Main Theorem For 7f E Cpa , 0(1r) = 'D(1r). 

0 

0 



www.manaraa.com

56 

References 

[AB88) P. America and J.\\'. de Bakker. Designing equivalent semantic models for 
process creation. Theoretical Computer Science, 60:109-176, 1988. 

[ABKR86) P. America, J.W. de Bakker, J.N. Kok, and J.J.M.M. Rutten. Operational 
semantics of a parallel object-oriented language. In Proc. POPL'86, pages 
194-208, St. Petersburg, Florida, 1986. 

[ABKR89) P. America, J.W. de Bakker, J.N. Kok, and J.J.M.M. Rutten. Denotational 
semantics of a parallel object-oriented language. Information and Computa
tion, 83:152-205, 1989. 

(Ame89] P. America. Issues in the design of a parallel object-oriented language. Formal 
Aspects of Computing, 1:366-411, 1989. 

[AR89a) P. America and J.J.M.M. Rutten. A parallel object-oriented language: design 
and semantic foundations. In J.W. de Bakker, editor, Languages for Parallel 
Architectures: Design, Semantics, Implementation Models, Wiley Series in 
Parallel Computing, pages 1-49. Wiley, 1989. 

(AR89b) P. America and J.J.M.M. Rutten. Solving reflexive domain equations in a cat
egory of complete metric spaces. Journal of Computer and System Sciences, 
39:343-375, 1989. 

[AR90) P. America and J.J.M.M. Rutten. A layered semantics for a parallel object
oriented language. Technical Report CS-R9052, CWI, Amsterdam, 1990. To 
appear in "Foundations of Object-Oriented Languages", LNCS 489, Springer, 
1991. 

[BBKM84) J.W. de Bakker, J.A. Bergstra, J.W. Klop, and J.-J.Ch. Meyer. Linear time 
and branching time semantics for recursion with merge. Theoretical Computer 
Science, 34:135-156, 1984. 

(BV91] 

[BM88) 

J.W. de Bakker and E.P. de Vink. CCS for 00 and LP. In Proc. TAP
SOFT'91. LNCS, Springer, 1991. To appear. 

J.W. de Bakker and J.-J.Ch. Meyer. Metric semantics for concurrency. BIT, 
28:504-529, 1988. 

[BMOZ88) J.W. de Bakker, J.-J.Ch. Meyer, E.-R. Olderog, and J.I. Zucker. Transition 
systems, metric spaces and ready sets in the semantics of uniform concur
rency. Journal of Computer and System Sciences, 36:158-224, 1988. 

[BW90) 

[BZ82) 

J.W. de Bakker and J.H.A. Warmerdam. Metric pomset semantics for a 
concurrent language with recursion. In I. Guessarian, editor, Proc. 18eme 
Ecole de Printemps d'Informatique, Semantique dv. Parallelisme, pages 21-
49. LNCS 469, Springer, 1990. 

J.W. de Bakker and J.I. Zucker. Processes and the dcnotational semantics of 
concurrency. Information and Control, 54:70-120, 1982. 



www.manaraa.com

[Dug66] 

[Eli91] 

[Eng89] 

[GS90] 

[HBR90] 

[KR90] 

[Kur56] 

[Mac71] 

[MV88) 

[Par81] 

[Rut89] 

[Rut90a] 

[Rut90b] 

57 

J. Dugundji. Topology. Allyn and Bacon, 1966. 

A. Eliens. DLP- a Language for Distributed Logic Programming. PhD thesis, 
Universiteit van Amsterdam, 1991. 

R. Engelking. General Topology, volume 6 of Sigma Series in Pure Mathe
matics. Heldermann, revised and completed edition, 1989. 

C.A. Gunter and D.S. Scott. Semantic domains. In J. van Leeuwen, editor, 
Handbook of Theoretical Computer Science, volume B, pages 633-674. North
Holland, 1990. 

E. Horita, J.W. de Bakker, and J.J.M.M. Rutten. Fully abstract denotational 
semantics for nonuniform concurrent languages. Technical Report CS-R9027, 
CWI, Amsterdam, 1990. 

J.N. Kok and J.J.M.M. Rutten. Contractions in comparing concurrency se
mantics. Theoretical Computer Science, 76:180-222, 1990. 

K. Kuratowski. Sur une methode de metrisation complete des certains espaces 
d'ensembles compacts. Fundamenta Mathematicae, 42:114-138, 1956. 

S. MacLane. Categories for the working mathematician, volume 5 of Graduate 
texts in mathematics. Springer, 1971. 

J.-J.Ch. Meyer and E.P. de Vink. Applications of compactness in the Smyth 
powerdomain of streams. Theoretical Computer Science, 57:251-382, 1988. 

D. Park. Concurrency and automata on infinite sequences. In P. Deussen, 
editor, Proc 5th GI Conference, pages 167-183. LNCS 104, Springer, 1981. 

J.J.M.M. Rutten. Correctness and full abstraction of metric semantics for 
concurrency. In J.W. de Bakker, W.P. de Roever, and G. Rozenberg, editors, 
Linear Time, Branching Time and Partial Order in Logics and Models for 
Concurrency, pages 628-659. LNCS 354, Springer, 1989. 

J .J .M.M. Rutten. Deriving metric models for bisimulation from transition 
system specifications. In M. Broy and C.B. Jones, editors, Proc. IFIP TC2 
Working conference on programming concepts and methods, pages 155-177. 
North-Holland, 1990. 

J.J.M.M. Rutten. Semantic correctness for a parallel object-oriented lan
guage. SIAM Journal on Computing, 19:341-383, 1990. 



www.manaraa.com

Embeddings Among Concurrent Programming 
Languages 

Ehud Shapiro 
Department of Applied Mathematics and Computer Science 

The Weizmann Institute of Science 
Rehovot 76100, Israel 

Abstract 

In a previous paper [1] we developed an algebraic framework for language 
comparison based on language embeddings, which are mappings that preserve 
certain aspects of both the syntactic and the semantic structure of the language. 
We provided separation results by demonstrating the nonexistence of various 
kinds of embeddings among languages. In this talk we survey the framework 
and complement the separation results with positive results, i.e., demonstrate 
embeddings among various well-known concurrent languages. Together the pos
itive and negative results induce a preordering on the family of concurrent pro
gramming languages that quite often coincides with previous intuitions on the 
"expressive power" of these languages. 

[1] Shapiro, E., Separating Concurrent Languages with Categories of Language 
Embeddings, in Proceedings of 2:J"d Annual ACM Symposium on Theory of 
Computing, ACM, 1991. 



www.manaraa.com

INVARIANTS AND PARADIGMS OF CONCURRENCY THEORY 

Ryszard Janicki 
Department of Computer Science and Systems 

McMaster U ni versi ty 
Hamilton, Ontario, Canada, L8S 4Kl 

Maciej Koutny 
Computing Laboratory 

The UniversityofNewcastle upon Tyne 
Newcastle upon Tyne NEl 7RU, U.K. 

ABSTRACT 

We introduce a new invariant semantics of concurrent systems which is a direct 
generalisation of the causal partial order semantics. Our new semantics overcomes 
some of the problems encountered when one uses causal partial orders alone. We 
discuss various aspects of the new invariant model. In particular, we outline how 
the new invariants can be generated by 1-safe inhibitor Petri nets. 

1 INTRODUCTION 

In the development of mathematical models of concurrent behaviours, the concept of partial 
and total order undoubtedly occupies a central position. Interleaving models use total orders 
of event occurrences, while so-called 'true concurrency' models use step sequences or causal 
partial orders (camp. [BD87 ,Mi80,Ho85,Pr86]). Even more complex structures, such as 
failures [Ho85] or event-structures [Wi82], are in principle based on the concept of total or 
partial order. While inter leavings and step sequences usually represent executions or obser
vations, the causality relation represents a set of executions or observations. The lack of 
order between two event occurrences in the case of step sequence is interpreted as simulta
neity, while in the case of causality relation is interpreted as independency. Both interleav
ing and true concurrency models have been developed to a high degree of sophistication pro
viding a framework for specification and verification of concurrent systems. However, some 
of the behavioural aspects of concurrent behaviour are difficult to tackle in the interleaving 
or partial order based setting. For instance, the specification of priorities using partial or
ders alone is rather problematic, in particular, if the events are not instantaneous (see 
[La85,Ja87,JL88,BK91]). Another example are inhibitor nets (see [Pe81]) which are vir
tually admired by practitioners and almost completely rejected by theoreticians, in our opi
nion mainly because their concurrent behaviour cannot be properly defined in terms of cau
sality based structures. We believe that problems of this kind follow from an implicit as
sumption that all behavioural properties of concurrent systems can be adequately modelled 
in terms of causality based structures. We claim that the structure of concurrency phenome-



www.manaraa.com

60 

non is richer, with causality being only one of several fundamental invariants generated by 
sets of equivalent executions or observations. In this paper we will show how such invariants 
can be defined and constructed. 

2 MOTIVATION 

We start by discussing two specific situations which we believe identify an inherent inability 
of the causal partial order semantics to properly cope with some of the aspects of the non
sequential behaviour. We will use Petri nets [Pe81,Re85] as the system model, however this 
does not mean that our approach is restricted to Petri nets. COSY with priorities, or TCSP 
with priorities could be used as well (comp. [JL88]). 

The first example closely follows the discussion in [Ja87,JL88]. We consider a concurrent 
system Con comprising two sequential subsystems A and B such that: (1) A can engage in 
event a and after that in event b; (2) B can engage either in event b or in event c; (3) the two 
sequential subsystems synchronise by means of the handshake communication; and (4) the 
specification of Con includes a priority constraint stating that whenever it is possible to ex
ecute b then c must not be executed. 
The priority Petri net in Figure 1 illustrates this example. We now observe that causal par
tial orders cannot provide a satisfactory semantical model of Con. We first note that in the 
initial state both events a and c are enabled and can be executed simultaneously (note that 
the priority constrained is not violated since b is not enabled in the initial state). Thus in any 
causality based model Con generates a causal partial order with one occurrence of a and one 
occurrence of c such that there is no causal relationship between the two event occurrences. 
Now, since a and care independent, it should be possible to execute c followed by a, and a fol
lowed by c. Whereas the former execution sequence does not violate the priority constraint, 
the latter does as after executing a event b becomes enabled and c must not be executed. 
Note that in [BK91] it was observed that whether the simultaneous execution of a and c 
should be allowed is related to whether or not one can regard a as an event taking some time. 
If a is instantaneous then the step {a,c} should not be allowed, and then a causal partial order 
semantics of Con can be constructed along the lines described in [BK91]. If, however, a can
not be regarded as instantaneous (possibly because it is a compound event) then one should 

priority(b) > priority(c) 

Figure 1 



www.manaraa.com

61 

look for an invariant model more expressive than causal partial orders to capture the beha
viour of Con. 

As the second example we consider a system which supports an error recovery mechanism. 
That mechanism is invoked by an occurrence of a special signalling event, err, which may 
occur simultaneously with any other event in the system. The result of an occurrence of err is 
that: (1) the error recovery procedure is called and its successful completion it signified by an 
occurrence of a special event rev; and (2) during the error recovery no event in the system is 
allowed to be executed. 
We again observe that the causal partial orders do not provide a satisfactory model of the 
system's behaviour. For it is possible to execute err simultaneously with some other event, 
say a, and then after the termination of the. error recovery procedure to execute event rev. In 
any causal partial order which might underlay such a system history, the occurrences of err 
and a must be independent, and the occurrence of rev must not precede the occurrence of a. 
This, however, means that it is possible to execute err followed by a and rev, violating (2). 

The above two examples show that causal partial orders are not expressive enough to 
satisfactorily model the invariant properties of certain kinds of concurrent systems. In the 
rest of this paper we will outline an alternative invariant semantics which overcomes the 
problems highlighted in the above two examples. 

The overall goal of this paper might be explained in the following way. Consider the nets of 
Figure 2. Two of them, PN4 and PN5, are nets employing inhibitor arcs. (An inhibitor arc 
between place p and transition t means that t can be enabled only if pis unmarked [Pe81].) 
We want to define an invariant semantics of these nets in such a way that the following 
would hold (below by a 'complete' history or execution of net Pi we mean one which involves 
exactly one occurrence of a and one occurrence of b). 
(1) Different nets generate different complete concurrent histories. 
(2) Each net except PN 3 generates one complete concurrent history. 
(3) In each case a concurrent history is defined on the same level of abstraction as the causal 

partial order. 

Taking into account only complete executions (or observations) expressed in terms of step se
quences, we might define the semantics of the nets in the following way. Let az,a2,a3 be the 

PNz PN5 

Figure 2 



www.manaraa.com

62 

step sequences a 1 ={a}{b}, az ={b}{a} and a3 ={a,b}. Then: 
Steps(PNJ) ={aJ,az,a3} 
Steps(PNz)={aJ,az} 
Steps(PN3) ={aJ,az} 
Steps(PN4) ={a3} 
Steps(PNs) ={a1,a3}. 

Step sequences cannot distinguish between PNz and PN3, and do not tell us that each of 
PN1, PNz, PN4, PNs generates in fact only one complete concurrent history. That each of 
PN1, PN4 and PNs generates only one complete concurrent history is intuitively obvious (no 

conflict occurs in these nets). However, this may be not so clear in the case of PNz. Moreover, 
one might ask why at all should we distinguish between PNz and PN.'J. To show that making 

such a distinction may in some cases be appropriate we consider a program statement: 
a: x:=x+l & b: x:=x+3 

where"&" denotes the commutativity operator (see [LH82]) which means that the instruc

tions a and b may be performed in any order but never simultaneously. We believe that this 
statement should generate one concurrent history comprising two essentially equivalent ex
ecutions, OJ and az, rather than two different concurrent histories, one comprising OJ, the 

other crz. Thus, since PNz seems to be a natural implementation of the commutativity oper
ator, it should also generate one complete concurrent history. On the other hand, PN3 is 

clearly a net generating two different complete histories. Thus each PNi (i=1,2,4,5) should 

generate exactly one complete concurrent history Hi, where: H1 ={aJ,az,a3}, Hz={aJ,az}, 
H4={a3} and Hs={a1,a3}; while PN3 should generate two complete concurrent histories: 

H31 ={aJ} and H3z={az}. A question which one might now ask is whether we could define 
these histories in a more structured and compact way, for example, by using causality-like 
relations? There are only three causal relationships involving one occurrence of a and one oc
currence of b, namely: 

CJ =a and bare independent 
cz = a precedes b 
c3 = a follows b. 

Clearly, CJ characterises history H1, cz characterises H31 and c3 characterises H3z. This 
means that none of Hz, H4 and Hs can be characterised by a suitable causal relationship. To 
solve the problem we then observe that causality and independency can be characterised in 

the following way: 
If a and bare two events involved in a concurrent history H then 
a precedes b if in all executions belonging to H, a precedes b. 
a follows b if in all executions belonging to H, a follows b. 
If a neither precedes nor follows b, then a and bare independent. 

By following the above pattern we now can introduce three new invariant relations, called 
commutativity, synchronisation and weak causality, in the following way: 

a comm b if in all executions belonging to H, either a precedes b orb precedes a 
a synch b if in all executions belonging to H, a is simultaneous with b 
a web if in all executions belonging to H, a precedes or is simultaneous with b. 

One now may observe that a comm b characterises Hz; a synch b characterises H4; and a web 
characterises Hs. The new invariant relations can be used to distinguish between the five 
nets of Figure 2, but it is not at all clear yet whether they would work in the general case. 
One might also ask several other questions, such as: How can one define commutativity, syn-



www.manaraa.com

63 

chronisation and weak causality in the general case? What is their relationship to the cau
sality relation as well as their mutual relationship? Are there other relations of this kind? 
These are examples of questions we will try to answer in this paper. As we already men
tioned, the distinction between the concurrent histories generated by PN2 and..PN3 may or 
may not be desirable, depending on the intended interpretation of the nets. Another question 
which seems to be interesting in this context is whether there is a formal mechanism which, 
when switched on makes PN2 and PN3 semantically different, and when switched off makes 
them semantically identical. It is then worth observing that under the assumption that for 
every allowed concurrent history: the existence of the executions in the opposite orders implies 
the existence of a simultaneous execution, PN2 and PN3 become equivalent as H2 is no longer 
a valid history (we have to decompose it onto H31 and H32). We will call such rules para
digms, and show how they can be defined and used. 

3 THEMODEL 

The model we are going to develop is a three-level model: Systems-Invariants-Observations, 
and we will proceed from the bottom (i.e. the observation level) to the top of the hierarchy. In 
this paper we will focus on the invariant level. We will provide only the most basic results 
concerning the observation level (for more details see [JK90,JK90a]), while the system level 
will be considered in an informal manner at the end of this paper. 

3.1 OBSERVATIONS 

We define observation as an abstract model of execution. More precisely, by an observation 
we will mean a special report supplied by an observer who can perceive the evolution of a 
concurrent system. Such an observer has to fill in a (possibly infinite) matrix with rows and 
columns being indexed by event occurrences. The observer is supposed to fill in the entire 
matrix except the diagonal using only three symbols:-+, .,_and +->, with -+ denoting pre
cedence,+- following, and+-> simultaneity. (How the observer makes his judgement is beyond 
our interest.) Together with a natural interpretation of the precedence relation this means 
that observations can be represented by partially ordered sets of event occurrences, where or
dering represents precedence, and incomparability represents simultaneity. 

A partially ordered set (or poset) is a pair po =(X,R), where X is a non-empty set and R~XXX 
is an irreflexive ( ....,aRa) and transitive (aRb 1\ bRc ~ aRc) relation. We say po is total if for 
all different a,bEX, aRb or bRa. We also denote: dom(po)=X, -+po=R, <-po=R-1 and 
++po={(a,b)EXXX I a~b 1\ ...,aRb 1\ ...,bRa}. Not all partial orders may be interpreted as 
possible observations. The additional properties we require are that: (1) the observer per
ceives only a single thread oftime, and can only observe a finite number of events in a finite 
period of time and that (2) an event can last only for a finite period of time. It can be shown 
that (1) and (2) lead to the following definition of an observation of a concurrent history (see 
[JK90,JK90a] for details). 

Observation is an initially finite interval order of event occurrences. 
Note that a posetis initially finite iffor every aEdom(po), the set {bEdom(po) I ....,a-+p0 b} is fi
nite, and that a poset po is an interval order if (a-+pob 1\ c-+p0 d) :::} (a-+ pod V c-+p0 b). The de
finition of interval order is taken from [Fi70], however the origin of this concept can be 
traced back to Wiener's 1914 paper [Wn14], where he considered interval orders as a way to 



www.manaraa.com

64 

analyse temporal events, each event occurring over some finite time span. The main charac
terisation of interval orders is given below. 

THEOREM 1 [Fi70] 
A countable poset po is an interval order if and only if there are 4>, p : dom(po) -> Reals such 
that p(a) >0 for all a, and if a,bE dom(po) then: a->pob #$(a)+ p(a) <$(b). 0 

The above result was strengthened in [JK90a] by showing that we can additionally require 
that 4> is injective. The general properties of interval orders and their applications to the 
measurement theory were discussed in [Fi85], while the application of interval orders to 
model observations of concurrent histories was discussed in [JK90,JK90a]. 

A step sequence is an initially finite poset po such that (a++p0 b 1\ b++p0 c 1\ a.oc) ::::} a++p0 c, 
while an interleaving sequence is an initially finite total order. Let Obs, Obsstep. Obsitl denote 
respectively the sets of observations, step sequences and interleaving sequences. We have 
Obsitlr;;.Obsstepr;;.Obs, and throughout the rest of this paper, o (with an index, if necessary) 
will usually range over Obs. 

3.2 INVARIANTS AND HISTORIES 

A description of a concurrent system solely in terms of the observations it may generate is 
unsatisfactory for many reasons. In fact, any argument made in favour of causal partial or
ders existing in the literature (see, for instance, [BD85]), can also be used to support the in
troduction of the new invariants. We will first focus on the relationship between different ob
servations of a concurrent history, where a concurrent history is essentially an invariant or 
a set of invariants satisfied by all its observations. It will be shown that the familiar cau
sality relation is just one of many possible invariant relations. There are, of course, different 
ways in which an invariant might be defined for a given set of observations, depending on 
the specific kind of properties of the system one is interested in. In this paper we restrict our
selves to invariants which seem to be the most basic ones. 

A report set is a non-empty set D. of observations such that dom(oJ)=dom(o2) for all OJ,02ED.. 
We will denote by dom(.:l) the common domain of the observations in tl. Note that a report 
set may be considered as the first approximation of a concurrent history. 

Let tl be a report set with the domain 'E. A simple (binary) relational invariant of tl, is a rela
tion l~'E X 'E which can be characterised by: (a,b)El :# a.o b 1\ VoE t:.. <I>(a,b,o), where <I>(a,b,o) 
is any formula derived from the following grammar: 

<I> : = true I false I a->ob I a+-ob I a++ob I ...., <I> I <I>y<I> I <I> I\ <I>· 
Some of the basic terms of the above grammar are redundant, e.g., a+-0 b is equivalent to 
-.(a->0 b V a++0 b). However, this does not cause any problems, while increases readability. 
Let SRI(D.) denote the set of all simple (binary) relational invariants of D., and let ->.1, +-,1, 

-.1, ~.1. ?' ,1, '\.1 be binary relations on 'E such that for all a,bE'E, 
a->,1b :# a.ob 1\ \JoE D.. a->0 b 
a+-Llb :#a.obi\VoED..a+-0 b 
a-.1b :# a.o b 1\ VoE D.. a++0 b 
a~.1b :# a.o b 1\ \JoE D.. a->0 b V a+-0 b 
al' .1b :# a.o b 1\ VoE D.. a-> 0 b V a++ob 
a'\,1b :# a.o b 1\ \JoE D.. a+-ob V a++ob. 

The relations ->,1, +-.1 are called causalities, ~.1 commutativity, ++,1 synchronisation, and/' ,1, 

'\.1 weak causalities. In the sequel we will use ->,+-,++,;;=,l', '\to denote mappings, called in-



www.manaraa.com

65 

variants, which for every report set return respectively ->,1,<-,1,++,1,~,1,)' ,1, '\,1. The set of all 
invariants will be denoted by SRI. 

PROPOSITION 2 

For every report set 1:!.., SRI(I:i)={0,->,1,<-,1,++,1,~,1,J' ,1, '\,1,~X~-id.d. and there is 1:!.. such 
that SRI( I:!..) consists of eight different relations. D 

PROPOSITION 3 

<-£1 =(->£1)-1, '\,1 =( J' ,1)·l, ->£1 = J' .1 n~.1 and ++£1 = .l' .1n "\.,1. D 

Due to the symmetry present in SRI( I:!..) one can in fact consider only four non-trivial invari
ants, namely ->,1, ++,1, ~,1 and .l' ,1. Furthermore, ->,1 and ++,1 may be expressed in terms of 
J' ,1 and ~,1, so it seems reasonable to try to find a possibly smallest sets of invariants from 
which all the relations in SRI( I:!..) could be generated. 

A signature of a non-empty family F of report sets is a set of invariants Sr:;;,SRI such that for 
alll:i,I:!.. 0 EF we have: (dom(l:i) =dom(l:!..0 ) 1\ 'VIES.I(I:!..) =I(I:!..0 )) ~ (\IIESRI.I(I:!..) =I(I:i0 )). A sig
nature is universal ifF is the family of all report sets. Moreover, a signatureS ofF is mini

mal if(l) no proper subset of Sis a signature ofF, and (2) for every JES and every IESRI-S, 

if I(l:!..)r:;;,J(I:i) for all report sets 1:!.., then (S-{J})U{l} is not a signature of F. I.e., a signature is 
minimal if it cannot be 'reduced' by removing any of its invariants (see (1)) or by replacing 
any invariant by a 'weaker' one (see (2)). 

PROPOSITION 4 

{J' .~}and{'\,~} are the only minimal universal signatures. D 

A history is a report set 1:!.. which is a complete (w.r.t. certain viewpoint) representation of 
some phenomenon underlying the reports of 1:!... This completeness is to be captured by re
quiring that 1:!.. includes all reports satisfying the relevant properties which can be attributed 
to the report sets. In our approach, these properties are the domain of 1:!.., dom(l:!..), and the 
simple report invariants generated by 1:!.., SRI(I:!..). 

For every IE SRI, let ¢I denote any formula (see the definition of a simple relational invari
ant and Proposition 2) such that (a,b)EI(I:!..) ~ \;JoEl:!... ¢I(a,b,o). Let 1:!.. be a report set and 
Sr:;;,SRI. The S-closure of 1:!.., denoted /:i(S), is the set comprising all observations o such that 
dom(o) =dom(l:!..) and for alliES, (a,b)El(l:!..) ~ ¢I(a,b,o). 

PROPOSITION 5 
(1) l:ir:;;,I:!..(S). 
(2) If Sis a universal signature then 1:!..(8}=/:i(SRI). 0 

Consider a report set l:i={o1,02}, where 01 and 02 are as in Figure 3. Then a~,1b, a~,1c and 
b~,1c. Hence M•~>={OJ,02,03,04,05,06}. where the Oi (i=3,4,5,6) are shown in Figure 3. Thus 
I:!..~ I:!..(~). Moreover, 1:!..(~)= /:i(SRI). We now can introduce the central notion ofthis paper. 

A history is a non-empty report set 1:!.. such that 1:!.. = /:i(SRI). 

I.e., a history is a report set which is fully characterised by the invariants it generates. Thus 
if 1:!.. is a history, denoted I:!..EHist, then the following essentially describe the same thing. 

1:!.. 

(0 ,->,1,+-,1,++,1,:;;:,1,)' ,1, '\,1,~ X ~-idE) 
( J' ,1,:;;:,1) 
( '\,1,~,1) 
(ft(l:!..), ..• ,lk(l:!..)) where {lt, ... ,lk} is a signature of any F such that I:!..EF. 



www.manaraa.com

66 

01 02 • ... • • 
a b c c b a 

03 • •• ... 04 • •• .... 
a c b b a c 

05 • ... ... 06 • .... ... 
b c a c a b 

Figure 3 

In concurrency theory, the causality relation is sometimes treated as an invariant, and 
sometimes as the set of all observations (step sequences or interleavings) it generates. We 

have just shown that this dual treatment can be generalised to other invariants in SRI. 

3.3 COMPONENTS AND PARADIGMS 

Let fl be a concurrent history. The set SRI(fl) can be treated as any other finite family of 
sets. In particular, we can find all the components defined by this family, as shown in Figure 

4. There are seven non-empty components (non-empty means that there is fl such that all 

seven components are non-empty), and we will denote CSRI(!l) ={-+,1,<-Ll,-L\,~Ll.:::!Ll.~.IILl}. 

A formula which says that a given relationship between two event occurrences a and b has 

been observed in fl is called a simple trait. There are three simple traits:'¥-+= 3oE fl. a-+0 b, 

'¥ .... = 3oE fl. a<-0 b and'¥ .... = 3oE fl. a-0 b. One can easily show that the relations in CSRI(!l) 

can be defined as conjunctions of simple traits and their negations. 

PROPOSITION 6 

For every a,bE dom(fl), we have 
a-+,1b ¢} w ..... /\ •w .... /\ ''¥<-> 

U<-L\b ¢} ''¥-+ 1\ '¥<- 1\ ''¥<-> 
a-,1b ¢} ''¥-+ 1\ ''¥<-!\ '¥<-> 

a~,1b {::} '¥-+ 1\ 'l'<-1\ ''I'<-> 
U:::!,1 b ¢} 1p--> 1\ ..., 1p <- 1\ 1p <-> 

<-,1 

;=j- --

--
~ 

IILI 

~LI -->LI 

-
<->LI :::!.1 

-- J' Ll 

Ftgure4 



www.manaraa.com

67 

a~b ~ ·w~ A w+-A 1¥<-> 
all..1b ~ w~Aw._Aw ..... 0 

Since we have ~Ll =( +-,1)·1 and~ =(~)-1 we need to discuss only five components: ~Ll, 11.1, 
~Ll. ++Ll and~- The first component (and also an invariant), ~Ll, is causality. The second 
component, 11.1, should be interpreted as concurrency (two events can be observed simulta
neously and in both orders). Both causality and concurrency can be found in the models sup
porting the notion of true concurrency. The third component, ~Ll. represents what is usually 
referred to as interleaving (two events can be observed in both orders, but not simultaneous
ly), and is usually dealt with on the level of observations rather than invariants. The fourth 
component (and also an invariant), ++,1, can be interpreted as synchronisation. It is currently 
introduced only in its implicit form, e.g., as a silent action in CCS [Mi80]. The fifth compo
nent,~. is not to our knowledge a part of any of the existing models. It captures disabling of 
one event by another event and was discussed in [Ja87] from where we took its intuitive 
meaning. As one now may see, the five components describe quite precisely the semantics of 
the nets of Figure 2, namely aiiH1b, a~H2 b, a~H31 b, b ~H32a, a++H4b and a-::!1f5 b. 

The approach to concurrency which is based entirely on the concept of causality relation re
quires that for every concurrent history the following holds: if two event occurrences can be 
observed simultaneously, then they can also be observed in both orders, and vice versa. This 
means that every concurrent history besides being invariant-closed must also satisfy the fol
lowing: (3oE fl. a++0 b) ~ (3oEfl. a~0b) A (3oE fl. a+-0 b). Note that this formula is built from 
simple traits. In general, any formula built in this way will be called a paradigm, and will 
characterise the internal structure of of concurrent histories. 

Formally, the paradigms, wE Par, are given by the following syntax. 
w :=true I false I w~ I w .... I w .... I •w I wvw I wAw I w~w 

The evaluation of the formulas wE Par follows the standard rules [Mo76]. Note that in this 
grammar we need all three basic terms w~. w-and'¥<->· 

A history flEHist satisfies a paradigm wEPar if for all a,bEdom(ll), aotb ~ w(a,b,fl). We 
denote this by fl EPar(w). Two paradigms, wand w0 , are equivalent, w-w0 , if Par(w) =Par(w0 ). 

Let Wi (i = 1 , ... ,5) be the following paradigms: 
w1= w-~w~ vw
w4= 1¥--+ ~ 1¥+- V 1¥<-+ 
W5= w~Aw.-A 1¥<-+ ~false 

PROPOSITION 7 

(1) MPar(w1) 
(2) MPar(w2) 
(3) MPar(w3) 
(4) MPar(w4) 
(5) MPar(w5) 

~ ~,1=0. 

~~=~=0. 
~ --+,1=+-,1=0. 
~ 11.1=0. 0 

PROPOSITION 8 (equality up to -) 
Par={wi1A ... AWik I k~5 A ij~5}. 0 

w2= w~Aw-~w .... 
w3= w~A w- ~ W+-

From the last proposition it follows that we have 25=32 different paradigms. However, the 
nature of problems considered in Computer Science is such that two of the Wi'S may be safely 
rejected. The first Wi that we reject is w4 since it rules out causality and hence invalidates the 
sequential composition construct. For a similar reason we reject w5 since it is not compatible 



www.manaraa.com

68 

with the standard parallel composition operation. Thus we consider 23 =8 paradigms: 
nz =true n3 =w2 ns=wz/\w2 n7=w2/\w3 
n2=wz n4=w3 n6=wz/\w3 na=wz/\w2/\w3 

PROPOSITION 9 (relationship between components and paradigms) 
(1) 6.EPar(nz). (5) 6.EPar(ns) ~ -.1=~.1=0. 
(2) 6.EPar(n2) ~ -.1=0. (6) 6.EPar(n6) ~ -.1=~=0. 

(3) 6.EPar(n3) ~ ~.1=0. (7) 6.EPar(n7) ~ ~.1=~=0. 

(4) 6.EPar(n4) ~ ~=0. (8) 6.EPar(na) ~ -.1=~.1=~=0. 0 

We obtain a hierarchy of eight fundamental paradigms of concurrency shown in Figure 5. In 
this paper we will only discuss nz,n3 and na. Paradigm nz simply admits all concurrent his
tories. The most restrictive paradigm, na, is the paradigm adopted by the models supporting 
true concurrency semantics. As we pointed out earlier on, this paradigm has given rise to a 
number of elegant theories in the field of concurrency, however, it has some limitations such 
as an inability to model some aspects of systems with priorities. In the next section we will 
show that n3 allows us to provide an invariant semantics for inhibitor nets, as well as for 
priority systems. The following major result characterises minimal signatures of the eight 
paradigms. 

THEOREM 10 
(1) {J' .~}is a minimal signature for Par(nz) and Par(n2). 
(2) {~,-+}is a minimal signature for Par(n4) and Par(n6). 
(3) {-+,J'} is a minimal signature for Par(n3) and Par(ns). 
(4) {l'} is a minimal signature for Par(n7). 
(5) {-+} is a minimal signature for Par(na). 0 

Thus when the law 3oE 6.. a-0 b ~ (3oE 6.. a-+0 b) 1\ (3oE 6.. b-+0 a) holds, then causality is the 
only invariant that is needed, and this fact is a theorem in our approach. Note that in the 
most general case (i.e. Par(nz)) the explicit causality invariant is not needed. We also note 
that under the paradigm n3 (and any other paradigm which contains it, i.e. ns,n7,na) we can
not distinguish between PN2 and PN 3 of Figure 2. 

Figure5 



www.manaraa.com

69 

4 APPLICATIONS 

4.1 INTERLEAVINGS INSIDE riB 

Paradigm riB deserves special attention as it is the only paradigm considered in the present 
literature. We will show that for histories satisfying paradigm riB, one only needs the se
quential observations. A base of a concurrent history !). is a pair (/). 0 ,S), where /). 0~/). and 
S~SRI, such that /).0 (8)=/).. In other words, a base provides a complete description of a his
tory in terms of a (possibly smaller) set of observations and a suitable set of simple report in
variants. 

PROPOSITION 11 
If f::,.EPar(riB) and /).iti={oE/).1 oEObsitl} then (t:,.it[,{->}) is a base of/)., 0 

The above result means that in the case of paradigm riB it is possible to adequately represent 
a concurrent history by taking only its sequential observations. Clearly, this was the basic 
idea behind many models [Ma86,KP87], and can be traced back to [Sz30]. One should em
phasise, however, that Proposition 11 cannot be extended to any other paradigm. 

4.2. STEP SEQUENCES INSIDE ri3 

In this and the next section we shall assume that all observations are step sequences, and 
that every history considered belongs to ri3. From Theorem 10 it follows that in this case 
{?,->}is a minimal signature. We shall provide an axiomatisation for this kind of signature 
and then define an invariant semantics of inhibitor nets. Below Obsstep denotes the set of all 
step sequences, and ~0 denotes the set of all event occurrences. 

A pre-ordered set is a pair (X,R) such that X is a non-empty set andR~XXXis an irreflexive 
(-.aRa) and weakly transitive (aRb 1\ bRc ~ a=cv aRc) relation (see [Fr86]). 

Note that for any t:,., the causality ->£1 is always a poset, while the weak causality ? .::1 is al
ways a pre-ordered set. We will show that if t:,.~Obsstep and ri3 holds, then the pair{->,?} can 
be modelled by a certain relational system which we call a composet. 

A combined partial order (or composet) is a relational system co=(X,P ,R) such that X is a set 
and P ,R~XXX are two relations satisfying the following. 
(1) -.aRa 
(2) aRb 1\ bRc ~ a=c V aRc 
(3) aRb~ -.bPa 
(4) aPb ~aRb 
(5) aRb 1\ bPc ~aPe 
(6) aPb 1\ bRc ~aPe. 

Intuitively, P corresponds to->, R corresponds to ? , and X is a set of step sequence observa
tions. The conditions (1) and (2) say that R is a pre-order; (4) indicates that Pis included in 
R; (1),(4) together with, e.g., (5) imply that Pis a poset; (3) is a kind of 'consistency' rule bet
ween the two orders; and (5), (6) give a kind of combined transitivity which ties together P 
andR. 

COROLLARY 12 
lf(X,R,P) is a composet then (X ,P) is a partially ordered set and (X,R) is a pre-ordered set. 0 



www.manaraa.com

70 

PROPOSITION 13 
If !1r:;;Obsstep then (dom(11),--+.1,l' ,1) is a composet. 0 

The above proposition is not true if 11-0bsstep..o 0 since (5) and (6) may not hold. A relational 
system rs=(X,P,R) with P ,Rr:;;XXX is called a n3step-history descriptor if Xt:;;L: 0 , R = J' Ll(rs) 
and P=--->Ll(rs), where !1(rs)={oEObsstep I dom(o)=X 1\ ('<Ja,bEX. aRb~ a--+0 b V a-0 b) 1\ 
('<Ja,bEX. aPb ~ a--+0 b)}. 

THEOREM 14 (axiomatisation of {l' ,->}) 
Let X be a finite set. A relational system rs =(X,R,P) is a n3step-history descriptor if and only 
if Xt:;;L: 0 and rs is a composet. 0 

The assumption !1r:;;Obsstep is essential. Without it the result does not hold. The above theo
rem provides an axiomatisation of signatures for histories involving finite step sequences 

and conforming to the paradigm n3 (and all paradigms below n3 in the hierarchy of Figure 5). 
It says that every finite composet of event occurrences may be interpreted as a representa
tion of a finite concurrent history of the kind described above. In other words, in this case 

concurrent histories can be unambiguously described by composets (in the same way as the 
histories in ng can be described by causal partial orders). For infinite histories the axiomati

sation is less elegant as we have to take into account the fact that step sequences are in
itially finite posets. We will not discuss this issue in detail, but basically one needs to provide 
an analysis similar to that for infinite causal partial orders (see [BD85]). 

There is certain similarity between our definition of the composet and the axioms for strong 

and weak precedence relation presented in [La86]. However, the way these two concepts are 
derived, the motivations, and the reasons for their introduction are quite different. Hence 

this similarity is either accidental or, as we would suggest, the composet is a natural gener

alisation of the concept of the partial order, and it may be useful for various, perhaps unre
lated, applications. 

4.3. COMPOSET SEMANTICS OF INHIBITOR NETS 

In this section we outline a method of constructing the set of composets of a concurrent sys
tem represented by a 1-safe Petri nets with inhibitor arcs [Pe81]. Note that 1-safeness means 
that each place may hold at most one token. An inhibitor arc between place p and transition 

(event) t means that t can only be enabled if p is not marked. In the diagrams inhibitor arcs 
are identified by small circles. A technique similar to that described below might be used for 

other kinds of inhibitor nets, as well as for various priority models and nets (see [JL88]), 

however this would usually require the introduction of some new formal concepts. 

The standard approach in which the partial order semantics of ordinary 1-safe Petri nets is 

derived employs occurrence nets [Re85]. An occurrence net can be regarded as a representa

tion of a causality relation on event occurrences (or a single abstract history of the net). It is 
an unmarked acyclic net whose each place has at most one input and one output transition. 
Occurrence nets are obtained by unfolding marked nets and resolving the conflicts via the 

firing rules, as shown in Figure 6(a,b). Each occurrence net induces a poset on event occur
rences derived in the following way: First an auxiliary relation -->aux is derived by transfor

ming each three-node path eventt-->place-'>event2 in the graph of the occurrence net into a 

pair eventt-->auxeventz. Then a poset is obtained by taking the transitive closure of -->aux· For 
the occurrence net of Figure 6(b), the relation ->aux is shown in Figure 6(c), and the resulting 
poset is shown in Figure 6(d). 



www.manaraa.com

71 

1 2 1 2 

3 4 ->aw: 

3 4 (c) 

ordinary 1-safe Petri net 

1 2 

(a) 

poset generated by 
occurrence net occurrence net 

(b) (d) 

Figure 6 

The way in which we construct composets for an inhibitor net will closely follow the above 
procedure. LetNr be the inhibitor net shown in Figure 7(a). We first define an occurrence net 
of an inhibitor net by generalising in a straightforward way the standard definition of an oc
currence net of an ordinary Petri net. The only new element is the handling of the inhibitor 
arcs. Since in the occurrence net places represent tokens, it is not possible to join c with place 
2 using an inhibitor arc. However, we can join c with the complement place [Re85] of 2, i.e. 
place 5, using an activator arc (with a black dot at one end). Intuitively, this means that c 
can be executed only when 5 is marked. We also note that there is no restriction on the num
ber of activator arcs which can be adjacent to a single place. A possible occurrence net for the 
inhibitor net Ntis shown in Figure 7(b). The next step is to transform the structural rela
tionships embedded in the graph of the occurrence net into two auxiliary relations, ->aux and 
/'aux. from which the composet can be derived. There are three structural relationships 
which we need to consider, as shown in Figure 8(a). For the occurrence net of Figure 7(b) the 
two auxiliary relations are shown in Figure 8(b). The final step has to take into account the 
various transitivities which hold for a composet. More precisely, if -->aux and /' aux have been 
defined for an occurrence net ON with ~ being the set of event occurrences, then the com
poset induced by ON is defined as co(ON) =(~, ..... ,/'),where(~, ..... ,/') is a minimal (w.r.t. set 
inclusion for both--> and/') composetsuch that-->aux~--> and/' aux~.l'. It can be shown that 
co( ON) is well-defined (i.e. it always exists and is uniquely defined). The algorithm for deriv
ing co( ON) is a straightforward generalisation of an algorithm which yields the transitive 



www.manaraa.com

72 

4 

5 2 

4 

2 4 

(a) 

(b) 

Figure 7 

closure of the auxiliary relation in the construction of the poset for an ordinary occurrence 
net. For the occurrence net of Figure 7(b), the resulting -4 and /' are shown in Figure 8(c). 

FINAL COMMENTS 

Our main goal was to show that in order to cope properly with general concurrent beha
viours one should not be restricted only to poset based structures. We also tried to show that 

--+ X/'auxY 

(a) 

U ~ LY7?~ 
[b]\J ~~ 

-4aux i"aux 

(b) (c) 

Figure 8 



www.manaraa.com

73 

causality is only one of many possible invariants. The other invariants can be derived in a 
natural way when we use the bottom-top approach starting from the concept of observation 
as the primary notion. Although in this paper we defined observations as a certain kind of 
poset, concepts such as invariant, signature, S-closure, history, etc., are not associated with 
any specific definition of an observation. This paper presents a simplified version of a more 
general approach. In [JK90a] a general concept of'report system' is defined, and all the con
cepts from Section 3 can be rendered in terms of 'reports' - generalising the notion of an ob
servation. Consequently, the results presented here are just special cases of more general re
sults obtained in [JK90a]. The extension of the definition of an observation (e.g. by adding 
relation representing uncertainty or by using the model similar to that of [AK85]) would not 
change the general structure of the approach introduced in this paper. 

ACKNOWLEDGEMENT 

The work of the first author was partly supported by a grant from NSERC No. OGP 0036539, 
while the work of the second author was supported by ESPRIT Basic Research Action 3148 
(project DEMON). 

REFERENCES 

[AK85] Allen J.F., Kentz H.A., A Model of Naive Temporal Reasoning, In: J.R. Mobbs, R.C. 

[BD85] 

[BD87] 

[BK91] 

[Fi70] 

[Fi85] 

[Fr86] 

[Ho85] 

[Ja87] 

[JK90] 

[JK90a] 

Moore (Eds.), Formal Theories of the Commonsense World, Ablex 1985. 

Best E., Devillers R., Concurrent Behaviour: Sequences, Processes and Pro
gramming Languages, GMD-Studien Nr. 99, GMD, Bonn, 1985. 

Best E., Devillers R., Sequential and Concurrent Behaviour in Petri Net Theory, 
Theoretical Computer Science, 55 (1987), pp. 87-136. 

Best E., Koutny M., Petri Net Semantics of Priority Systems, to appear in Theoreti
cal Computer Science. 

Fishburn P.C., Intransitive Indifference with Unequal Indifference Intervals, J. 
Math.Psych.7,1970,pp.144-19. 

Fishburn P.C., Interval Orders and Interval Graphs, J. Wiley, 1985. 

Fraise R., Theory of Relations, North Holland 1986. 

Hoare C.A.R., Communicating Sequential Processes, Prentice-Hall, 1985. 

Janicki R., A Formal Semantics for Concurrent Systems with a Priority Relation, 
Acta Informatica 24, 1987, pp.33-55. 

Janicki R., Koutny M., Observing Concurrent Histories, in: Real-Time Systems, 
Theory and Applications, H.M.S. Zedan (Ed.), Elsevier Science Publishers B.V. 
(North-Holland), 1990, pp 133-142. 

Janicki R., Koutny M., A Bottom-Top Approach to Concurrency Theory Part I: Ob
servations, Invariants and Paradigms, Technical Report No. 90-04, Dept. of Comp. 
Sci. and Syst., McMaster University, 1990. 



www.manaraa.com

74 

[JL88] Janicki R., Lauer P.E., On the Semantics of Priority Systems, 17th Annual Interna
tional Conference on Parallel Processing, Vol. 2, pp. 150-156, 1988, Pen. State 
Press. 

[KP87] Katz S., Peled D., Interleaving Set Temporal Logic, 6th ACM Symposium on Prin
ciples of Distributed Computing, Vancouver 1984, pp. 178-190. 

[La85] Lamport L., What It Means for a Concurrent Program to Satisfy a Specification: 
Why No One Has Specified Priority, 12th ACM Symposium on Principles of Pro
gramming Languages, New Orleans, Louisiana, 1985, pp. 78-83. 

[La86] Lamport L., On Interprocess Communication, Part I: Basic formalism, Part II: Al
gorithms, Distributed Computing 1(1986), pp. 77-101. 

[LH82] Lengauer C., Hehner E.C.R., A Methodology for Programming with Concurrency: 
An Informal Presentation, Science of Computer Programming 2 (1982), pp. 1-18. 

[Ma86] Mazurkiewicz A., Trace Theory, Lecture Notes in Computer Science 225, Springer 
1986,pp.297-324. 

[Mi80] Milner R., A Calculus of Communicating Systems, Lecture Notes in Computer 
Science, vol. 92, Springer 1980. 

[Mo76] Monk J.D., Mathematical Logic, Springer 1976. 

[Pe81] Peterson J.L., Petri Net Theory and the Modeling of Systems, Prentice Hall, 1981. 

[Pr86] Pratt V., Modelling Concurrency with Partial Orders, Int. Journal of Parallel Pro-
gramming 15,1 (1986), pp. 33-71. 

[Re85] ReisigW.,PetriNets, Springer 1985. 

[Sz30] Szpilrajn-Marczewski E., Sur I 'extension de l'ordre partial, Fundamenta Mathe
maticae 16 (1930), pp. 386-389. 

[Wn14] Wiener N., A Contribution to the Theory of Relative Position, Proc. Camb. Philos. 
Soc. 17 (1914), pp. 441-449. 

[Wi82] Winskel G., Event Structure Semantics for CCS and Related Language, Lecture 
Notes in Computer Science 140, Springer 1982, pp. 561-567. 



www.manaraa.com

Acceptance Automata: 
A Framework for Specifying and Verifying TCSP Parallel Systems 

Luis M. Alonso 
Departamento de Lenguajes y Sistemas Infonmiticos 

Universidad del Pais Vasco 
E-20080 San Sebastian 

Spain. 
email: alonso@ gorria.if.ehu.es 

Ricardo Pefia I 
Departament de Llenguatges i Sistemes Informatics 

Universitat Politecnica de Catalunya 
E-08028 Barcelona 

Spain. 
email: ricardo@lsi.upc.es 

Abstract 

Acceptance Automata, a particular case of labelled transition systems whose 
semantics is given in terms of the Failures Model, are presented. It is shown how 
parallel composition and hiding can be defmed for them in a way consistent with 
the TCSP model. A notion of canonical automaton is presented. In the fmite case 
it can be effectively computed and used for proving implementations correct. 
Finally, the TCSP concept of refinement is characterized in the acceptance 
automata domain. 

1 Introduction 

In a previous paper, see [PA 89], a technique for the specification, refmement and proof of 
correctness of parallel systems, was presented. The Failures Model [BHR 84][Hoa 85] was 
used as the mathematical model for Communicating Processes. Process behaviours were 
defined by means of a partial abstract type with certain characteristics. One of the advantages of 
this technique was that deductive methods developed in the general framework of algebraic 
specifications, could be used for proving properties concerning the specification of a process. 

1 This work has been partially supported by the ESPRIT-II Basic Research Action COMPASS (Working 
Group no. 3264). 



www.manaraa.com

76 

We call a refinement the decomposition of a process into a set of lower level processes, 
possibly abstracting the synchronization events. Proving that a refinement exhibits the same 
behaviour as the original process was considerably more difficult: a few and simple syntactic 
transformations were applied to the refinement. Such transformations were based upon the 
algebraic laws satisfied by the mathematical model. A similar verification technique is used in 
[HoJi 85]. Since then the style of specification has evolved, and we feel that it is powerful and 
general enough to be useful in most problems. Nevertheless, proving refinements correct by 
manipulation of algebraic expressions does not seem practical. 

In what follows the algebra of Acceptance Automata is introduced. It provides another 
formal framework for communicating processes, while preserving the semantics defined by the 
Failures Model. Acceptance automata could be used in the definition of processes. However, 
their main interest is that they are amenable for mechanical manipulation and that verification 
techniques similar to bisimulations [Par 81] can be used. As it will be shown, there exists most 
often, a family of acceptance automata defining the same process. Nevertheless it will always be 
possible to choose a canonical and unique representative of a given family. When considering 
finite-state systems, the canonical form might be effectively computed to mechanically prove a 
refinement correct. 

The idea of using transition systems to define processes in the Failures Model goes back to 
[Jos 88]. There are some differences with the approach taken here. In order to model non
determinism, there it was necessary to use several transitions, with the same original state and 
labelling event, and with different final states. This amounts to say that there is a family of 
transition systems defining the same process. The relationships among those transition systems 
are not clear enough. Moreover, none of them is marked as the canonical form, and it doesn't 
seem possible doing such a choice. Finally, in [Jos 88] a number of simple rules are provided, 
by means of which a process can be shown to be a refinement of another. Those rules are 
sufficient conditions but not general enough. 

Another related approach is that of Acceptance Trees as described in [Hen 85][Hen 88]. The 
differences are mainly two: on the one hand we are interested in the parallel composition and 
hiding. These operations are not defined for Acceptance trees. On the other hand, the approach 
is also related to the readiness model as described in [OH 86], in the sense that the states of our 
acceptance automata are labelled by sets of menus. However, our underlying model is the 
Failures one, the translation from sets of menus to sets of failures being immediate (see 
definition 2.7, below). Reference [OH 86] contains a short description of the Failures Model 
for those unfamiliar with it. A non-divergent process in this model is a set of pairs (s, X), 
where s is a trace of events and X is a set of events that the process may refuse. Our acceptance 
automata only describe non divergent processes. 

Finally, a similar approach has been described in [AGS 90], where the so-called CSP 
automata are defined. They are similar to our acceptance automata, the main difference being 
the use of a refusals mapping in their definition. A notion of canonical form is also given. 
There are some minor differences: the work is restricted to finite-state systems and parallel 
composition and hiding are not defined. Besides that, the concept of refinement is not defined 
and different automata defining the same process are not compared. 



www.manaraa.com

77 

2. Acceotance Automata 

Definjtjon 2.1 An Acceptance Automaton is given by a tuple (A,~. t, M, ~)where: 

• A is a non-empty alphabet of events, 

• ~ is the set of states 

• t e ~. is the initial state 

• M s;; ~ x ~(A), is a menu relation, that will be denoted: me M(cr) 

• ~ s;; ~ x Ax ~.is a transition relation, that will be denoted: 0' ~c cr' 

M and ~ shall be defined so that: 

1) M is total in its domain, i.e.: 'r/ 0' e ~.3m e ~(A). me M(cr) 

2) 'r/ 0' e ~.me M(cr), e e A. e e m => (3 cr' e ~. 0' ~c cr') 

3) 'r/ 0', cr' e ~. e e A. 0' ~c cr' =>(3m e M(cr). e e m) 

The role of the menu relation is to represent the internal non-determinism in the system, 
whilst the states represent the past of'the system. We want to remark in this point, that the initial 
state is unique. Moreover, the transition systems defined in [Jos 88] can.be translated into 
acceptance automata, provided that their initial states are unique. In particular, it is possible to 
define an acceptance automaton with several transitions, with the same original state and 
labelling event, and with different final states. The reason for which we allow this situation will 
be made clear later in the paper. Nevertheless, we will say in advance that acceptance automata 
used in the definition of processes do not exhibit this characteristic. 

Two examples of acceptance automata follow: the first one is a finite state system, while the 
second one is a system with an infinite number of states: 

A= {a, b, c} 

~ = {0, 1} 

t=O 
M = {(0, {a}), (1, {b}), (1, {c})} 
~ = {(0, a, 1), (1, b, 0), (1, c, 0)} 

A= {in, out} 

~=:N 

t=O 
M = {(i, {in}) I i e :N} v {(i, {in, out}) I i e :N+J 
~ = { (i, in, i+ 1) I i e N} v { (i, out, i - 1) I i e N+J 

The following definitions introduce the concepts of traces and reachable states in this 
context. After that we will define the failures semantics of an acceptance automaton. In what 

follows we assume an acceptance automaton Cl = (A,~. t, M, ~). 



www.manaraa.com

78 

Definition 2.2 The reflexive-transitive closure 4 £; I: x A* x I: of the transition relation is 
defined as the smallest relation satisfying: 

• 'rf <J E L. <J 4 <> <J 

• 'V (Jl' <J2, (J E I:, t E A*, e E A. (Jl 4t (J 1\ (J 4c (J2 ~ (Jl 4tc (J2 

Definition 2.3 traces(C'.l) is the set defined by: traces(C'.l) = {t e A*. 3 <J e I:. t 4t <J} 

Definition 2.4 The reachability set of Ct after the trace tis the set defined by: 

C'.l/t = {<J E L. t 4t <J} 

Definition 2.5 The reachabi/ity set of Ct is the set defined by: 

reach(Cl) = Ute traces(Ci.)C'.l/t 

Definition 2.6 The set of next possible events, for every state <J e I:, is the set defined by: 

next(<J) = {e e A. 3 <J' e I:. <J 4e <J'} 

Definition 2.7 The failures semantics of Ct is given by a relation 3=' (C'.l) £; A* x l' (A) 
defined as the smallest relation satisfying: 

1) 'V t e traces (Cl), <J e Ct/t, me M(<J). (t, -,m) e ::F'(C'.l) 

2) 'V t e traces (C'.l), F1, F2 e i' (A). (t, F1) e 3=' (Cl) 1\ F2 £; F1 ~ (t, F2) e 3=' (C'.l) 

Lemma 2.8 Given an acceptance automaton Ct = (A, I:, t, M, 4), the triple (A, ::F'(C'.l), 0) 

defines a non-divergent process in the failures model. In what follows, we simply use 3=' (C'.l) to 
denote this process. 

Proof We only have to show that the following conditions hold [Hoa 85]: 

• (<>, 0) E ::F'(C'.l) 

this is trivial from condition 1 in definition 2.7 
• (st, X) e 3=' (C'.l) ~ (s, 0) e 3=' (Cl) 

this comes from the fact that traces(Cl) is prefix closed, hence if (st, X) e n:' (C'.l) then 

s e traces (C'.l) and so (s, 0) e n:' (C'.l) 

• (s, Y) e n:'(Cl) "X£; Y ~ (s, X) e ::F'(C'.l) 

this is trivial from condition 2 in definition 2.7, 
• (s, X) e n:' (C'.l) 1\ x e A~ (s, Xu {x}) e 3=' (C'.l) v (sx, 0) e 3=' (C'.l) 

this comes from the fact that, s being a trace of Ct, there exists state <J e Ct/s, and from 
the fact that, (s, X) being a failure, there exists a menu m e M( <J) such that X£; -,m. 

Hence, from definition 2.7, ifx $ m, then (s, Xu {x}) e ::F'(C'.l). Otherwise, ifx e m 



www.manaraa.com

79 

then from condition 2 in definition 2.1 there exists a transition 0' ~x 0'' so sx is a trace 

of Cl. and (sx, 0) e 3=' (CI.). 0 

This lemma implies that divergent processes can not be modelled by means of acceptance 
automata. We have taken this decission because we find no practical interest in specifying 
processes which are allowed to engage in an infinite sequence of internal actions. 

The following definition introduces a notion of equivalence between acceptance automata 
given in semantic terms. Later on, this concept will be characterized in terms closely related to 
bisimulations defined between transition systems. 

Definition 2.9 Given acceptance automata Cl. 1 and Cl. 2, they are said to be observationally 

equivalent, denoted by Cl. 1 = C1. 2, if 3='(CI. 1) = 3='(CI. 2), i.e. if they have the same failures 
semantics. 

See in the following example two equivalent acceptance automata: 

A= {tick} 

:E = {"on"} 

t="on" 
M ={("on", {tick})} 

~={("on", tick, "on")} 

A= {tick} 

:E=N 

t=O 
M = {(i, {tick}) I i e N} 

~ = {(i, tick, i+l) I i e N} 

Up to this moment, the basic notions related with acceptance automata have been 
established. We proceed now to define the basic operations over acceptance automata. These 
operations shall correspond to the parallel composition and hiding defined in the Failures 
Model. None of these operators is defined for acceptance trees defined in [Hen 85], [Hen 88]. 
Whilst the parallel composition of acceptance trees seems to be rather simple, we think that the 
definition of the hiding operator will not be so simple if we try to do it strictly in the acceptance 
tree domain. 

Definition 2.10 Given acceptance automata Ct 1 = (Au Ap :E1, tp Mp ~1) and Ct 2 = (A 

u ~. ~. ~· M2, ~2), with A, Ap ~ pairwise disjoint, the parallel composition of Cl. 1 and 

Cl. 2, denoted by Ct 1 II Cl. 2 = (An, :E, t, M, ~ ), has A as synchronization alphabet and is 
defmed as follows: 

1) An= AuA1 uA2 



www.manaraa.com

80 

2) 1: = 1:1 X 1:2, 

3) t = (tp t 2), 

4) M ~ 1: x 'f(A), is the smallest relation satisfying: 

V m1 e M1(cr1), m2 e Mz(cr2): 

(m1 n rnz) u (A1 n m1) u (Az n rnz> e M((O'p cr2)) 

5) -7 ~ 1: x An x 1:, is the smallest relation satisfying: 

Vee A, 0'1 -71c 0'2, J.l1 -72c J.l2· (0'1, J.l1) -7c (0'2, J.l2) 

Vee Al' 0'1 -71c 0'2, ).1 e 1:2. (0'1' ).1) -7c (0'2, ).1) 

V e e Az, 0' e 1:1' J.l1 -72c J.l2· ( 0', J.l1) -7 c ( 0', J.lz) 

Fact 2.11 The parallel composition of acceptance automata Cl1 and Ct2, is another acceptance 

automaton Ct. 

Fact 2.12 Observe that the following predicate holds for acceptance automata Cl1 and Ct2, and 

its parallel composition Cl: 

V t1 e traces(Cl 1), cr1 e Cl 1/tp tz e traces(Cl2), cr2 e Cl2/tz, t e traces(Cl). 

t1 = ti(AuA1) A tz = ti(AuA2) <=> (crp cr2) e Cl/t 

where ti A denotes the trace t restricted to the events in A. This fact is simple to prove by 
induction on the lenght of the traces. 

Lemma 2.13 Given acceptance automata Ct 1 = (Au Al' 1:1' tl' Ml' -71) and Ct2 = (Au 

Az, l:z, tz, M2, -7z) its parallel composition satisfies: 

::f'(Cl1 II Cl2) = ::f'(Cl1) II ::f'(Cl2) 

Proof Let (t, X) e ::r (Cl 1) II ~ (Cl 2), then from the definition of parallel composition in the 

failures model, there exist (tp X1) e ::r (Cl 1) and (tz, Xz) e ~ (Cl2) such that: 

tiA uA1 = t1, tiAuAz = tz,X =X1 uX2 

Now, from definitions 2.1 and 2.7, there are cr1 e Ct 1/t1 (resp. cr2 e Cl 2/tz) and menu 

m1 E M1(cr1) (resp. IDz E M2(cr2)) such that: 

X1 ~ (A u A1) - m1 (resp. X2 ~ (A u Az) - IDz) 
Thus, from definition 2.10 and fact 2.15: 

(0'1, 0'2) E (Cll II Cl2)/t 
and 

m = (m1 fl IDz) u (A1 n m1) u (Az n IDz) e M((O'p cr2)). 
It is easy to see that: 

X=X1 uX2 ~ (AuA1 uAz)-m 

so by definition 2.7, (t, X) e ~ (Cl 1 II Ct 2). The inverse holds for a similar reasoning. 0 



www.manaraa.com

81 

In what follows, we define the hiding operator on acceptance automata. As it was pointed 
above, divergent processes can not be modelled by means of acceptance automata. Since the 
hiding operator might cause divergence, even when applied to non-divergent processes, it is 
impossible to define a total operator over acceptance automata, while preserving the failures 
semantics. In order to overcome this difficulty, we first introduce the notion of divergence-free 
automaton, and then define hiding as a partial operator. 

Definition 2.14 [Jos 88] Given an acceptance automaton Cl = (A, I.,1., M, --+),and a set of 
events Ah s;;; A, we say that Cl is divergence free with respect to Ah, if the following holds: 

'V s e traces(Cl). -,'V n e N. 3 t e Ah•. #t > n" st e traces(Cl) 

Lemma 2.15 The acceptance automaton Cl = (Au Ah, I.,1., M, --+),is divergence free with 

respect to the set of events Ah iff there exists a well founded set (0, <) and a metric: 

ro: reach(Cl) --+ 0 
satisfying: 

'V S E Ah, 0' --+5 0''. 0>(0'') < 0>(0') 
This is a simple consequence of the definition of well-founded set 

Definition 2.16 Given an acceptance automaton Cl = (A u Ah, I., 1., M, --+ ), which is 

divergence free with respect to the set of events Ah, Cl after hiding Ah, denoted by 0.\Ah, = 
(A, I., 1., Mh, -+h), is defined as follows: 

1) Mh s;;; I. x 'P(A), is the smallest relation satisfying: 

'V 0' e I., me M(O'). (Ah n m) = 0 ~me Mh(O') 

'V O'p 0'2 e I., m1 e M(0'1), m2 e Mh(0'2), s e (Ah n m1). 

0'1 -+s O'z ~ (mcAh) u mz. mz e Mh(0'1) 
2) -+h s;;; I. x A x I., is the smallest relation satisfying: 

'Vee A, 0'1 -+e O'z· 0'1 ~he O'z 

'VeE A, s E Ah, 0'1 -+s 0', 0' -+e O'z· 0'1 -+he O'z 

Although this definition is recursive, 0.\Ah is well-defined unless Cl is not divergence free 

with respect to the set of events Ah. Otherwise, if et. is divergence free then there might exist 
paths of inestable states, the last element in such a path being a stable state. However, there will 
never exist closed paths made up of inestable states. Basically, this definition causes the copy of 
menus from the final state up to the initial state in such a path. 

Fact 2.17 If 0. is an acceptance automaton, which is divergence free with respect to the set of 
events Ah,then Cl"\ is an acceptance automaton. 

Fact 2.18 If Cl = (A u Ah, I., 1., M, --+) is divergence free with respect to the set of events 



www.manaraa.com

Ah, then the following predicates hold: 

'V t e traces (C.t). ti A e traces(CI.\Ah) 

'V t e traces (CI.), cr e Cl./t, me M(cr). 

82 

m () Ah = 0 => (3 crh e (CI.\Ah)/(ti A). me Mh(crh)) 
This is simple to prove by induction on the lenght of t. 

Lemma 2.19 Given an acceptance automaton Cl = (A u Ah, ~. t, M, ~ ), which is 

divergence free with respect to the set of events Ah: n:' (CI.\Ah) = n:' (CI.)\Ah 

Proof Let (th, X h) e n:' (Cl )\Ah, then, from the definition of the hiding operator in the failures 

model, there exists (t, X) e n:' (CI.), such that: 

tiA = th,X=XhuAh 

Now, from defmitions 2.1 and 2.7, there are cr e Cl./t and menu me M(cr) such that: 

X=XhuAh5;; AuAh -m 

Thus, m () Ah = 0. Then from fact 2.18 there exists a state crh e (CI.\Ah)/th, such that 

me Mh(crh). So by definition 2.7, (th, Xh) e n:'(Cl\Ah). 

The inverse holds for a similar reasoning.O 

3. Standard Acceptance Automata 

In the previous section, the basic notions and operations concerning acceptance automata have 
been introduced. It is important to remark that acceptance automata, as defined in 2.1, might 
exhibit some non-desirable features. For instance, they can include non-reachable states. As it 
will be discussed below, this was necessary in order to define the most interesting operations: 
parallel composition and hiding. In this section we select a particular class of acceptance 
automata, the so-called standard acceptance automata, that will serve as the basis both for 
defining and comparing processes, possibly in a mechanical way. Through this section we 

assume an acceptance automaton Cl. = (A, :E, t, M, ~ ). 

Definition 3.1 Cl. is said to be junk free if: 

'V cr e ~. 3 t e traces(CI.). cr e Cl./t 

Fact 3.2 We can always define the corresponding junk free acceptance automaton junk

free(CI.) = (A, reach(CI.), t, M*, ~*),with the same failures semantics as Ct. M* is defined as 
the smallest relation satisfying: 

'V cr e reach(CI.), me M(cr). me M*(cr) 

Similarly,~* is defmed as the smallest relation satisfying 

'V cr, cr' e reach(CI.), e e A. cr ~e cr' => cr ~* e cr' 

Obviously, since there is no interest in considering non-reachable states, we could try to 



www.manaraa.com

83 

restrict the definition of acceptance automata to those tuples with this property. Nevertheless, it 
must be observed that the parallel composition of junk-free automata does not define, in 
general, another junk-free automata. The same holds for the hiding operator. Thus, if we want 
to define those operations over acceptance automata, it must be posible for them to have non
reachable states. This is of no concern because, as it has been pointed above, it is always 
possible to define the equivalent junk-free automata. 

Definition 3.3 Cl is said to be unambiguous if: 
V t e traces (Cl). I Cl/t I = 1 

We will use the term ambiguous when referring to an acceptance automaton that is not 
unambiguous. 

The following examples define an ambiguous and an unambiguous automaton, both with 
the same failures semantics: 

A={a,b} 
:E = {0, 1, 2} 

t=O 
M = {(0, {a}), (1, {b}), (2, 0)} 

--7 = { (0, a, 1), (0, a, 2), (1, b, 2)} 

A={a,b} 
:E = {0, 1, 2} 

t=O 
M = {(0, {a}), (1, 0), (1, {b}), (2, 0)} 
--7 = {(0, a, 1), (1, b, 2) 

As it is shown in this example, the process defined by an unambiguous acceptance 
automaton is not in general deterministic. Moreover, the process defined by an ambiguous 
acceptance automaton could be deterministic. This motivates our next definition: 

Definition 3.4 Cl is said to be a deterministic automaton if it is unambiguous and: 
V t e traces (Cl), 0' e Cl/t. I M( 0') I = 1 

Fact 3.5 The parallel composition of unambiguous automata defines another unambiguous 
automata. This is trivial from the definition of the parallel composition, and in particular, from 
the definition of its transition relation. 

Observe that the hiding operation applied to an unambiguous acceptance automaton does 
not define, in general, another unambiguous acceptance automaton. The menu relation was 
included in the definition of acceptance automata to model the non-deterministic behaviour of 
concurrent systems. The intuitive idea is that non-determinism should be represented by the 
existence of several menus in a given state. However, the use of ambiguous acceptance 
automata allows the modelling of non-deterministic behaviour, even when there is a unique 
menu associated with every reachable state. According to this, it might seem appropiate to 



www.manaraa.com

84 

restrict the definition of acceptance automata to those which are unambiguous. This is not 
possible if we want to define the hiding operator over acceptance automata. In what follows we 
show how to deal with this situation defining the equivalent unambiguous acceptance 
automaton. 

Definition 3.6 The unambiguous form of Cl is the acceptance automaton Clur = (A, ~f' tur• 

Mur, ~ur> defined as follows: 

• ~ur= traces(Cl)/ =, 

where = f;; traces(Cl) x traces(Cl), is defined as the smallest relation satisfying: 

V t}. t2 e traces(Cl). Cl/t1 = Cl/t2 => t1 = t2 

• tur= [<>] 

• Muff;; ~uf x iP (A), is the smallest relation satisfying: 

V t e traces (Cl), cr e Cl/t, me M(cr). me Mur([t]) 

• ~uf f;; ~uf x A x ~uf• is the smallest relation satisfying: 

V t e traces(Cl), e e A. te e traces(Cl) => [t] ~ufe [te] 

Lemma 3.7 Given an ambiguous acceptance automaton Cl and its unambiguous form Ctur= Cl 

= Clur 

For finite acceptance automata, there is an effective procedure to build its unambiguous 
form. 

Definition 3.8 Cl is said to be saturated if: 
V cr e ~.me iP(A), m' e M(cr). m' f;; m f;; next(cr) =>me M(cr) 

Note that the parallel composition and hiding of saturated automata define another saturated 
automata. Moreover, given a non-saturated acceptance automaton, the derivation of its saturated 
form is trivial and it is easy to prove that its failures semantics is the same. This fact is directly 
reflected in the TCSP laws. 

Definition 3.9 Given an acceptance automaton Cl, we say that it is in standard form if it is 
junk-free, unambiguous and saturated. 

This is the most important concept in this section. It must be observed that for finite state 
acceptance automata we can build mechanically its standard form. Moreover, the result of this 
transformation process is unique, regardless of the definition of the original automaton. The 
main interest of this reduction procedure will be made clear in the next section. 

4. Minimal Automaton 

Given a non divergent TCSP process 11?, there are many standard automata exhibiting its 



www.manaraa.com

85 

behaviour. The purpose of this section is to explore the category SAut (IP) of all the standard 
automata that have lP as semantics. The morphisms will be a restricted version of the classical 
notion of bisimulation that we call a simulation. We show that in this category there exist both 
initial and final objects. The initial one or maximal automaton is the automaton with the greatest 
number of states corresponding to the TCSP normal form [Nic 85]. The fmal one or minimal 
automaton is the automaton with the least number of states. For practical purposes this is the 
most interesting one. For finite acceptance automata there is an efective procedure to compute 
their fmal versions. 

Definition 4.1 Given a non-divergent process in the Failures Model lP = (A, 3", .19 ), with 

3" ~A* x 'f(A) and .19 = 0, its maximal acceptance automaton Ct1(1P) = (A, :E,1, M, ~). 
is defined as follows: 

• A is the alphabet of lP, 

• :E = { t e A*, (t, 0) e lP}, 

• 1 is the empty trace <> 
• M ~:Ex 'f(A), is the smallest relation satisfying: 

'V (er, F)e lP. ('V (er, F') e lP. F ¢ F') =>-,Fe M(er) 

'V ere :E, me 'f(A), m' e M(er). m' ~ m ~ next(er) =>me M(er) 

• ~ ~ :E x A x :E, is the smallest relation satisfying: 

'V (er, 0), (ere, 0) e 1P. er ~e ere 

The first line in the menu relation introduces as menus the complements of the maximal 
refusal sets after a given trace. The second line is the convex closure of the previous menus 
[HoJi 85]. It is interesting to note that the menu relation conveys more information than an 
alternative refusal relation as used for instance in [AGS 90]. From the first one it is immediate 

to obtain the second one (see definition 2.7). To do the opposite we need next(er), the set of 

possible events after a trace er, i.e. we need also to look at transition relation, i.e. at the whole 
failures set. 

It is obvious to see that this definition satisfies the constraints of an acceptance automaton, 
in particular those of a standard one, and that its failures semantics coincides exactly with the 
original process lP. In fact, this maximal automaton is exactly the TCSP term in normal form 
that can be constructed from the failures set as in [Nic 85]. 

Now we proceed to the construction of the category: given the non-divergent TCSP process 
1P, let SAut (IP) be the class of all the standard acceptance automata that have lP as semantics. 

Definition 4.2 Given Ct 1 = (A, :El' 11' M 1, ~ 1), Ct 2 = (A, Ez, 12, M 2, ~2) standard 

automata, we say that a mapping f: :E1 ~ Ez is a morphism or a simulation from Ct 1 to Ct2 if it 
satisfies the following conditions: 

1) f(11) = t 2 

2) 'V ere :E1• M1(er) = M2(f(er)) 



www.manaraa.com

86 

3) 'V cr -+1 cr'. f(cr) -+2 f(cr') c c 

A simulation is a particular case of the notion of bisimulation that can be adapted to acceptance 
automata in the following way: 

Definition 4.3 Given standard acceptance automata Cl 1 = (A, :El' l.p M 1' -+ 1) and Cl2 = 
(A,~. t 2, M2, -+2) a bisimulation ojCl. 1 and Cl.2 is a relation B s;;; :E1 x ~.satisfying: 

1) (tp ~) E B 

2) 'V (<>"p 0"2) e B. M1(0"1) = M2(cr2) 

3) 'V (O"p o-2) e B, e e A, o-1 -+1c 0", o-2 -+2c cr'. (cr, cr') e B 

The difference between a general relation and a mapping is that the last one will allow us to 
go from automata with more states to automata with less states. 

Lemma 4.4 Given standard acceptance automata Cl 1 and Cl 2, Cl 1 = Cl 2 iff there exists a 

bisimulation between Cl1 and Cl2. 

!J:QQf Let us first see the following fact : 
If B is a bisimulation of Cl1 and Cl2 then the following predicate holds: 

'V t etraces(Cl1). (Cl 1/t, Clit) e B 

Where Cl 1/t, Cl. 21t denote the unique state reached after the trace t. This is simple to prove by 
induction on the lenght oft. From this fact and definition 2.7, it follows that if there exists a 

bisimulation of Cl1 and Cl2 then Cl1 = Cl2. The opposite is also simple to prove. Given that Cl1 

= Cl2, let us define B s;;; :E1 x ~ to be the smallest relation such that: 

'V t e traces(Cl 1), o-1 e Clit, o-2 e Cl 2/t => (O"p o-2) e B 

B trivially satisfies conditions 1 and 3 of definition 4.3. Then from Cl1 = Cl2 and the fact that 

they are standard, it comes condition 2. So B is a bisimulation. 0 

It its easy to prove that the composition of morphisms gives another morphism and that it is 
associative with the identity morphism being the identity mapping. So SAut (lP) together with 
all the morphisms defined between them turns out to be a category. 

In SAut (lP), an isomorphism will be a bijective morphism and two isomorphic automata 
will be in fact equal up to renaming of states. As usual, there will be a morphism from the initial 
object (if it exists) to any other object in the category and from any object to the final one (if it 
exists). The initial and final objects (if they exist) are unique up to isomorphism. We shall see 

that these objects exist in SAut (lP). 

Lernma 4.5 Given lP, the maximal acceptance automaton Cl1 (lP) is initial in SAut (lP). 



www.manaraa.com

87 

Proof: Given any acceptance automaton Cl e SAut (lP) the mapping f:traces(Clr (lP)) ~ :E, 

defined by f(t) = CJ./t, where Cl/t denotes the unique state reached after the trace t, is a morphism 
and it is unique. This follows from lemma 4. 4. 0 

Now we proceed to the proof of existence and construction of the final automaton ClF (lP) 
of SAut(lP ). First, we need the concept of congruence and of quotient automaton by a 
congruence. 

Definjtjon 4.6 Given an standard acceptance automaton (!). = (A, :E, 1, M, ~ ), a 

congruence in Cl is an equivalence relation = s;; :E x :E satisfying the following properties: 

1) 'V crl' cr2 e :E. cr1 = cr2 => M(cr1) = M(cr2) 

2) 'Vcrl'cr2 e :E,ee A.cr1 =cr2 Acr1 ~ccrAcr2 ~cJ.l.=>cr=Jl 

Definition 4.7 Given an standard acceptance automaton Cl = (A, :E, 1,.M, ~) and a 

congruence = in (!). the quotient acceptance automaton of (!). by =. denoted by Cl/= = (A, re, 
ta, M..,, ~=) is defmed as follows: 

1) re = :E/Q, is the quotient set of :E by= 

2) 1= = [1] 

3) M..,([cr]) = M(cr) 

4) [cr] ~e [cr'] iff cr ~e cr' 

It is immediate to show that this definition is independent of the representative cr chosen for 

the class [cr]. There is a strong connection between congruences and simulations as the 
following lemmas show: 

Lemma 4.8 Given an acceptance automata Cl = (A, :E,1, M, ~)and a congruence= in Cl, 

the mapping f: Cl ~ CJ.!= defined by f( cr) = [ cr] is a simulation. 

Proof Properties 1, 2, and 3 of definition 4.2 are a direct translation of properties 2, 3, and 4 of 
definition 4. 7. 0 

Lemma 4.9 Given acceptance automata Ct 1 = (A, :El' 11' M 1' ~1) and Ct 2 = (A, .:Ez,tz, 
M2, ~2), with Cll' CJ.2 e SAut (lP), if there is a simulation f: CJ. 1 ~ CJ.2, then the equivalence 

relation in :E1 defined by: 

a 1 = cr2 ifff(cr1) = f(a2) 

is a congruence in Ct 1 and CJ.tf= is isomorphic to CJ.2• 

frQQf 

1) =is a congruence: 



www.manaraa.com

88 

condition 1 of definition 4.6 follows directly from condition 2 of defmition 4.2. With 
respect to condition 2 of definition 4.6, let us assume: 

cr1 --+1e cr1', cr2 --+2e cr2' and f(cr1) = f(cr2) 

by being fa simulation we have 

f(cr1) --+2e f(cr2') and f(cr2) --+2e f(cr2') 

then, as Cl2 is standard f(cr1') = f(cr2') so cr1' = cr' 
2) First observe that: 

\:1 cr2 e L2• 3 t e traces(Cl2). ( cr2 } = Ctit 

and as fis a morphism: f(cr1) = cr2, where ( crd = Cl/t. So f is smjective. 

Then, the mapping f*: Ct /= --+ Ct2 defined by: 

f*([cr]) = f(cr) 

is a biyective morphism and Ct /= is isomorphic to Ct2. 0 

As a consequence, doing the quotient of an automaton by a congruence, preserves the 
behaviour. 

Definition 4.10 Given an acceptance automata Ct = (A, L, t, M, --+) and two congruences 

::1, ~ in Ct, the sum =1 + ~ s;;; L x L is defined as the transitive closure of =1 u ~· 

Fact 4.11 Given an acceptance automata Ct = (A, L, t, M, --+)and two congruences =1' =2 

in Ct. the sum =1 +~is another congruence on Ct. 

Since the identity mapping on states is a congruence, and since the sum and intersection of 
two congruences is another congruence, the set (Cong(Cl), s;;;), with Cong(Cl) denoting the 

family of congruences in Cl, turns out to be a complete lattice. Let us now denote by =p(Cl) the 

maximum congruence on Ct constructed by suming up all the congruences on Ct. 

Definition 4.12 Given a non-divergent process TCSP process lP its minimal acceptance 
automaton Clp(l?) is defined by Cll1P)/=F(Cl1(1P)). Given an acceptance automaton Ct, we will 

use the term normal form, denoted by Ct.!., when referring to the corresponding minimal 
automaton. 

Lemma 4.13 ClF(l?) is final in SAut(l?). 

Proof We need to show that for all Ct in SAut(lP), there is a unique morphism f: Ct--+ ClF(l?). 

As Cl1(1?) is initial, there exists a unique morphism f1: Ct1(1P) --+ Ct and congruence =:r such that 

Cl1(l?)t=:r is isomorphic to Ct. Also there is a unique morphism fF: Ct1(l?)--+ ClF(l?) induced by 

=F(Cl1(l?)). As this is the maximum congruence in Cong(Cl1(1?)), we have that =1 s;;; =F(Cl1(l?)) 

and the mapping f: Cl --+ ClF(l?), defined by f([tJr) = [t]F for any trace t, is well-defined. It is 



www.manaraa.com

89 

straightforward to show that f is a morphism, and since fp = f • f1, f must also be unique. 0 

Fact 4.14 If Ct(lP) is finite, then the procedure for computing Ctp(IP) is algorithmic. The 
procedure will be an adapted version of the Moore algorithm [Woo 87]. 

This fact provides in many situations an effective mean to verify the correctness of parallel 
systems. The complete method, already advanced in [PA 89], will consist of the following 
steps: 

• specify the system at the outermost level. Construct the acceptance automaton Ctsp of the 
specification. Let us assume that it is finite 

• implement the system as a parallel composition of automata Ct 1, .. , Ct n• with 

synchronization alphabet A 
• use the defmitions in this paper to compute the automaton Ctimp = (Ct 1 II .. II Ctn)\A 

• verify that the normal forms of Ctsp and Ctimp are isomorphic, Cl 5PJ. = CtimpJ. 

The normal form of an automaton with n states can be computed in time O(n3) by the adapted 
version of the Moore algorithm. The complete proof methos needs the explicit construction of 
the parallel composition Ct 1 II II Ctn with a worst case exponential in the number of states. If the 
refinements are done in small steps there is hope that this combinatorial explosion can be 
controlled. In any case the design of a large parallel system will always be done by refining one 
process at a time. 

5. Refinements 

Usually the implementation of a system is obtained by first composing in parallel a family of 
subsystems and then hiding those events corresponding to their internal activity. Asking the 
implementation to behave exactly like the specification amounts to say that their initial 
(respectively final) forms are isomorphic. Nevertheless this is a too strong requirement in most 
situations. For this reason we will adopt the notion of refinement as defined in the Failures 
Model, and provide an alternative characterization in terms of acceptance automata that will be 
amenable to mechanical verification. 

Definition 5.1 Given acceptance automata Ctsp and Ctimp' Ctimp is said to be a refinement of 

Ct sp• denoted by Ct imp 1: Ct sp• if :}' (Climp) ~ :}' (Ct ~· 

Definjtjon 5.2 Given an acceptance automaton Ct = (A, :E, 1, M, --+) it is said to be dead

lockfree if: 'V cr e reach(Cl). 0 $ M(cr) 

Lemma 5.3 Let Clsp = (A, :Esp' tsp• Msp• -+5P) and Climp = (A, ~mp' timp• Mimp' -+imp) be 
initial acceptance automata: 

Ctimp 1: Ctsp iff 'V t e traces(Ctimp>. (t e traces(Ct~ A Mimp(t) ~ M5P(t)) 

where Mimp(t), Msp(t) ~ 13(A), denote families of menus. 



www.manaraa.com

90 

A similar fact might be stated by comparing the respective final forms. In this case, a means 
for relating states in the specification and implementation must be provided in the form of a 
relation over states. Most often, this relation will be a mapping even though this is not the 
general case. 

Fact 5.4 Let Cl sp = (A, 1:sp• tsp' M sp• --7 sp) and Cl imp = (A, 1:imp' timp' M imp' --7 imp) be 

final acceptance automata. Climp is a refinement of Clsp if there exists a relation <ll s;;; L.unp x 1:sp 

satisfying: 

(timp' tsp) E <I>, 

'V (crimp• crsp) E <I>. Mimp(crimp) s;;; Msp(crsp) 

'V (crimp' crsp) E <I>, crimp --7impc !limp' crsp --7SPc llsp' (!limp' llsp) E <I> 
We shall use the term abstraction relation when referring to this relation. 

Fact 5.5 Given acceptance automata Clsp and Climp• if Clsp is dead-lock free and Climp is a 

refinement of Clsp then Climp is dead-lock free. 

This is a general fact concerning refinements and coming from the Failures Model. Besides 
that, fact 5.4 provides an effective procedure for proving correctness of refinements when 
dealing with finite state systems. Although this is the case with a great number of interesting 
problems, finite state systems are far from being the general situation. The following fact 
attempts to handle this problem. 

Fact 5.6 Let Clsp = (A, 1:sp• tsp• Msp• --7 5P) and Climp = (Au Ah, 1:imp• timp• Mimp• --7imp) 

be standard acceptance automata. Provided that Climp is divergence free w.r.t Ah, then Climp\Ah 

is a refinement of Clsp iff there is a relation <ll s;;; ~mp x 1:sp satisfying: 

• ( timp' tsp) E ci>' 
'V (crimp' crsp) E <ll, m E M imp( crimp). 

m (') Ah = 0 =>mE Msp<crsp) 

m (') Ah -:F. 0 => m- Ah next(cr5~ 

• 'V (crimp• crsp) E <ll, crimp --7impc !limp' crsp --7spc llsp' (!limp' llsp) E <ll 

• Y;f (crimp' crsp) E <I>, s E Ah, crimp ~imps J.l.imp· (Jlimp' asp) E <I> 

Observe that if Cl sp and Cl imp are in initial form, then this relation is in fact a mapping ][: 

traces(Climp) --7 traces(Clsp), defined by 1£(t) = ti A. 

References 

[AGS 90] Autebert, J.M., Gabarro, J., Serna, M.J. "Finite memory CSP and CCS 

devices." Internal Rport, Departamento de Lenguajes y Sistemas Informaticos, 

Universidad Politecnica de Catalufia (1990). 



www.manaraa.com

[BHR84] 

[Hen 85] 

[Hen 88] 

[Hoa 85] 

[HoJi 85] 

[Jos 88] 

[Nic 85] 

[OH 86] 

[Par 81] 

[PA 89] 

[Woo 87] 

91 

Brookes, S.D., Hoare, C.A.R., Roscoe, A.W. "A Theory of Communicating 

Sequential Processes." Journal of the ACM 31 (1984) 560-599. 

Hennessy, M. "Acceptance Trees." Journal of the ACM 32 (1985) 896-928. 

Hennessy, M. Algebraic Theory of Processes. MIT Press (1988). 

Hoare, C.A.R. Communicating Sequential Processes. Prentice-Hall (1985). 

Hoare, C.A.R., Jifeng, H. "Algebraic Specification and Proof of Properties of 

Communicating Sequential Processes." Tech. Rep. PRG-52 (1985) Oxford 

University Computing Laboratory. 

Josephs, M.B. "A state-based approach to communicating processes." 

Distributed Computing 3 (1988) 9- 18. 

de Niccola, R. "Two Complete Axiom Systems for a Theory of Communicating 

Sequential Processes." Information and Control64 (1985) 136-172. 

Olderog, E.-R., Hoare, C.A.R. "Specification-Oriented Semantics for 

Communicating Processes." Acta Informatica 23 (1986) 9-66. 

Park, D. "Concurrency and automata on infinite sequences." Proc. 5th GI Con/. 
of Theoretical Computer Science, LNCS 104 (1981) 245-251. 

Peiia, R., Alonso, L.M. "Specification and Verification of TCSP Systems by 

Means of Partial Abstract Data Types." In Proceedings TAPSOFI''89, LNCS 

352 (1989) 328-344. 

Wood, D. Theory of computation. John-Wiley (1987). 



www.manaraa.com

Models for dynamically placed concurrent processes 

J. FANCHON, D. MILLOT (*) 

Laboratoire de Recherche en Informatique, CNRS UA 410, 

.Bat 490, Universite Paris-Sud, 91405 Orsay Cedex. FRANCE 

Telephone: (+33) 1.69.41.64.32 ,Telefax: (+33) 1.69.41.65.86 E-mail :fanchon@lri.lri.fr. millot@lri.lri.fr. 

(*) Institut National des Telecommunications, 

9 rue Charles Fourier ,91011 EVRY. 

Abstract : We define a formal framework to model executions and dynamic placement of 
programs on networks of processors. It provides an equational characterization of programs 
with respect to their expansion. 
Key-words: true concurrency, partial orders, operational semantics, bisimulation, dynamic 
placement, networks . 

Introduction 

We define formal models for dynamically placed concurrent programs on networks of processors. A 

programmer is not supposed to know the particular topology of a network on which his program is going 

to execute, neither what the load of processors at the time of execution will be. We suppose he has a 

special parallel operator noted pllq, with the following meaning: execute p on the current processor and 

(if possible) execute q elsewhere (see [MV]). When a process pllq begins to execute, the network first 

expands the process q on a target processor, by mean of a particular action called expansion, which 

involves both source and target processors, and then the parallel execution of p and q is performed. This 

operator is asymmetric, thus loosing commutativity for the semantics reflecting this particularity. It is 

necessary to have a new symbol because events can still be causally independent, which is a symmetric 

property denoted by the usual II symbol. 

Our purpose is to model the executions of such programs, and moreover, characterize them by the way 

they expand on any network. 

Formally, we use a now well defined method: a program is a term of an initial algebra, from which we 

syntactically derive a transition system, which models the executions of the program on an abstract 

machine. Usually the states are terms, the initial state is the term we want to model, and transitions are 

triples 

term ---action--->term' 



www.manaraa.com

93 

meaning that the term on the left can execute the action, and then behaves like term'. This gives the so

called operational semantics. Then different semantic equalities can be defined on terms by identifying 

those whose transition systems have similar behaviours, by means of bisimulation relations [ Mi] [Po] 

[GV]. 

The current semantics based on this method depend mainly on two criteria: 

1) what is an action labelling a transition. 

In interleaving models, the transitions are labelled by elementary actions executed by any of the processes 

executing concurrently, and an execution of a term is described by a concatenation (total order) of such 
elementary actions, leading to the equation allb = ab+ba. Alternatively a transition can be labelled by a 

multiset of concurrently executable elementary actions, or step. In that case the previous equation does not 

hold but allb +ab = allb holds. Finally labels can be partially ordered sets labelled by elementary actions, 

where two events are ordered if and only if they causally depend on each other [Pr] [BC][Wi].This leads 
to "truly" concurrent models, and we follow this scheme. From now on, we call actions or computations 

such labelled posets. 

2) what is taken into account in the computations when defining a bisimulation. 

In strong bisimulations, all the components of the actions are taken into account [BC][GV]. In 
observational equivalences, one choses a subset of 'observable elementary actions', and two terms are 

identified through bisimulations taking into account only such observable events. We shall use both 

methods in the following. The question is : what do we want to observe? 

As we model executions of programs with the parallel operator described above, we want to observe the 

partial ordering of elementary actions of the different concurrent processes, but also to observe the 
expansion of the program in a network. Due to the variety of networks, we look for syntactic properties of 

programs which would imply properties of their executions on any network. 

For that purpose we introduce the expansion operational semantics of a term, in short e-semantics, which 

describes its potential expansion on an ideal infinite graph. In this semantics, a state of the transition 

system is not a simple term, but a tree-like representation of a term modeling the expansions which 
occured before that state was reached: 

- the initial state of an execution is a single node labelled by the term to execute. 

- a state (the program at a particular stage of an execution) is a directed tree with nodes labelled by terms, 

object called expansion tree, in short e-tree, where a new labelled node has been added each time an 

expansion has been executed (This view can be related to the Petri-net operational semantics for CCS as 

defined in [DDM] or [Old], where states arise from the decomposition of terms in sequential components. 

E-trees can be viewed as complete sets of such components together with a topological aspect). 
In this framework, an elementary action occurs at a particular node of an e-tree: 

-the elementary actions are pairs (node(s), action), called elementary expanded actions, recording the 

action executed (which can be an expansion), and the node(s) where it occurs (two for an expansion, one 

for the other actions). 

-the computations labelling transitions, called expanded actions or computations, are posets labelled by 
such pairs. 



www.manaraa.com

94 

On such transition systems, we can define bisimulations focusing on different aspects of the expanded 

computations: hiding the node aspect leads to a commutative semantics of the parallel operator, hiding 

occurences of expansions and flattening e-trees to obtain simple terms leads to a semantic very close to the 

model in [BC]. 

We can also project on occurences of expansions, thus identifying terms which have the same behaviours 

w.r.t expansion. The obtained bisimulation relation is not a congruence w.r.t. the choice operator. We 

exhibit the largest congruence included in that relation and we give a set of equations which is correct and 

complete for this congruence : the quotient algebra is then characterized equationally and this is the second 

contribution of this work. 

Topics like sequencing, (implying distributed termination), communication (both synchronous and 

asynchronous) and recursion, are partially worked out and will be added in a next paper. 

The last part of the present paper gives an example of how this model applies to execution of programs on 

realistic networks: we define a placed operational semantics to model the executions of a term on a 

particular graph, where the vertices model processors and the edges give the directions for a program 

expansion from a vertex. This definition of a network only considers a neighbouring relation on 

processors. In particular we abstract from quantitative aspects like links speeds or processors 

performances. When a program p 11 q executes on a processor, the network has to choose on which 

processor the program q is going to expand. We make this choice depend only on the neighbouring 

relation. This allows a direct relation with the previously defined expansion semantics by means of the 

placement of the e-trees and their computations. In particular the placement of computations can be related 

to the tasks graph allocation problem (see [PS]), and a further work is to take into account quantitative 

aspects of both programs and networks. In particular, depending on such quantitative constraints on 

programs, one may look for the best suited semantic equality: a bisimilation relation could take some of 

these constraints into account so that equivalent terms for such a relation will have similar behaviours on 

more realistic networks. 

1 Preliminaries: labelled posets and partial words 

In this section, we give some general definitions on labelled partial orders which we use to define the 

computations of terms in both expanded and placed semantics. Most of these notions are well known [Pr], 

in particular the isomorphisms of labelled posets, leading to partial words or partially ordered multisets , 

and the concatenation and parallel operators on labelled partial orders and partial words 

Given an alphabet A, we call A -labelled poset, in short A-LP, a triplets= (E, ~. 1) where 

(i) E is a finite set of elements, the events, 

(ii) ~ is a partial order on E, 

(ill) 1 : E -> A is a labelling function. 



www.manaraa.com

95 

An isomorphism so B SI between two A-LP is a one-to-one mapping of their events sets preserving order 

and labelling. From now we consider an A-LP as a representative of its isomorphism class, and we call 
partial words on A, noted PW(A) the set of isomorphism classes of A-LPs (also called pomsets on A in 
[Pr] ). We can view A as a subset of PW(A) , by identifying an element a in A with the A-LP ( { e}, =, 1) 
where l(e) = a. 

We note 1 the class of the empty A-LP : 1= (!!l, !!), !!l) . 

We define on A -LP's the operations of sequential and parallel composition. 

Given two A -LP's so and SI. we define their sequential (resp. parallel) composition as the A -LP obtained 

by juxtaposing so and SJ, and setting the relationS (resp. no extra relation) between the events of so and 
SI. Formally, assuming Si = (Ej, Sj, li) fori e {0, 1 }, if we call E the disjoint union of Eo and EI, i.e. E = 
{Ox, x e Eo} U { 1x, x e EI}, we define: 

so; SI = (E, S, 1), where ix Sjy ~ (i = j and x Si y) or (i = 0 andj = 1), 

l(ix) = li(x) 

and so II si = (E, s, 1), where ix S jy ~ i = j and x Si y 

l(ix) = li(x) 

These operations are defmed up to isomorphism: 

so~ so' and SI ~ si' => (so; SI ~so'; si') and (so II SI~ so' II si'). 
They are then defmed on PW(A). 

We defme the prefixing of an A -LP by an element in A as the sequential composition a.s = a;s. 

For'all p, q, i in PW(A): 

(p ; q) ; r = p ; (q; r) , 

(p II q) II r =p II (q II r) , p II q = q II p , 

1;u =u;1 =u ', 111u =i.JII1= u. 

We note D(A) the subset of PW(A) finitly generated on A U { 1} by the sequencing and parallel 
operators. 

Let B and C be two alphabets , a morphism f: D(B) --> D(C) is entirely defined by the image of elements 
in B : f(1) = 1 , and f(u op v) = f(u) op f(v), "op" standing for";" and "II". 

An A-LP s1= (EI, SI, II) is a sub-A-LP of s2 = (E2, S2, l2) if and only if 

(i) EI c E2 

(ii) SI=S2/EI 

(iii) II= l2/E1. 

An A -LP s1 = <EI. SI, II) is a prefix of an A-LP s= (E, S, 1), and we write s1 s s, when 
(i) s1 is a sub-A-LP of s 

(ii) 'It X E s1, y $X=> y E sl 

We call residue of s relative to s 1, noted sis I, the sub-A -LP of s whose elements are in E - E I , 
i.e. Sis I=( E- EI, $/E- EI , 1/E- EI ). 

The defmitions of prefix and residue extend to partial words in an obvious way. 



www.manaraa.com

96 

2 The expansion model 

2.1 Syntax for the expansion model 

We start from an alphabet A of atomic actions not containing the symbol e, and use it throughout the 

paper. The terms we consider are a simplified version of CCS terms, defined from the constant Nil by 

prefixing with an action in A (a.p), choice (p+q) and parallel composition (pllq). Then we define e-trees, 

together with some operations needed in the structured transition relation on e-trees. Finally we define the 

syntax of expanded computations, introducing a special symbol e not belonging to A, denoting an 

expansion. 

Terms 

The set of terms T is the initial algebra on the following one sorted signature : 
constants : Nil, unary operators : { a._, a e A} , binary operators : _ + _ and _ll _. 

or equivalently the language generated by the following grammar : 
p :=Nil I a.p I p 11 pIp+ p for all a e A. 

E-trees 
Definitions : We call tree domain a prefix closed subset of N*, the set of words on N (where we use 

N instead of N+ for the set of strictly positive integers). The empty word e is called root, each word is a 

node, and maximal elements are leaves. 

We only consider tree domains for which if m.i is a node (where m is a word on N and i is an integer), 

then m.j is also a node, for every integer j < i. 
We defme the width at depth 1, of a tree domain D as the number w(D) of one letter words contained in D. 

Definition : 

An e-tree is a mapping 1t from a tree domain denoted dom(1t) to the set of terms T.We note eT the set of 
e-trees. The elements of dom(1t) are the nodes of 1t. 

We call root-e-tree an e-tree with only one node. A term p can be identified with the root-e-tree 1t such that 
1t(e) = p , and we consider T as the subset of root-e-trees in eT: T c eT. 

The width at depth 1 of an e-tree 1t is the width (at depth 1) of its domain: w(1t) = w(dom(1t)). 

Operations on e-trees 

An occurence of a term t within an e-tree 1t is a node m of 1t such that 1t(m) = t. The e-tree 

1t[m +- t] is derived from an e-tree 1t by substituting term t to the image of node m : 

dom(1t[m +- t]) = dom(1t) 

lr:/ m' e dom(1t), if m' * m then 1t[m ~ t](m') = 1t(m') 

1t[m ~ t](m) =1 



www.manaraa.com

97 

If m is a node of an e-tree 1t, the sub-e-tree of 1t at occurence m, denoted 1tfm• is the e-tree such that : 

dom(1tfm) = {m' e N* I mm' e dom(1t)}, and 

V m' e dom(1t/m), 1tfm(m') = 1t(mm') 
Thee-tree 1t[/m +-- 1t1l is derived from an e-tree 1t by substituting thee-tree 1t1 to the sub-e-tree 1tfm as 

follows: 
dom(1t[/m +--1t1]) = (dom(1t)- m.dom(1t/m)) u m.dom(1tl ) 

1t[/m +-- 1t1](m') = 1t(m') form' e dom(1t) with m' *- mm" 

1t[/m +--1t1](m") = 1t1 (m") ifm' = mm" 
It can be noticed that 1t[/m +-- 1ttml = 1t. 

Given two e-trees 1t1 and 1t2 and a term p, thee-tree 1t1 E9p 1t2 is obtained by sticking back the branches 
issued from the roots of 1t1 and 1t2 to a single root with image p. The width (at depth 1) of thee-tree is the 
sum of the widths of 1t1 and 1t2. 
So thee-tree 1tl E9p 1t2 is defined by : 

let Wl = w(1tl) and w2 = w(1t2) , then 
dom(1tl E9p 1t2) = dom(1t1) u { (w1 + i)m, i e N, me N*, im e dom(1t2)} 

i.e. w(1tl E9p 1t2) = W1 + W2 

Vie dom(1tl ep 1t2) n N, 

if i ~WI. then (1tl E9p 1t2)/i = 1t1[1 

if w1 <i ~ w, then (1tl E9p 1t2)[1 = 1t2fi _ w1 

(1tl E9p 1t2)(£) = p 

Expanded actions 

We define the sets of elementary expanded actions and expanded computations fore-trees. The first ones 
are pairs ( node, action) , the seconds partial words of such pairs. The particular symbol e denotes an 
expansion. Such an expansion occurs when a node m of dom(1t) is such that 1t(m) = p 11 q ; if i = w(1t/m) 
(i.e. i is the greatest integer such that mi e dom(1t)), 1t executes the expansion (m(i+ 1),e), and the domain 
of the resulting e-tree 1t' is dom(1t') = dom(1t) u{m(i+ 1)}, with 1t'(m) = p and 1t(m(i+ 1))= q. 

Definitions. 
The alphabet )E of elementary expanded actions is the set reunion : 

lE={(m,a)lme N*,ae A}u{(rni,e)lme N*,ie N} 

Such an action has a corresponding set of associated nodes defined by : 
(i) nd((m, a)) = {m} 

(ii) nd((mi, e))= {m, mi} 

The set eD of expanded actions is the least subset of D(}E ) containing )E and the elements defined by the 
following rules: 

if (a e JE and cr e eD) then a.cr e eD, and nd(a.cr) = nd(a) u nd(cr). 
if (cr, 't e eD and nd(cr) n nd(t) =Ill) then cr II t e eD, and nd(cr II 't) = nd(cr) u nd(t). 



www.manaraa.com

98 

Finally we define two morphism from eD to eD as the extentions to eD of the following mappings from lE 

tolE: 

Prefixing with m, with me N*: m.(m', ce) = (mm', ce), for ce e Au {e}. 

Adding kat depth 1, with k e N: k.(im, ce) = ((k + i)m, ce), with i e N, ce e Au {e}, 

We have nd(m.O') = {mm' I m' e nd(O')}, and nd(k.0') = {(k + i)m I im e nd(O')}. 

2.2. Expansion operational model 

We define the expanded transition system ST(t) associated to a term t. It is a quadruple 

ST(t) = (eT,eD,->,t) , tis the initial e-tree and the transition relation -> is a subset of eT xeD x eT. This 

relation depends on the structure of e-trees, and is defmed by a particular set of inference rules. Compared 

to the usual rules defining a transition relation on terms, these depend both on the tree structure of e-trees 

and the values of the nodes. 

The transition relation . 
We note 1t1-0'~ 1t2 for ( 1t1 ,0', 1t2) e -> , -> is the least subset in eT x eD x eT generated by the 

following set of rules, where p and q denote terms (i.e. root e-trees): 

EOO => 7t-l~ 1t 

EOl 

E02 

Ell/2 

ae A 

p-0'~1t 

p-0'~1t 

=> a.p -(e,a)~ p 

=> a.p -(e,a).O'~ 1t 

=> p +q-0'~1t 

q +p-0'~1t 

E21 1t1-0'~ 1t2 and 1t/m = 1t1 => 1t -m.O'~ 1t[/m f- 1tz] 

=> 

E22 1t(E) = p and p -0'~ 1t1 

=> 

t\ m.O' A 
~ID 

W(1t)'O' ... 

E23 1t-O'~ 1t1o 1t-'t~ 1t2 with nd(O') 11 nd('t) = fll 



www.manaraa.com

99 

=> 1t -crllt-+ 1t1 such that dom(1t1
) = dom(7ti) u dom(7t2) with 

I I I 1 h 1t /nd(cr) = 7ti. 1t /nd(t) = 1t2, 1t = 1t e sew ere 

E31 => p .11 q -(1, e)-+ 1t where dom(1t) = (e, 1 }, with 1t(e) = p and 1t(1) = q 

E32 p .11 q -(1, e)-+ 1t and 1t -cr-+ 1t1 => p .11 q -(1, e).cr-+ 1t1 

(l,e) 

1\ 
(e, a) (1, b) 

Fig1: The transition system of a.Nil.llb.Nil. 

The expanded actions (which are partial words) labelling the arrows between the ( circled) e-trees are 

represented by directed graphs labelled by elementary expanded actions. 

Computations of e-trees. 
The computations of an e-tree 1t are the expanded actions cr such that 1t -cr-+ 1t • for some e-tree 7t1• 

Any prefix of a computation is a computation of the same e-tree, and leads to an e-tree which can execute 

the residue : 

Lemma 2.3: 
1t ---cr-.+ 1t •, and cr1 S cr, then 1t ---cr1-+ 1t1 and 1t1 ---crlcr1 -+ 1t • for some e-tree 1t1. 

Lemma 2.4 
If 1t ---cr1-+1t1 and 1t1--cr2 -+ 1t ', then it exists cr such that 1t -cr-+ 1t ', cr1 :!> cr and cr2 = crlcr1. 



www.manaraa.com

100 

The following lemma relates the computations of pll q to the ones of p and q: 

Lemma2.5: 
pll q -0"--+1t => :3 np, nq, O"p, crq: p -O"p--+1tp , q -crq--+7tq, a= (1, e).(1.0"plll.crq), and 
1t = 1tp e [7tp(e)] n'U1 <- nq ], where n' is thee-tree such that dom(n') = { E, 1), n'(E) = p and n'(l) = q . 

Recursion. 
Recursion can be introduced in this semantics, after adding process variables and a recursion operator on 

terms: p :=Nil I x I a.p I p+p I pll p I llX·P 

The rule for recursion is : 

P[llx.p/x] -a-+ 7t 

2.3. Bisimulation semantics 

For each term we defined an expanded transition system, from which we derive its (expanded) 

computations. We define here different bisimulations on transition systems, depending on what we 

observe about the computations. First we define different abstractions on computations, then we associate 
a particular bisimulation to each of these abstractions. Finally we focus on the so-called expansion 
bisimulation, giving an equational characterization of the obtained equivalence on terms. 

Abstraction from nodes . 
We first identify expanded actions which only differ by the node part of their components. 
Let u : D(}E) --> D(A U {e)) the morphism defined by u(m,d) = d for all (m,d) in JE , we say a and 't 
are equivalent on AU {e), we note a =u 't , iff u(cr) = u('t) . 

Abstraction from expansions and nodes. 
We abstract from nodes and observe only events in A, thus eliminating expansions. 
Let p : D(JE) --> D(A) the morphism defined by p(m,a) =a if a* e, p(m,e) = 1 , we say a and 't are 
equivalent onA,wenotecr =a 't ,iffp(cr)=p('t). 

Projection on expansions. 

We identify expanded actions which have same projections on expansion events (m,e). 
Let e: D(JE) --> D(N*.N) the morphism defined by e(m,a) = 1 if a* e, e(m,e) = m , we say a and 't 
are equivalent for expansion, we note a =e 't , iff e(cr) = e('t) . 

Remark: we don't want to hide the nodes where expansions occur, since we would loose an important 
part of the information, and go back to a commutative parallel operator . 



www.manaraa.com

101 

The bisimulations : 

Definition : let = be an equivalence relation in eD x eD, we say that a relation R in eT x eT is a 

bisimulation of two e-trees 1t1 and 1t2 with respect to = , iff : 

1) R(7t1 , 1t2 ) 

2) 1t1 -cr1-7 1t1' => 3 0'2 , 1t2' so that 7t2 -0'2-77t2', R(1t1', 1t2') and 0'1 = 0'2. 

3)7t2 -cr2-7 1t2' => 3 0'1, 1t1' so that 7t1-0'1-7 1t1', R(1t1', 1t2') and 0'1 = 0'2. 

1t1 and 1t2 are said bisimilar with respect to = iff such a bisimulation exists. 

The following is a standard result :the relation of bisimilarity w.r.t an equivalence on eD is an equivalence 

relation on eT x eT . 

For each congruence on D(lE) defmed previously , which restricts in an obvious way to eD , we defme a 

particular bisimulation on eT : 

Definitions: 

We say 1t1 and 1t2 are strongly equivalent , noted 1t1 = 1t2 , iff they are bisimilar w.r.t. equality of 

expanded actions. 

We say 1t1 and 1t2 are u-equivalent, noted 1t1 =u 1t2, iff they are bisimilar w.r.t =u . 

We say 1t1 and 1t2 are a-equivalent, noted 1t1 "'a 1t2 , iff they are bisimilar w .r.t =a. 

We say 1t1 and 1t2 are e-equivalent, noted 1t1 "'C 1t2, iff they are bisimilar w.r. =e. 

We now restrict these equivalence relations in eTxeT to TxT. As we want to make equational calculii on 

terms, we look for congruences in T. Only the first two equivalences are congruences for all the operators 

prefixing, choice and parallel composition on terms. The equivalences =a and "'Care not congruences for 

the choice operator (In particular we have NilllNil =a Nil, but we have not NilllNil +p "'a p for all 

terms p; the left term can execute an invisible expansion and then stop, when the second may have any 

other behaviour ). 

Theorem 2.1 

The restrictions of "'• "'U, "'a and "'e to TxT are congruences for the prefixing and parallel operators. The 

restrictions of = and "'ll to TxT are congruences for the choice operator . 

Lemma 2.6: 

=C=u C=a and=C"'C. 

Lemma 2.7. 

We have p+q =x q+p, p+(q+r) =x (p+q)+r, p+p =x p, Nil+p =x p+Nil =x p , for any equivalence =x in 

{=,=u,=a, "'C}, and for all terms p,q,r. 

Lets name C the following set of equations : 

Cl: p+q = q+p C2: p+(q+r) = (p+q)+r 

C3:p+p=p C4 : Nil+p = p+Nil = p 

As = and "'U are also congruences , the lemma shows that the equations C are valid in both the quotient 

algebras T/"' and T/=u. 



www.manaraa.com

102 

There is no place here to show the consistency of the equivalence za w.r.t semantics for terms built with 
the usual II operator, which are roughly characterized by the following transition rules [BC]: 

p -U-7 p' ~ p II q -U-7 p' II q 

q -V-7 q' ~ p II q -V-7 p II q' 

p -U-7 p', q -V-7 q' ~ p II q -u II v-7 p' II q' 

In these models , the parallel operator is commutative . 

Theorem 2.2 : 
For all p and q in T , pll q zu q ll p and pll q ""a q ll p. 

Since ""U is a congruence , pll q = q ll p is valid in T/""u . 

2.4. Expansion semantics 

This is the semantics we are most interessed in . The problem arises from the fact that the equivalence 
w.r.t. expansion ""e is not a congruence for the choice operator: we note that for any term p and action a, 
a.p and p are e-equivalent, from the rule a.p -(e,a)-7 p.The bisimulation relation is identity on e-trees 

together with the pair (a.p, p). 

But if p = r ll s , for any term q note-equivalent top , we do not have a.p + q ""e p + q, because the 
left side can execute (e,a) (by definition (e,a) =e 1), and rewrites in p , when the second may have to 

execute an expansion as first action, and sop and p+q would have to be e-equivalent. 

Following the tracks of Milner , we define the greatest congruence included in it , and then caracterize it 
equationally. 

Theorem 2.3: 

The equivalence relation on TxT noted aoe , called expansion congruence , and defined by : 
p se q <=> ( Vr e T p+ r ze q + r ), 

is a congruence for all prefixing , choice and parallel operators and it is the greatest one included in ""e . 
The proof uses the following lemma: 

Lemma 2.7: 

for all a, b in A , p ,q, r in T , we have 

1) p ""e q => a.p =e b.q 

2) r =e q => a.(p + q) + r =e a.(p +q) 

3) (p =e q and r ze s ) <=> pll r aoe qll s 

Let's name E the following set of equations : 

EO: a.p = b.p E1 : a.(b.p) = a.p E2: a.(p + q) +p = a.(p +q) 

E3 : a.pll q = pll q E4 : pll b.q = pll q 

for all a, b in A ,p,q in T . 



www.manaraa.com

103 

Let S = C U E , and =s the congruence generated by S on T , we have the result that the set of equations 
S is correct and complete for the expansion congruence, i.e. two terms are e-congruent if and only if they 
are equal in the equational theory of S , =s . This theorem is the characterization theorem of expansion 

congruence : 

Theorem 2.4: 
The expansion congruence is the congruence generated on T by the equations S: 

for all p, q in T , p =s q <=> p ~e q . 

3. The placed model 

The purpose of this section is to show how the expansion semantic defined above can be used when a 
program executes on a network of processors defined as a graph whose vertices model processors and 
edges give the directions for a program expansion from a vertex. 

We define the placed operational semantics of a term on a network as a particular transition system, whose 
states, called configurations, describe the network at a particular stage of a computation : to each vertex is 
associated the multiset of terms currently executing on it. An action occurs on a particular vertex, 
eventually two vertices for an expansion. All the actions occuring on the same vertex are totally ordered in 
a placed computation. We show that a configuration corresponds to a so-called placement of an e-tree in 
the expansion semantics of the executing term. A placement of an e-tree on a network is a graph morphism 
mapping the nodes of thee-tree into the set of processors. In particular only computation leading toe-trees 
injectively embeddable in the graph of the network can be executed in true parallelism on that network. 

3.1. Placed operational semantics 

When modeling the executions of a term on a network, one has to chose an initial configuration, i.e. a 
vertex on which the term initially executes. All other vertices are iddle. 

The elementary actions, called placed actions, contain the information of the processor(s) on which they 
execute, a single one for actions in A, pairs of processors for expansions. A computation is a partial word 
of such placed actions.The transition relation defines which (placed) computations can be executed from 
any particular configuration and the resulting one. 



www.manaraa.com

Networks and Configurations 

Definitions: 

104 

Let G=(V,E) be a non-oriented graph, i.e. Eisa symmetric relation included in VxV. 

A configuration on G is a mapping 

h:V-->NT 

For each vertex i of G h(i) is the multi-set of terms executing on it 
We call Co the set of configurations on G· 

The choice of a target processor for an expansion could be modeled by a function 
next: Cox V -> [f>(V), or more deterministically, next: c0 x V -> Vu {a}, making the choice 

depend on the configuration (where next(h,i) =a would forbid any expansion from i in the configuration 

h, meaning the network is saturated). For now, we make the simple assumption that a term expands either 

on a neighbour of i for the relationE in VxV, or on the processor i itself, i.e. : 

V' i, next(i) = {i} u {j I (i, j) e E}. 

In particular an expansion from a vertex i towards any vertex in next(i) is always possible. In the rules Pl, 

P2 and P3 below, defming the transition relation from a configuration to another, the only condition for an 

expansion from vertex i to vertex j is that j belongs to next(i) and does not depend on the particular 

configuration in which the expansion occurs. 

Placed actions 

We represent the elementary actions executed on a network , elementary placed actions, by pairs: the first 

part represents the processor(s) (two for an expansion ), on which it occurs, the second part, the action 

symbol. 

A placed action or computation is a partial word of such elementary placed actions so that the ones placed 

on a same processor are totally ordered. 

Definition: the set Ap(G) of elementary placed actions on G is the set reunion 

Ap(G)= {(i,a),ie V,ae A} u {((i,j),e),ie V,je next(i)}. 

We omit G in Ap(G) whenever there is no confusion. 

Proc is the mapping Ap -> !J>(V) which maps a placed action on the corresponding processor(s): 

(i) Proc((i, a)) = {i} 

(ii) Proc(((i, j), e)) = {i, j} 

We then define the set of placed actions as a particular subset of partial words on Ap: we cannot here 

defme placed actions from Ap and the operators ; and II , as we require any two elements whose labels 

have a common processor to be ordered. We define on Ap-labelled posets a concatenation operator noted 

"*" , which is a particular form of what Pratt calls local concatenation. 



www.manaraa.com

105 

Definitions: 

Let (E,$;,1), (E',$;',l')e Ap-LP , then (E,$;,1) * (E',$;',1') = ( EuE' , $;*, lul') , where $;* is the least 

order containing the set $; u $;' u { ( e,e') e ExE' , Proc(l(e))n Proc(l(e')) ¢ l2i}. 

This operator is defined on partial words, i.e. : soB so' and s1 B s1' => (so* s1 B so'* s1') 

The set Do of placed actions on G is the set of isomorphism classes of Ap labelled posets generated 

by the following grammar : 

u := a I u*u a e Ap . 

For u = (E,$;,1) e Ap-LP , the set of processors of u is Proc(u) = Ue e E Proc(l(e)) . 

Lemma3.1: 
Let u = (E,$;,1) in Do , then for all e, e' in E : 

e->e' => Proc(l(e))n Proc(l(e')) ¢ l2i ,where e->e' <=> ( e $;e' and (e$;x$;e' => x=e or x=e')) 

Proc(l(e))n Proc(l(e')) ¢ l2i => e$;e' or e'$;e. 

The transition relation (Placed operational semantics) 

In this semantics the transition relation is a subset of c0 x Do x c0 , i.e. a configuration h executes a 

placed action f.l. and rewrites in another configuration h', noted h-f.l.--7 h'. We first define a simple 

transition relation in TxAxT, noted -->s, which does not involve parallelism. Only terms which can 

execute an action involving a single processor (local action) are concerned. It is generated by the following 

rules: 

S1 
ae A 

S2 
p -a--7s p' 

=> a.p -a--7s p 

=> p+q -a--7s p' 

q+ p--a--7s p' 

The placed transition relation is the least subset of c0 x Do x c0 , generated by the following rules, 

using the preceding ones : 

PO 
If a term on a processor i can execute a local action a , the configuration can execute the placed action (i,a) 

and rewrites accordingly: 

if h(i)(p) > 0 and p -a--7s p', 

then h -(i, a)--7 h' with h'(j) = h(j) when j¢i, 

h'(i)(p) = h(i)(p) - 1 and h'(i)(p') = h(i)(p') + 1 

P1 

If the term p ll q executes on processor i and j belongs to next(h,i) , then the configuration can execute an 

expansion of q on j by means of the placed action ( (i,j),e) and rewrites accordingly : 



www.manaraa.com

P2 

106 

if h(i)(p l1 q) > 0 and j e next(i) 

then h -((i, j), e)~ h' with h'(l) = h(l) when l;ei, j, h'(i)(p IE q) = h(i)(p IE q)- 1, and 

ifi = j 
if p = q, then h'(i)(p) = h(i)(p) + 2 

else h'(i)(p) = h(i)(p) + 1 and h'(i)(q) = h(i)(q) + 1 

ifi ¢ j 

h'(i)(p) = h(i)(p) + 1, and h'U)(q) = h(j)(q) + 1 

Defines the possible choice of an expansion: 

if h(i)(pllq + r) > 0 and j e next(i) 

P3 

then h -((i, j), e)~ h' with h'(l) = h(l) when 1 ¢i, j, and 

h'(i)(p l1 q + r) = h(i)(p l1 q + r)- 1, 

ifi = j 

like P2, but with r + pllq. 

if p = q, then h'(i)(p) = h(i)(p) + 2 

else h'(i)(p) = h(i)(p) + 1 and h'(i)(q) = h(i)(q) + 1 

ifi ¢ j 

h'(i)(p) = h(i)(p) + 1, and h'U)(q) = h(j)(q) + 1 

The last rule is the only one which builds computations from simpler ones 

P4 
h -u~ h', h' -v~ h" ~ h -u*v~ h". 

This means in particular that ifProc(u)nProc(v) = !11, we have h-ullv~ h". 

Remark: one can now relate a placed computation to the A-labelled poset obtained by abstracting from the 

vertices, and what appears is the interleaving of events from concurrent processes executing on the same 

node. On another hand one can also project on the vertices, and see an execution from the loading point of 

view. 

The prefixes of a placed computation of a configuration are computations too and so are the obtained 

residues. This last point is due to the particular function next: 

Lemma3.2: 
h-1-t~ h', and Ill=:; ~-t. then h-Ill~ h1 andhl-1-tl!ll ~ h 'for some computation h1. 



www.manaraa.com

107 

a 

e-trees 

1\ 
b '\ 

f 

a 

1\ 
b 1'\ 

d f 

• a a,d 

b 

Configurations 

Fig 2.:Placements of e-trees. The venical arrows represent the placement relation between e-trees, 

(upwards) and configurations. Horizontal arrows represent the transitions. Computations are not 

represented. 

(6, a) 

(£,c) 

__ (E.,..b)---1(~2,e?/ 
~2,a) 

(l.l,d) 

(l.l,e)~ 
. (l,a) 

(x,c) 
(x,b) ((x,~ 

(x,a) /~'-....... ~ ----~•,(z,d) 
((x,y),e) (z,a) 

((y,z),e) ~ (y,a) 

Fig 3. Placement of a computation of the term : a.(( b.(c.Nillla.Nil))ll (a.Nillld.Nil)). 

The vertices of the network are x,y and z, the root is placed on x , the node 1 on y, nodes 2 and 1.1 on z. 



www.manaraa.com

108 

3.2 Relation with the e-semantics 
The behaviours of a term on a network, as defined in the placed semantics, depend on the graph of the 

network and the initial configuration. We show in the following how they are related to thee-semantics of 

the considered term, whatever are the network and the initial configuration, mapping e-trees on 

configurations and expanded actions on placed actions. 

Placement of an e-tree 
We say that a configuration his a placement of an e-tree 1t on 0 if and only if there is a mapping 

cp : dom(7t) --> V such that 

1) (cp(m), cp(mi)) e E, or cp(mi) = cp(m) for all mi e dom(7t), i e N. 

2) h(v)(p) = Card({m e cp-1(v) 17t(m) = p}) 

Placement of an expanded action 
A placed action ll = (E, ~. lp) is a placement of an expanded action cr = (E, S, 1) if and only if 

1) for any e in E, the second members (elements of Au( e}) of lp(e) and l(e) are equal: 

pr2(lp(e)) = pr2(l(e)) 

2)for all events e1 and e2 in E : 

if e1 S e2, then e1 ~ e2 

Notation: 
We note Pl c eT x Co and P c eD x Do the relations: 

Pl(7t,h) <=> (his a placement of 7t). 

P(cr,j.l.) <=>(!lis a placement of cr). 

The placement relation between e-trees and configurations induces a bisimulation-like relation between the 
(expansion) transition relation in eT x eD x eT and the (placed) one in Co x Do x Co modulo the 

placement of expanded actions on placed actions. 

Theorem 3: 
if Pl(7t,h) then : 

1) 1t ---cr~ 1t' => 3 ll, h' so that h -!l~ h', Pl(1t' ,h') and P(cr,j.l.) . 

2) h -!l~ h' => 3 cr, 1t' so that 1t -0"~ 1t', Pl(1t' ,h') and P(O",j.l.) . 

The proof of 2) uses the fact that if a term may expand from a vertex to another, it does not depend on the 

configuration. The assertion 1) could hold even if some conditions on expansions where added, depending 

on the configuration. 

On can consider an expanded computation as a task graph, and a further work is to look how the 

investigations and results on placements of task graphs can be applied. 

Conclusion : 
This first attempt to model dynamic expansion of programs on networks led to : 



www.manaraa.com

109 

1) a new formal framework to model executions , both in an abstract way depending on syntax and in a 

concrete way depending on networks. 

2) a first powerful result of equational characterization of programs, which justifies our formalism. 

3) their possible application to distributed programs and systems. 

[BC] G. Boudol, I. Castellani, Concurrency and Atomicity, Theoretical Computer Science 59 (1988), 

pp. 25-84 

[DDM] P.Degano,R.De Nicola ,U.Montanari, CCS is an augmented contact1ree CIE system.,LNCS 

280,1987,pp 144-165. 

[GV] R.van Glabeek,F.Vaandrager,Petri nets models for algebraic theories of concurrency, LNCS 259 

(1987) 224-242. 

[Mi] R. Milner, Lectures on a Calculus for Communicating Systems, in : Proc. Seminar on Concurrency, 

LNCS 197, 1985, pp. 197-220 

[MV] D. Millot, J. Vautherin, True Parallelism on an Unknown Topology, RR. 502, LRI Univ. Paris

Sud, july 89 

[Po] L.Pomello,Some equivalence notions for concurrent systems, LNCS 222 (1986) 381-400. 

[Pr] V. Pratt, Modeling Concurrency with Partial Orders, International Journal of Parallel Programming, 

vol 15 (1), 1986, pp. 36-91 

[PS] C.C.Prince, M.A.Salama, Scheduling of precedence-constrained task on multiprocessors The 

Computer Journal Vol33 (3) 1990, pp 219-229: 

[Wi] G.Winskel, Event structures ,LNCS 255 (1987) 325-392. 



www.manaraa.com

FORMALISATION OF THE BEHAVIOR OF ACTORS BY COLORED PETRI NETS AND 
SOME APPLICATIONS* 

Yamina Sami t 
Guy Vidal-Naquet t * 

t Laboratoire de Recherche en lnfonnatique, URA 410 CNRS, 

Universit6 Paris-Sud, 91405 Orsay Cedex, France 

e-mail: sami@lri.lri.fr 

* Ecole Superieure d'Electricite, Plateau de Moulon 

91190 Gif Sur Yvette Cedex, France 

ABSTRACT 

In this paper we present a formalisation of actors by colored Petri nets. In order to do that, we give a 
structural description of an actor program which makes it easy to obtain a colored Petri net with the 
corresponding behavior. We give a sketch of the proof that the derived colored Petri net reflects the 
behavior of the corresponding actor program. We shnw how this formalisation allows a translation of 
dynamic system into static one which has some applications. Finally we discuss some other possibilities for 
deriving a colored Petri net, and we put this formalisation in perspective with other works. 
Keywords : actors, parallel languages, dynamic systems, static systems, colored Petri nets. 

1 INTRODUCTION 

Several models have been proposed for concurrent computation, for each model different choices were 

made. They concern the kind of basic computation unit that is used, the expression of concurrency, the 

type of communication and synchronization, the possibility, if any, of extension and reconfiguration. One 

can find an overview of these different models in [AnSc83], [BaStTa89). The CSP model [Hoa78] is based 

on synchronous communication and static creation of processes during run time. One of the goals for these 

choices is simplicity, which allows a whole corpus of results on CSP. These choices naturally bring 

restrictions in tenn of power of expression. It is argued in [LiHeGi86] that synchronous communication 

and static creation of processes have limitations that prevent some essential requirements of concurrency to 

be satisfied. In particular "the principal concurrency requirement is the following : if one activity within the 

module become blocked, other activities should be able to make progress". These restrictions bring 

difficulties for the modeling of open systems which present changes and continuous evolution, and where 

the closed-world assumption cannot be made [Hew85]. 

• This work was suppMed by lhe Esprit basic researsh Action No 3148 : DEMON. 



www.manaraa.com

111 

The Actor model [Agh86a] for parallel computation presents many features like encapsulation, 

delegation and asynchronous communication [Agh86b]. It has two features that programmers find useful in 

a language expressing parallelism : 

- Dynamicity of the number of actors :processes can be created by an explicit instruction, or implicitely, 

(like in [Jon 86]). 

- Dynamicity of the links between actors : links are not established before execution of the processes (at 

compilation time), therefore addresses of actors may be computed and communicated during execution. 

Although, as argued in [BaVi91], actors retain the same computing effectiveness as the PRAM model, 

one of the prices to pay for these possibilities is the difficulty of analysis and proof for programs written in 

languages supporting them. Theoretical models have been proposed in order to establish a theoretical basis 

for the study of such languages. For example in DCCS [HoKoRa89] an operator is added to CCS in order 

to express dynamic creation of ports, which introduces the possibility ofreconfiguration. 

In this paper, we show how to represent an actor program l!y a colored Petri net (called CPN in the 

following). The execution of an actor program will correspond to the "token game" of the corresponding 

CPN, which means that the dynamic aspects for the creation of actors and the modification of links , will 

be taken into account by the evolution of the tokens. In order to prove the correcteness of this formalisation 

we compare it with the semantics given in [Agh86a]. We remark that in fact this translation represents a 

translation of a dynamic system with a variable number of processes and a dynamic interconnection between 

processes, to a static system with fixed number of processes and fixed interconnection between them. A 

static interconnection represented essentially by transitions of CPN. We present some other ways of 

modeling, which represent other ways of representing dynamic systems by static ones. 

The aim of this work is not to just show an equivalence between the formalism of actors and the 

formalism of CPN, but to serve as a basis for future work which analyse actors program by using the tools 

of CPN, and a step which must lead to an efficient simulation and implementation of actors. 

2 ACTORS 

The first important work done in the area of an Actor model is found in [Hew77], where computation and 

control structures (recursion and iteration) are expressed as patterns of message passing. 

A general goal of the actor model was to increase the degree of parallelism, by splitting information and 

control as much as possible between actors, and by making the information needed by an actor as available 

as possible at any time during execution . 

It was necessary to establish some laws which had to be respected by actors in order to cooperate. In 

[HewBak77], requirements that must be respected by two fundamental orders of events, activation and 

arrival orders are examined. These two orders are related to a notion of global time. These requirements are 

revised and justified in [Cli&l]. The formal work in the area of actors is contained essentially in [Cli81], 

[Agh84] (and recaptured in [Agh86a] ), [JaRo89] . All these works describe an operational behavior that 

give a snapshot of the states of the different actors, and of the messages. In spite of the efforts made to 

have as much parallelism as possible, and to destroy sequential relations between actions, it is sometimes 

necessary to restrict parallelism in a fair and efficient way. This leads to different kinds of actors. 



www.manaraa.com

112 

In order to explain our representation, we give here the main aspects of the actor model found in [Agh86a]. 

Informally, an actor can receive, process and send messages. The situation of an actor is defmed by 

its behavior, and by its acquaintances : 

- A behavior is constituted by several scripts, each script corresponds to the treatment of a message. 

- The list of acquaintances of an actor specifies the other actors to which it can send messages. 

As described in [Agh86a], the computation in actors system is made by asynchronous point to point 

message passing. This means that : 

-When an actor sends a message, it must know the address of the recipient actor. 

- The processing of a message can be delayed (but not indefinitely). 

In an actor system, messages arrive in a nondeterministic way. An actor processes a message within 

an environment defined by : 

(i) the list of acquaintances, 

(ii) the script and 

(iii) the contents of the message, called the communication list. 

The processing of a message by an actor can lead to: 

(i) a change of its behavior and/or its list of acquaintances, 

(ii) an emission of a message to an actor whose address is known, this means that this address belongs to 

its list of acquaintances, or to the communication list, 

(iii) the creation of a new actor, with the specification of its behavior and the initialisation of its list of 

acquaintances. 

The actor model as given in [Agh86a] does not allow an assignment command. Every time an actor 

receives a message, it must create a new entity, a replacement machine. This replacement machine 

corresponds to a situation of the actor, and has to execute the message within this situation. These different 

machines are related to the same actor and may correspond or not to different situations. For this reason we 

have two kinds of actors called &ril!l and~: 
- For a serial actor, the processing of a message leads to a change of situation, and the next message can 

be processed only after this change is realized (this means that a replacement machine is created). Note that 

this kind of actor, can be viewed as playing the same role as monitors of Hoare [Hoa74] and is useful for 

modeling shared ressources [HeAtLi79],[HeReAgAt84]. 

- For an unserial actor, several messages can be processed in parallel, the replacement machine being the 

same for all messages. 

In contrast to what was suggested in [JaRo89], where each actor processes only one message at a 

time, in our model, we suppose, like in [Agh86a], the existence of the two kinds of actors, and the 

possibility for an actor to execute several messages simultaneously. 

In this paper we present some examples in a language inspired by SAL, a declarative actor language 

based on Algol and described in [Agh86a]. In our language the program is constituted by two parts. The 

frrst part consists in behaviors definition. The second consists in the initialisation, where initial actors are 

created, and initial messages are sent to them. In the following we give the basic commands. 

become : corresponds to a change of behavior and/or of the value of acquaintances list, we suppose (like 

in SAL) that all behaviors are known at compilation time. In addition to what is included in SAL we 

suppose that a behavior to which an actor pass is known at compilation time. 



www.manaraa.com

113 

send : corresponds to an emission of a message to some specified actor. 
let : corresponds to a temporary extension of the environment, in which an actor works. This extension is 

done by a creation of actors whose addresses have to be used in a specified package of commands. 

conditional command : is defined as usual. 
Now, we give a grammar for the language used in this paper. Terminal symbols are shown with bold 

characters. For concision's sake, some non terminals are not completely explicited. 

<behavior definition> :=der <behavior name> (<acquaintance list>) [<communication list>] <command> end der 

<command> :=<conditional command> I <become command> I <send command> I <let command> I! <command> I* 
<become command> := become <behavior name> (<acquaintance list>) 

<Send command> := send <communication list> to <target> 

<conditional command> := ir <logical expression> then <command> (else <command> I ri 
<let command>:= <let binding> {<command>} 

<let binding> := let <actor name> = new<behavior name> (<acquaintance list>) ( and <let binding> I 
<actor program> := (<behavior defmition> 1 * (<let command> 1* 

An acquaintance list is constituted by identifiers which represent addresses of actors, a communication 

list is constituted by heads, each head is followed by a specific list of identifiers and is related to a specific 

message to which this behavior can react. 

Note that in a script attached to a type of message within a behavior, there must be at most one 

executable command "become". In the absence of this command, the replacement machine created is the 

same as the original. In contrast to the assumption made in [JaRo89], where commands contained in one 

script are executed in an arbitrary order, we suppose, like in [Agh86a] that the commands of a script are 

executed concurrently. An actor modifies his internal state and concurrently modifies its external 

environment, all the operations concerning the external environment are done concurrently. 

In other words concurrency in the actor model comes from the concurrent treatment of messages, as 

well as the concurrent execution of commands[AgHe85]. 

2 COLORED PETRI NETS. 

The basic ideas for using colored nets are the following : The colors of the tokens are used to differenciate 

actors, and to represent the information of messages. Subnets will correspond to the different scripts. The 

firing of a transition will correspond to an action being executed. 

In this paper we essentially follow the definition found in [Jen86]. 
Definition 1 :A CP-matrix is a 6-tuple N=(P, T, C, 1_, I +• Mo), where 

(1) P is the set of places. 
(2) Tis the set of transitions. 
(3)P l"l T=fZJandP uT;otfZJ. 

(4) Cis the color-function defined from P v Tinto non-empty sets. 
(5) I_ and I+ are linear functions of multisets, they are called the negative and positive incidence-function 

and are defined on PXJ.', such that: l_(p,t), I +(p,t) e [C(t)Ms~(P)Mshfor all (p,t) e PXJ.', 



www.manaraa.com

114 

(6) 't:lpt:P 3tt:T: l_(p,t) ¢0 v l+(p,t) ¢0 and '1:1 tt:T 3pt:P: I_(p,t) ¢0 v l+(p,t) ¢0. 

(7) Mo the initial marking is a function defined on P, Mo(P) E C(p)MS 't:lp ~: P.+ 

We have the usual notions of a set of transitions being simultaneously firable for a marking, of the 

firing of a transition leading from one marking to another, and of the set of reachable markings. 
A marking of CPN is a function defined on P, such that M(p) e C(p)Ms for all p e P. A step of CPN is a 

function X defmed on T, such that X(t) e C(t)Ms for all t e T. The step X is enabled if and only if: 

'v'peP: I, l(p,t)(X(t))~(p)) 
teT 

When X is enabled at M 1 it may occur and thus transform M 1 into a directly reachable marking M2 defined 

by: M2 = (M1- I_*X) + I+*X. 

Asynchronous communications can be represented in a Petri net, by places used as buffer. 

Another important point is the nondeterminism of transition firing : a frrable transition needs not to be 

fired, when several transitions are firable simultaneously, any subset of these transitions can be fired. 

This nondetenninism leads to the fact that we must deal with fairness. In considering infinite 

sequences of computations, we will consider only fair sequences, i.e. a transition cannot be frrable an 

infinitie number of times, without being fl.red an infinitie number of times. This hypothesis corresponds to 

the hypothesis in the Actor model, that says that every message is eventually treated. 

3 INFORMAL MODELING OF ACTORS BY CPN. 

The basic ideas on how to translate an actor program into a CPN are resumed in the three following points : 

1) An actor program is defined by two parts : 

i) Behavior defmitions, 

ii) Initialisation. 

An actor program evolves by creating actors and messages and by treating messages. 

2) The static component of a CPN is determined by arcs, transitions and places, the dynamic component, is 

determined by tokens. A CPN evolves by moving tokens from one place to another place, by changing their 

structure, by producing some tokens, and by consuming others. 

3) In order to simulate an actor program by a CPN, we will map the static component of the actor program 

onto the static component of the corresponding CPN, and the dynamic component of the actor program onto 

the dynamic component of the CPN. This leads to the conclusion that behaviors of an actor program are 

represented by subnets in the graph of the corresponding CPN, messages and actors are represented by 

tokens in the CPN. The colored Petri nets are very well adapted because the structure of the token can be 

complex. We will have several types of tokens, carrying different types of information. 

We distinguish two kinds of tokens : 

(i) actor-tokens corresponding to actors : their structure will include the address of an actor followed by its 

acquaintances list, 

(ii) message-tokens corresponding to messages : their structure will include the address of the receiver , 

followed by the selector of the message and the contents of the message. 

The behavior of the associated CPN is similar to an actor interpreter, which associates to every created 



www.manaraa.com

115 

actor, a new address (color). This address enables to recognize an actor in the system. The evolution of an 

actor program corresponds to the evolution of actor-tokens and message-tokens. 

The creation of a new actor with a specified behavior corresponds to the firing of a transition that puts 

a new actor-token (with a new address, which means that the number of colors must be unbounded) into a 

place of this behavior's subnet 

The change of behavior, corresponds to the firing of the transition transferring the actor-token from 

the subnet of the initial behavior into the subnet of the fmal behavior. 

The emission of a message corresponds to the firing of a transition putting a new message-token into 

a special "communication place". 

As appeared implicitly in [Agh86a], a preconditions to any execution is the presence of an active actor 

and a message sent to this actor in order to begin computation. So we think [SaVi90b], independently of 

[Eng90] that the begining of an execution of a script related to some message requires two tokens coming 

from two places. 

The processing of a message corresponds to the ftring of a transition that removes a message-token 

from the communication place and an actor-token from the place corresponding to its behavior. Note that 

this implies the asynchronous nature of message passing. 

In order to construct the CPN modeling an actor program, we need to extract some information from 

the program. The analysis of the subpart "behavior definitions" of an actor program, enables us to deduce 

the following informations, for a given behavior : 

-The behaviors into which an actor with a specified behavior can change, 

- The messages to which an actor having this behavior can respond to, 

- The messages that an actor having this behavior can send, 

- The list of acquaintances associated to this behavior, 

-The commands which may be executed by an actor having this behavior. 

Now we explain with the help of examples, the interpretation in terms of CPN of the change of 

behavior, the creation of actor, and the treatment of messages. 

3.1 CHANGE OF BEHAVIOR :The following example gives a counter behavior that can receive three 

types of messages, an incrementation, a request of value which is transmitted to a customer, or a request to 

become insensitive. 

The change of behavior happens at the execution of a become command. Figure l.b, gives the CPN 

associated to the actor program of Figure l.a. Figure l.b shows that each behavior corresponds to a 

subnet, and that the change of behavior is interpreted by a transition transferring an actor token from a place 

in the subnet associated with the initial behavior, to a place in the subnet associated with the final behavior. 

The subnet corresponding to the behavior "insensitive" is not shown, due to lack of space. 

The enabling of this transition depends on the presence of the message-token and the actor-token to 

which this message is transmitted. The Figure l.b shows the behavior of a serial actor, (which contains a 

become command). 

The creation of a replacement machine is make by the become command in the case of messages 

"incr" and "ins", and in the case of "value" the actor-token is restituted as soon as it is taken. In the case of 

Figure 2.a, where the actor is unserial, there always exists a replacement machine available to process the 

next coming message. 



www.manaraa.com

116 

del counter (n) 
(case operation of 

lncr:() 
value : (cust) 
Ins : () 

end case] 
If operation • lncr then become counter(n+ 1) II 
If operation • value then send {print,n) to cust fi 
If operation • Ins then become lnsensitif (n) fi 

end del 

del Insensitive (n) 
(case operation of 

lncr : () 
value : (cust) 
Ins : () 

end case] 
If operation • lncr then fi 
If operation • value then send (print,n) to cust fi 
If operation • ins then fi 

end del 

let x • new counter (0) 
{send incr to x} 

Figure l.a 

Figure l.b 

3.2 CREATION OF AN ACTOR: The actor program of Figure 2.a behaves in the following way: The 

behavior f with acquintance list (a) computes either a•u or a•u +b. In the first case it receives u and v, it 

does the computation and send the result to v, which has address 0 and the behavior printer (which is 

supposed to be written elsewhere), otherwise, it receives u,b and v, it computes a*u, and then creates an 

actor (with behavior g and acquaintance list (b)) to which it sends a•u and v, this actor will add b to a*u and 
sends the result to v. 



www.manaraa.com

def f(a) 

117 

[case operation of 
op1 : (u,v) 
op2 : (u,b,v) 

end case] 
H operation • op1 then send (prlnt,a•u) to v fl 
If operation • op2 then 

f I 
encldef 

def g(b) 

let y • new g(b) 
{send (op3,a•u,v) to y} 

[case operation of 
op3 : (prod,v) 

end case) 
H operation • op3 then send (print,prod+b) to v fi 

enddef 

let z • new f(2) 
{send (op2,3,4,prlnter)} 

Figure 2.a 

o~ 

Figure 2.b 



www.manaraa.com

118 

The creation of an actor happens at the execution of the let command. Let A be an actor having behavior B. 

We can deduce the behaviors of actors created by A by analysing B. When constructing the CPN shown in 

Figure 2.b, we have a transition from the subnet of the behavior of the creator actor to the subnet of the 

behavior of the created actor. The firing of this transition produces an actor-token in the subnet of the 

behavior of the created actor, due to lack of space, in Figure 2.b we do not give the subnet corresponding of 

the behavior "g", and the subnet corresponding to the treatment of message opl. 

3.3 TREATMENT OF A MESSAGE : Message-tokens are put into a special "communication place" 

that acts as a buffer. This is made possible because of arrival order nondeterminism of messages to actors. 

Communication place play the role of forwarder to other actors. 

The transition corresponding to the treatment of a message by a script, will be made fuable by the 

message-token (which is constituted by an address, a message selector, and the remainder of 

communication list), with the actor-token to which a massage-token is addressed. 

Note that the communication place is indispensable, since the emission and the treatment of a message 

are two distinct actions. 

The place of communications, shown in Figures l.b and 2.b,.may have some incoming transitions 

corresponding to messages transmitted, and some coming transitions corresponding to messages received. 

Emission of a message is translated by the production of a message-token in the communication place, the 

firing of the transition "send" in Figure l.b. The treatment of a message corresponds to the firing of 

transition lvalue; 1• or ljns.l• or ljncr.l in Figurel.b. 

Note that the communication place and the address-generator place simulate the behavior of a mail 

system : every message sent is received, arrival order is nondeterministic. 

Note that a way of constructing the CPN impose that the treatment of a message is not done in one 

step. We can represent this property by adding auxilliary places and transitions, in such a way that between 

the first and the last transition of the treatment of a message no other transition is firable. 

4 CONSEQUENCES FOR THE SIMULATION OF DYNAMIC SYSTEM BY STATIC 

ONE 

Let us consider a net associated with an actor program, for example the net in Figure l.b. 

We see that in this net messages and actors are treated in the same way, i.e. as tokens created or used by 

the subnets that represent the different behaviors and scripts. 

This allows us to view an actor program as a set of static processes each corresponding to a different 

behavior, and with, in addition one specialised process acting as a mailbox (the communication place), and 

one specialised process used to generate new adresses for new actors (the adress generator place). 

Interactions between these processes are also static, and correspond to the different transitions that 

represent the different become, let or send commands. A process works after receiving the message which 

has the status message in an actor program, and a message which has the status actor in an actor program, 

moreover it works in an environment defined partly by the information contained in these two components. 

In this view both actors and messages of an actor program are treated in the same way, as messages 
exchanged between static processes. 



www.manaraa.com

119 

More generally, our method of using CPN gives a mean of representing dynamic systems by static 

ones, and therefore leads to : 

- The possibility of using trace theory (which is typically linked to a system with a fixed number of 

processes}, 

- A method for implementing actors languages using OCCAM. Each behavior being implemented by one 

(or several if one wants concurrent execution of actors having the same behavior) -process. 

5 OTHER WAYS OF MODELING 

5.1 BEHAVIORS AS ACTORS : Note that in deriving a CPN, we have add implicitely some 

behaviors that do not exist in an actor program which we model, i.e. 

- The behavior of the communication place, which consists in buffering messages of actor system, 

- The behavior of the address-generator which consists in generating a different address at each actor 

creation. 

pc:roation 

Figure I.e 

Although these behaviors do not exist in an actor program, they exist in an actor interpreter, and are 

necessary to the functionning of an actor program. So we can add two places one called "aficionados" 



www.manaraa.com

120 

[Agh86a] for side effects and another called creation place. The "aficionados" place allows us to model the 

full version of SAL, as described in chapter3 of [Agh86a], we would not have to foresee a transition 

between a behavior B 1 and B2, where "becomeB2" appears in B 1. 

We have the same phenomenon for the creation of actors. As an example see Figure I.e associated to the 

actor program of Figurel.a. 

5.2 SPLITTING COMMUNICATION PLACE : The communication place which appeared in 

Figurel.b and Figure2.b, can be splitted in order to attribute to each type of message one place. Transitions 

going to each place represent the emission of messages whose kind is associated with this place, and 

transitions coming from this place represent receptions of messages with this kind. 

5.3 MESSAGES AS ACTORS : The association of one place to one type of message, leads to the 

approach of the universe of actors model described in [Agh86a], where expressions, commands and 

communications are themselves actors. So if we maintain also communication place this allows us to have 

messages which themselves can receive and send messages like what is mentioned in [Eng90]. 

6 FORMAL MODELING OF ACTORS BY CPN 

6.1 ANALYSIS OF AN ACTOR PROGRAM: In order to obtain a net from an actor program, we 

need to have a structural description of the program, related more to actions than to data. We speak about 

commands and environment in which these commands are executed. 

From a given actor program AP it is possible, in a syntactic way, to obtain the following sets : B, IE, 

CR, CW, IM, n. In the following we define all these components. 

1) B : Set of behaviors in AP 

B={blb is a behavior in AP (b is represented by an identifier)} 

For the "Counter" actor program, B={ counter,insensitif} 

2) IE : is the initial environment, which consists in a set of couples, (behavior, the corresponding 

acquaintance list). An acquaintance list is a sequence of identifiers, these identifiers represent addresses of 

actors or values. 

IE={ (b,al)/b is a behavior in APAal is an acquaintance list attached to this behavior} 

For the "Counter" actor program, IE= { (counter,n),(insensitif,n)} 

3) CR : This means the reaction capacity of AP, it associates to each behavior a set of messages, which it 
may receive, and react to. These messages consist in a sequence of identifiers, where the first element is a 

selector which identifies a message in AP, the rest consists in a list of identifiers which represent (like in an 

acquaintance list), a set of addresses and values. 

CR={ (b,Smr)/be BASmr={mr/b can react to mr } } 

For the actor program of Figure l.a, CR={ (counter,incr,(value,cust),ins),(insensitif,incr,(value,cust),ins)} 

4) CW: means the work capacity, it is the most important part, and needs several intermediate definitions. 

CW consists in a list of elements, each element gives for each behavior, and for each message the 

instructions of the corresponding script. In a way it is a copy of the program, but with infonnations added 

that enable us to derive a CPN in an automatic way. 

CW={ (b,mr,Sinst}/mre SmrA(b,Smr)e CRASinst={inst (mst is an instruction in the script for the treatment 

ofmrin b} 



www.manaraa.com

121 

Given a behavior b, a message mr to which this behavior can react to, an instruction inst which is 

among the instructions which an actor with behavior b executes when he receives mr, let us define Ty, 

View, Env, Contain. 
Definition 2: Ty(inst) denotes the type of the instruction inst; Ty (inst)e{send,become,let,if}. 

-lfTy(inst)=send 1JwJ. 
inst=(send, View(ms'[1] ,(b,mr,inst)),a)A3b' E Bl(ms'e Smr' A(b',Smr')eCR)Aae Env(b,mr,inst) 

(since an instruction is a sequence, inst[1] refers to the first constituent of inst) 

(View is defined in Definition 2, Env is defined in Definition 4) 

- jf Ty(inst)=become 1JwJ. inst=(become,b', View(al',(b,mr,inst)))A(b',al')e IE 

- jf Ty(inst)=let 1JwJ. inst=(let,SE,Sl)ASE={inst'linst'=(x,(new,b', View( al',(b,mr,inst'))))l(b',al')e IE/IX 

is an identifier} and Sl={inst"!Ty(inst")~: {send,become,if,let}} 

- jfTy(inst)=ifthm inst=(if,boolexp,Sll,S/2) where boolexp is a boolean expression/\ 

Sf 1 ,Sl2={inst linste {send,become ,if,let}} 

Sll is a packet of instructions to be executed if boolexp is true in another case the packet S/2 is executed • 

Definition 3 : We spoke about the View of an acquaintance list, and we spoke about the View of a 

selector (rwt communication list) because a selector may exist in more than one behavior. View is defined 

according to the three cases where we used it : 

- jfinst=(send,View(ms'{1],(b,mr,inst)),a) Ihm._View(ms'[1],(b,mr,inst)) is the sequence of identifiers or 

expressions used in inst to define ms. 

- jf inst=(become,b',View(al',(b,mr,inst))) lhm. View(al',(b,mr,inst)) is the sequence of identifiers or 

expressions used in inst to define al'. 

- jf inst)=(let,SE,Sl), and inst' e inst[2] with inst'=(x,(new,b',View(al',(b,mr,inst)) 1h.nJ. 
View(al',(b,mr,inst')) is the sequence of identifiers or expressions used in inst to define al' + 
For example in the actor program of Figure 2.a we have : 

View (op3, (f,(op2,u,b,v),(send,(op3,a*u,v),p))) = (op3,a*u,v) 

View((b), (f,(op2,u,b,v), (let,((p,(new,g,(b)))), ((send,(op3,a*u,v),y)))))=(b) 

In the actor program of Figurel.a we have : View((n),(counter,(incr),(become,counter,(n+ l))))=(n+ 1) 

Definition 4 : Env associates to each instruction in an actor program an environment in which this 

instruction operates: 
- jf Ty(inst)e {send,become,if}and $inst'e Sinstl(b,mr,Sinst)eCW ATy(inst')=ktAinst e Contain(inst') 

thm Env(b,mr,inst)=alunr/(b,al)E IE. 

- j[Ty(inst)=let and $inst'~:Sinst l(b,mr,Sinst)~:CW ATy(inst')=let A inst~:Contain(inst') thm. 

Env(b,mr,inst)=alunrv{xlx=inst"{ 1] Ainst" e inst[2}}!(b,al)e IE. 

- jfTy(inst)e {send,become,i/}A3inst'eSinstl(b,mr,Sinst)eCW A(Ty(inst')=let A inst e Contain(inst')) 

A$inst"!Ty(inst")=let Ainst"~:Contain(inst')AinsteContain(inst")) thm Env(b,mr,inst)=Env(b,mr,inst'). 

- jf Ty(inst)e {let} A3inst' e Sinstl(b ,mr,Sinst)e CW A(Ty(inst')=leiAinsteContain(inst') )A$inst"l 

Ty(inst")=letAinst"eContain(inst')Ainst~:Contain(inst"))tlwJ. 

Env(b,mr,inst)=Env(b,mr,inst')v{xlx=inst1[1] Ainst1 e inst{2]) • 

DefinitionS :Contain is defined recursively. 
- jfTy(inst) e {become,send]_llwl Contain(inst) =inst, 

- jfTy(inst) = let, and inst = (let,SE,SI) thm Contain(inst) = Contain(SI), 



www.manaraa.com

122 

- ifTy(inst) =if, and inst = (if,Sll,SI2) thrn Contain(inst) = Contain(Sll)UContain(S/2) • 

For the "Counter" actor program, 

CW=( (counter,incr,(become,counter,n+ l)),(counter,(value,cust),(send,n,cust)),(counter,ins,(become,n,in 

sensistit)),(insensitif,incr, !ll),(insensisitif,(value,cust),(send,n,cust))(insensitif,ins, Ill)} 

5) 1M (initial mapping) : This function maps, some actors to behaviors. 

IM = {(b,add,Value(al)) I (b,al) e IE A add e IN} 

(We relate each actor to an address. This address consists in a natural number. Therefore zero is related to 

the first actor created, and every creation increment add by one. Value(al) consists in instanciation of al) 

For the "Counter" actor program, IM = ( (counter,O,O)} 

6) II (initial invoking) : This function maps the actors initially created to messages 

II= ( (add, Value(cl)) I (b,add,Value(al)) e 1M A cl e Smr I (b,Smr) e CR} 

For the "Counter" actor, IT = ( (O,incr) } 
6.2 ALGORITHM OF DERIVATION: The derived CPN from AP is defined by (P,T,C,L,I+,MO), 

in the following we explain the way to obtain all these components, 

1) P=PauPcwuPCEEuP address-generator uP communication 
Pa is a set of places where each place corresponds to a behavior. There exists a bijective 

correspondance fbetween B andPa. Pa=(f(b)=p~eB}. 

Pew is a set of places where each place corresponds to an instruction related to a behavior and a 

message to which this behavior can react to. There exists a bijective correspondance g between CW and 

P CW· P cw=( g(inst)=P'fy(inst).i/inste Contain(Sinst)A(b,mr,Sinst)e CW Aie NI}. 

In order to create an actor during the execution, we have to generate an address associated to it 
PCEE is a set of places related to a set of creations which leads to the extension of environment in a let 

command. There exists a correspondance u between CW and PCEE. 

PCEE=( u(inst)=pnewjlinste SEA(Iet,SE,SI)e Contain(Sinst)A(b,mr,Sinst)e CWAie Nl} 

P address-generator is a set constituted by a place of generating addresses. 

Note that if P CEE = 0 then P address-generator = 0 
P communication is a set constituted by a place of communication. 

2) Transitions represent a set of messages to which AP can react to, a set of instructions related to each 

message, a set of instructions contained in a let command, a set of instructions contained in the two branchs 

of the conditional command and a set of instructions related to all creations appeared in a let 

command.T=TcRuTcwuTCEEuTic 
T CR is a set of transitions in which each transition is related to a message to which a behavior can react to. 

There exists a bijective correspondance f between CR and T CR· 

TcR=(f(mr)=tmr[l].ilmre SmrA(b,Smr)e CRAie Nl}. 

T cw is a set of transitions in which each transition is related to an instruction contained in a packet of 

instructions related to a specified message to which a behavior can react to. There exists a correspondance 
g' between cw and Tcw. 

Tcw=(g'(inst)=tTy(inst).ilinste Contain(Sinst)A(b,mr,Sinst)e CW ATy(inst);~:ifAie NI}. 

T CEE is a set of transitions in which each transition is related to a creation appeared in a let command. 

There exists a correspondance u' between CW and T CEE· 



www.manaraa.com

123 

T CEE={ u'(inst)=tnew j/inste SEA(Iet,SE,SI)e Contain(Sinst)A(b,mr,Sinst)e CW Aie NI) 

T1c is a set of couples of transitions in which each couple is related to the two branchs of conditional 

command. There exists a correspondance v' between CW and Tic· 

TIC = { v'(inst)=(tthen.iotelse.i)/inste Contain(Sinst)A(b,mr,Sinst)e CW A Ty(inst)=ifAie NI) 

3) The colors of places and transitions are defmed as follows : by an abuse of notation, instead of a color of 

a place p or transition t as defined in Definition 1, we give the structure of tokens that may be contltined in t 

or p. When more than one structure exists, we give the sum of the different structures. "adr" represents an 

address of an actor which is an integer, the first element of a communication list (cl) is a string and as 

supposed in [Agh86] other components of al, cl or environment of a given instruction represent addresses 

of actors, strings, integer or whatever. From this we can easily deduce the colors for a place or a 

transition. We note Env'(b,mr,inst)=Env(b,mr,inst)- { al,cl) and if Env'(b,mr,inst)=0 then 

(adr,Env'(b,mr,inst)) is reduced to nil. 
If pe PB, C(p)=(adr,al)/(b,al)e IEAp=f(b) 

If p=P communication• C(p )=(adr,cl)/cle SmrA(b,Smr)e CR 

If peP address-generator uP CEE• C(p)=(adr) 

If pe Pew• 3inste Sinst A(b,mr,Sinst)e CWA(b,al)e IE/ 

p=g(inst)AC(p)=(adr,al)+(adr,mr)+(adr,Env'(b,mr,inst)) 

If t e TcR. 3mre Smr A(b,Smr)e CRA(b,al)e IE/t=f(inst)AC(t)=(adr,al)+(adr,mr) 

Ifte Tcw. 3inste SinstA(b,mr,Sinst)e CW A(b,al)e IE/ 
t=g'(inst)AC( t)= { ( adr,al)+(adr,mr)+(adr,Env' (b,mr,inst)) 

Ift eTCEE, C(t)=(adr) 

If t e TIC,3 inste SinstAinst=(If,boolexp,Sil ,SI2)A(b,mr,Sinst)e CW A(b,al)e IE/(t' ,t")=v'(inst)A 

C(t')=(adr,al)+(adr ,mr)+( adr,Env'(b,mr ,inst)!boolexp=true) A 

C(t")=(adr,al)+(adr,mr)+(adr,Env'(b,mr,inst)/boolexp=false 

4) The negative incidence matrice is defined as follows : by an abuse of notation, in this section and in 5) 

we do not give functions as elements of this matrice but expressions that appeared in the CPN graph. If 

several arcs from p to t exist, we give the sum of expressions appeared on these arcs. In [Jen86] it is 

shown how to obtain the corresponding functions. Note that in our derivation we choose to distribute the 

environment of an active actor in three tokens (actor, message and sometimes the extension) these structures 

begin with the address of an actor. The manner in which information is saved in tokens may be refined. 

The processing of a message corresponds to the firing of a transition that removes a message-token from the 

communication place and an actor-token from the place corresponding to its behavior. 
\t'(b,Smr)e CRA \t'mre Smr,3p=f(b),t=f(mr),(b,al)e IEIL(p,t)=(adr,al)AL(pcommunication•t)=(adr,mr) 

Note that with CPN we can easily choose an environment that we need to broadcast, and easily extend 

and reduce this environment, essentially when this environment is supported by tokens. So we broadcast 

acquaintance list and communication list in all commands that appeared in behaviors. 

\1' (b,mr ,Sinst)e CW A('v'inste Contain(Sinst)/Ty(inst);tM),3p=g(inst),t=g'(inst),(b,al)e IFJ 
L(p,t)=(adr,al)+(adr,mr)+(adr,Env'(b,mr,inst)) 

In the case of a let command we associate to the instruction the environment existing before extension. 
\1' (b,mr,Sinst)e CW A('v'inste Contain(Sinst)/inst=(let,SE,SI)),3p=g(inst),t=g'(inst),(b,al)e lEI 

l_(p,t)=(adr,al)+(adr,mr)+(adr,Env'(b,mr,inst)- { x/x=inst'[l]Ainst'e SE)) 



www.manaraa.com

124 

To every creation, that appeared in a let command we have a transition that takes the last address 

created, in the address generator and increments it. 
'v'(b,mr,Sinst)e CW A('v'inste SE/(Iet,SE,SI)e Contain(Sinst}},3pe PcEE/p=u(inst),3te Tcwl 

t=g'((let,SE,SD },3t'e T CEE/t'=u'(inst)/l_(p,t)=inst[ 1 ]AI_(P address-generator•t')=inst[ 1 ]A 

I_ (p,t')=inst[l ]+ 1 

In a conditional command the environment of this instruction is transmitted to the two branchs. 
'v'(b,mr,Sinst)e CW A('v'inste Contain(Sinst)ffy(inst)=if),3pe Pcw/p=v(inst),3(t,t')e Tid(t,t')=v'(inst)J 

L(p,t)=l_(p,t')=((adr,al)+(adr,mr)+(adr,Env'(b,mr,inst)) 

5) The positive incidence matrice is defined as follows : if a script attached to some message and some 

behavior does not present a become command, we have to foresee a default behavior. 

'v'(b,mr,Sinst)e CW A(lJinste Contain(Sinst)ffy(inst)=become),3p=f(b),t=g'(mr),(b,al)e IF/ 

~(t,p)=(adr,al) 

As we said before, the change of a behavior is made by displacing an actor-token from an initial 

behavior to a fmal behavior. 

'v' (b,mr,Sinst)e CW A(3inste Contain(Sinst}/inst=(become,b', View(al' ,(b,mr ,inst)) )},3p'=f(b'),t'=g'(inst)/ 

~(t' ,p')=(adr, View(al' ,(b,mr,inst))) 

The acquaintance list and communication list have to be transmitted to the commands contained in a 

top of each script. A let command has to transmit its environment to all commands it contain, the conditional 

command has to transmit its environment to all commands contained in the two branchs. 

'v'(b,mr,Sinst)e CW A('v'inste Contain(Sinst)/(lJinst'e Contain(Sinst)A inste Contain(inst'))),3p=g(inst), 

t=f(mr), (b,al)e IFJI+(t,p}=(adr,al)u(adr,mr) 

('v'inst e Contain(Sinst)/(b,mr,Sinst)e CW A(b,al)e lEA inst=(if,boolexp,Sil,SI2)))A 

('v'inst'e Sll uSI2), 3pe Pcw/p=g(inst'},3(t 1•t2)e T cw/(t 1•t2>=v'(inst}/ 

~(t1,p )=~(t2•P }=(adr,al)+(adr,mr)+(adr,Env'(b,mr,inst)) 

('v'inste Contain(Sinst)/(b,mr,Sinst)e CW A(b,al)e IEAinst=Oet,SE,SI))A('v'inst'e SI}, 

(3pePcwlp=g(inst'))A(3t eTcw/t=g'(inst)) ~(t,p)=(adr,al)+(adr,mr)+(adr,Env'(b,mr,inst)) 

We interpret a send command by putting a message into the communication place. 

'v'(b,mr,Sinst)e CW A 'v'inst=(send,View(ms'[l],(b,mr,inst}),a)e Contain(Sinst},3t=g'(inst)/ 

l;.(t,Pcommunication>=(a,View(ms'[1],(b,mr,inst))) 

As we said before the creation of an actor with some behavior is done by putting the actor token into 

the subnet related to this behavior 

('v'inste Contain(Sinst)/(b,mr,Sinst)e CW Ainst=(let,SE,SI))A('v'inst'e SE/inst'=(x,(New ,b', View(al', 

(b,mr,inst))}},3p'=f(b'},t=g'(inst}/l+(t,p')=(adr,View(al',(b,mr,inst)))A 

3p 1 e P CEE/p 1=u(inst'),3t1 e T CEE/tl =u'(inst')~(t1 ,p 1)=inst'[l ]AI;.(tl ,P address-generator)=inst'[l ]+ 1 

6) 'v'(b,add, Value(al)) e IM, 3pePsfp=f(b)A(add, Value(al)) e M()(p) 

Mo<P address generator )=liM/ and Mo<P communication place)=ll 

6.3 DET AILLED SKETCH OF PROOF : As shown in [Agh84], [Agh86a], an actor system may be 

described in terms of its possible configurations, a configuration is defined in terms of local states function 

and a set of unprocessed tasks. A possible transition allows change from one configuration to another. In 

order to guarantee the property of fairness, the notion of a subsequent transition is introduced. All these 



www.manaraa.com

125 

notions are found in [Agh86a]. 
As envisaged in [SaVi91a] in order to prove that the derived colored Petri net cpn=(P,T,C,I_,I+•Mo) 

reflects the behavior of the corresponding Actor program AP=(B,IE,CR,CW,IM,II), we establish a 
correspondance between GAP : the graph of the evolution of configurations of AP and Gcpn : the markings 

graph of cpn. In the first graph, vertices represent configurations of AP and edges represent possible tasks. 

In the second graph, vertices represent markings where no tasks is under execution, and edges represent the 

sequence of transitions of cpn corresponding to the full treatment of one message. A difficulty arises from 

the fact that the full treatment of a message is not represented in cpn by an atomic action (although it could 

be with additional places and transitions as indicated in 3.1). This is a difference with the semantic given in 

[Agh86a] where the treatment of a message is done in one step. Also, since colored Petri nets allow 

multisets, we will identify a set where two equivalent tasks have two different tags, with a multiset where 

the task appears twice and is represented only by a target and a message. 

Lemma 1: To every configuration c=(L,T) of GAP corresponds a single marking Mcpn of Gcpn• 

Proof: given a configuration in AP c=(L,T) where L:M~B. now we compute the corresponding Mcpn 

of cpn. In this proof and in the following, we use also Value which represents an instanciation, we do not 

specify this instanciation because the semantic given in [Agh86a] did not take in account the contain of local 

memory of an actor (its acquaintance list). The marking is constructed by the three following steps. 

1) for actors :'v'me M,('v'be B/b=L(m)),3pbe Ps1Pb=f(b),3(b,al)e IFJ<m,Value(al)>e Mcpn<Pb) . 

2) for tasks :'v' T e TIT =(m,k) then <m, k> e Mcpn<Pcommunication> 

3) for addresses :IMI = n then Mcpn<P address-generator>= <n> + 
Lemma 2: To every marking Mcpn ofGcpn corresponds a single configuration c=(L,T) • 

Proof: given a Mcpn in cpn, we compute the corresponding c=(L,T) of AP, where L: M~ B with 

the following steps. 

1) for actors :'v'pbe Pa. 'v'<adr,Value(al)> e Mcpn<Pb) then adre MandL (adr)= b. 

2) for tasks : 'v' <adr, V alue(cl)>e Mcpn (P communication),3Te TIT=(m,V alue(cl)) + 
Lemma 3: Given a taskTand two configurations c1 and c2 of GAP• where c1_T~c2 .In Gcpn• there 

always exist a marking M cpn1 corresponding to a configuration c 1• a marking M cpn2 corresponding to a 

configuration c2 and an enabled sequence of transitions Tcpn such that Mcpn1 Jcpn~Mcpn2 • 

Proof: The construction of Mcpn1• Mcpn2 from c1, c2 are explained in the proof of Lemma 5.1, we 

compute Tcpn which corresponds to T .If T e tasks(cl) and T =(m,k), 3 be B I L(m) = b and (b,k,Sinst) 

e CWandTcpn=TcrXTcwXTceeXTicl Tcr= { f(k)} and 

Tcw = {g'(inst) I inst e Contain(Sinst) and Ty(inst);tif} and 

Tcee = {u'(inst) I inst e SE and (let,SE,SI) e Contain(Sinst) )and 

Tic= { v'(inst) I inst e Contain(Sinst) and Ty(inst)=if} (where f, g', u' and v' are defined in 4.b) + 
Lemma 4: Given a sequence of transitions and two markings of Gcpw Mcpn1 and Mcpn2 where 

M cpnJJ cpn-}1 cpn2· There always exists in AP a configuration c 1 corresponding to a marking M cpn1• 

a configuration c2 corresponding to a marking M cpn2 and a task T such that c 1_:r 42 • 

Proof: The construction of c1, c2 from Mcpn1• Mcpn2 are explained in the proof of Lemma 5.1, now 

we compute T which corresponds to Tcpn· If <m,Value(cl)> e Mcpn1 (Pcommunication>• and 

<m,Value(cl)> • Mcpnz(P communication>• then there exist T=(m,Value(cl))/T e tasks(c 1) and 



www.manaraa.com

126 

cl___J~c2+ 

The lemmas 5.1, 5.2, 5.3, 5.4 imply the following Theorem. 

Theorem 1: There always exist an isomorphism between GAP and Gcpn • 

This Theorem and the assumption like added in [Agh86a],[Agh84] (subsequent transition), that cpn 

operates in such a way that all transitions corresponding to the execution of tasks are subsequently enabled, 

imply that to every actor program exists a colored Petri net (obtained by the algorithm of derivation in 4.2 

and where the execution of a message is made atomic) which reflects its behavior. 

7 DISCUSSION 

In [EnLeRo90] and [Eng90] actors are formalized by a model called POTs (a parallel object-based transition 

system), which is essentially a place transition net with an additional structure imposed on its places. An 

object in a given state is represented by a place and an event is represented by a transition (therefore one 

obtains an infintie net), the structure of the objects is represented by an additional structure of the places, 

formalized through the functions 'obj', 'mod' and 'acq', where 

- 'obj' maps each place to the object it represents, 

-'mod' maps each place to the mode of the represented object (unborn, alive or dead), 

- 'acq' maps each place to a set of acquaintances in the state of the object represented by the place. 

In our model the role of obj, mod and acq are played by a token, so if an actor exists, a 

corresponding actor-token exists and its address and acquaintance list are contained in its structure. 

Moreover we have a fmite net which allows us to give a static view to an actor program in which appears 

the exact de,sign of an actor program, contrarily to actor event diagram [Clin81], to actor grammars 

[JaRo89] and to the modeling by POTs where just the evolution is expressed, without showing the design 

of an actor program. Moreover we express here dynamicity in Petri Nets without increasing the number of 

transitions and places, and without changing the flow relation. 

Note that creation of an actor may be viewed as a call of procedure, the acquaintance list of an actor 

may be viewed as the local memory of a process, the become command as the change of this local 

memory. So following the conjecture suggested in [Agh84]; "every model of concurrent computation can 

be derived as a special case of an actor model", and the dicussion concerning supporting multiparadigm 

programming by actors in [Agh89] we can apply the derivation of CPN to other languages. 

When we capture all the information contained in the actor program and draw the graph for the 

corresponding CPN, we remark that we exhibit all the possibilities of interaction in the sense of 

communication by "send" and in another sense by "become" and "new". We hope in a further step of this 

work to fmd a relation between the design of an actor program and the corresponding evolution, in order to 

fmd a good design which allows an evolution on some topologies with good properties like the Hypercube 

[SaSc88] or the De Bruijn and Kautz networks [BePe87] . This way we should be able to optimize the 

implementation of this type of languages. 

Another direction of our work is to apply the tools existing for CPN, and obtain method to make 

some diagnosis on Actor programs. 

ACKNOWLEDGMENT The authors would like to thank C.Johnen and a referee for helpful comments 
on this work. 



www.manaraa.com

REFERENCES 

[Agh84] 

[AgHe85] 

[Agh86a] 

[Agh86b] 
[Agh89] 

[AnSc83] 

[BaStTa89] 

[BaVi91] 

[BePe87] 

[Clin81] 

[EnLeRo90] 

[Eng90] 

[Hew77] 

[HewBak77] 

[HeAtLi79] 

[HeReAgAt84] 

[Hew85] 
[Hoa78] 

[Hoa74] 

[HoKoRa89] 

[JaRo89] 
[Jen86] 

[Jon86] 
[LiHeGI86] 

[SaSc88] 

[SaVi90a] 

[SaVi90b] 

127 

Gul A.Agha; Semantics considerations in the Actor Paradigm of Concurrent 
Computation, Seminar on Concurrency, LNCS 197, July 1984 
Gul A.Agha; Carl Hewitt; Concurrent Programming Using Actors: Exploiting Large
scale Parallelism, A.I.Memo No. 865, October 1985. 
Gul A.Agha; Actors : a model of concurrent computation in distributed systems, The MIT 
press, 1986. 
Gul A.Agha; An overview of actor languages, SIGPLAN Notices Vol21, 1986. 
Gul A.Agha; Supporting Multiparadigm Programming on Actor Architectures, Parle'89 
Parallel Architectures and Languages Europe, Volume II, LNCS 366, E.Odjik, M.Rem, 
J-C.Syre, eds, 1989. 
Gregory R.Andrews, Fred B.Schneider; Concepts and Notations for Concurrent 
Programming, ACM Computing Surveys, Vol15, No1, 1983. 
Henri E. Bal, Jennifer G. Steiner, Andrew S. Tanenbaum; Programming Languages for 
Distributed Computing Systems, ACM Computing Surveys, Vol.21, No.3, September 
1989. 
F.Baude, G.Vidal-Naquet; Actors as a parallel programming model, STACS91, LNCS 
480, C.Choffrut, M.Jantzen, eds, 1991. 
J-C.Bermond and and C. Peyrat; The De Bruijn and Kautz networks : a competitor for the 
hypercube ?; Hypercube and Distributed Computers, F.Andre and J.P. Verjus (Eds), 
Elseiver Science Publishers B.V. (North-Holland), 1989. 
W.D.Clinger; Foundations of actors semantics, AI-TR-633, MIT artificial intelligence 
Laboratory, May 1981. 
J.Engelfriet, G.Leih, G.Rozenberg; Parallel object-based systems and petri nets, 
Technical Reports 90-04 and 90-05, Leiden University, 1990. 
J.Engelfriet; Net-based description of parallel object-based systems, or POTs and 
POPs, Workshop on Foundations of Object-Oriented Languages, May28 - June1, 1990. 
Carl Hewitt; Viewing control structures as patterns of passing messages, in Artificial 
Intelligence, An MIT Perspective, Brown & Winston, eds, 1977. 
C.Hewitt, H.Baker; Actors and continuous functionals, Formal Description of 
progr.Concepts ,1977. 
C.E Hewitt, G.Attardi, and H.Lieberman; Specifying and proving properties of guardians 
for distributed systems. In praceedings on semantics of concurrent computation, INRIA, 
Evian, France, 1979. 
Carl Hewitt, Tom Reinhardt, Gul A.Agha, Giuesppe Attardi; linguistic support of 
receptionists for shared ressources, Memo MIT, 1984. 
C.E.Hewitt; The challenge of open systems. Byte 10(4): 223-242, 1985. 
C.A.R. Hoare; Communicating Sequential Processes; Communications from the ACM, 
Vol21, No8, 666-677, 1978. 
C.A.R. Hoare; Monitors : An Operating System Structuring Concept, Communications 
from the ACM, 17 (10), 549-557, 1974. 
R.P. Hopkins, M. Koutny, B.Randell; Some Results on Dynamically Structures 
Communicating Systems; Research Memorandum, University of Newcastle upon Tyne, 
1989. 
D.Janssens, G.Rozenberg; Actor grammars, Math. Syst. Theory 22,75-107, 1989. 
Kun Jensen, Colored petri nets, Advances in petri nets, Part1, LNCS 254, W.Brauer, 
W.Reisig and G.Rozenberg, eds, 1986. 
Peter DeJong, Compilation into Actors, In sigplan notices, Vol21, October 1986. 
Barbara Liskov, Maurice Herlihy, Lucy Gilbert; Limitations of Synchronous 
Communication With Static Process Structure in Languages for Distributed Computing, 
Proceedings of the 13th ACM Symposium on Principles of Programing Primitives, St. 
Petersburg, Florida, January 1986. 
Y.Saad, M.Shultz, Topological properties of Hypercubes, lEE Trans. on computers, vol 
37, N° 7, July 1988. 
Y.Sami, G.Vidal-Naquet, Formalisation of the behavior of actors by colored Petri nets 
and some applications, technical report 605, LRI, CNRS URA 410, 1990. 
Y.Sami, G.Vidal-Naquet, talks given at DEMON working group meeting at Newcastle 
Mai 90 and DEMON AGM1, Paris, June 90. 



www.manaraa.com

Program Refinement in Fair Transition Systems 

Ambuj K. Singh* 
Department of Computer Science 

University of California at Santa Barbara 
Santa Barbara, California 93106 

Abstract 
The idea of program refinements is discussed in the context of fair transition 

systems. Two kinds of refinements- property preserving and fixed-point preserving, 
are defined. Conditions are developed under which known program transformations 
(e.g., refinement of atomicity, abstract data type implementation) are property 
preserving and fixed-point preserving refinements. The usefulness of the developed 
theorems is illustrated through a number of examples. 

1 Introduction 
Concurrent program verification has been a prolific area over the last two decades. Begin
ning with Floyd's and Hoare's seminal papers on sequential program verification [8, 10], 
numerous logics [5, 7, 17, 19, 21] and methodologies [5, 6, 9, 12, 13, 22] have been pro
posed for concurrent programs. In spite of the elegance and the expressive power of the 
proposed theories, concurrent program verification remains a very difficult and complex 
task. There are two possible explanations for this complexity. First, most of the concur
rent programs are unstructured and written in an ad-hoc way. This makes the separation 
of concerns next to impossible and consequently, the proofs are entangled. Second, most 
of the concurrent programs contain a lot of irrelevant information that has nothing to 
do with the underlying algorithm's correctness. As a result, it is far easier to prove the 
algorithms that the programs are based on than the programs themselves. 

A possible solution to the aforementioned drawbacks of concurrent program verifica
tion is to obtain programs by a formal derivation process based on refinements. Such 
a formal derivation achieves the separation of concerns by postponing efficiency and ar
chitectural decisions until late in the design process. The initial stages of the design 
are concerned mainly with the development of the algorithm. Only after the lllain ideas 
have been developed and all algorithmic questions have been settled, the efficiency and 
architectural considerations enter into the picture. At that time, the program is mapped 
onto a given architecture through another series of refinements. This approach of for
mally deriving a program by an architecture-independent sequence of steps and then 
an architecture-dependent sequence of steps makes the resulting programs modular and 
easily transportable across architectures. It also allows the programmer to focus on the 
problem at hand without getting lost in the peculiarities of the given architecture. 

•work supported in part by NSF Grant CCR-9008628. 



www.manaraa.com

129 

Formal program derivation can be roughly classified into two types: property refine
ment and program refinement. In property refinement, an individual property p that is a 
part of the specification is refined into a stronger property q that is less abstract or closer 
to a machine architecture. Thus, given a high-level specification S, each requirement 
in S is refined individually or collectively to another set of properties T that implies 
the specification S. In addition to being closer to the machine level, the properties in 
refinement T usually permit a division of the program into submodules each with its 
local set of properties. Program derivation through property refinement proceeds until 
it is clear as to how a program may be drawn up in order to meet the requirements [5]. 
Once this initial program has been drawn up, program derivation proceeds by program 
refinement. During property refinement, all properties of the program, not just those 
required in the initial specification, are preserved. Program refinement usually forms the 
architecture-dependent sequence of steps in the development of a program. As opposed 
to property refinement, which is a correctness preserving mapping in the semantic (or 
logical) domain, program refinement is a correctness preserving mapping in the syntactic 
(or programming language) domain. Both program and property refinements are useful 
in the development of programs- while property refinements are usually domain-specific 
and therefore, more useful in the initial stages of development, program refinements 
are more general-purpose (i.e., less domain-specific) and therefore, more useful in the 
later stages of program development. For example, property refinement may be used in 
developing a high-level solution strategy whereas program refinement may be used for 
addressing implementation issues such as process synchronization, abstract data type 
implementation, and scheduling of processes [25]. 

In this paper we address program refinements in the context of fair transition systems 
[18]. A fair transition system is an abstract computational model characterized by a set of 
variables, a set of states, a set of transitions, initial conditions, and fairness requirements. 
Fair transition systems encompass most existing systems and have been widely used 
for modeling reactive systems. For our purposes in this paper, we choose the specific 
framework of Unity [5] as the representative fair transition system. The main reason 
behind our choice is the simplicity of Unity's logic and the ease with which refinements 
can be expressed and proved in it. Even though we concentrate on one specific formal 
framework, most of our results translate equally well across any other framework based 
on fair transition systems. 

Previous work on program derivation has focussed mainly on property refinements 
[5, 6, 9]. The existing work on program refinements has focussed more on proving the 
correctness or completeness of refinements [1, 13, 17] rather than on developing general 
purpose refinements for development of programs. Atomicity of statements is perhaps 
the only area for which some general purpose refinements have been proposed. Back 
develops a method for refining atomicity for sequential programs in [2] and extends 
it to terminating parallel programs in [3, 4]. Recently, Lamport and Schneider have 
extended Lipton's work [16] and developed conditions for preservation of safety properties 
in program refinements [14]. However, refinements of atomicity that preserve both safety 
and progress properties in the context of reactive programs have not been explored 
elsewhere. 

Program refinements can be broadly divided into two classes: those that preserve all 
properties (safety and progress), and others that preserve the fixed-point (i.e., if the orig
inal program terminates, then so does the refined program, and the final state of refined 



www.manaraa.com

130 

program implies the final state of the original program). The first kind of refinement 
is useful for interactive programs whereas the second kind is useful for terminating pro
grams. Program refinements have been used successfully for developing a solution to 
the pin alignment problem for DNA strings [25]. In that paper, a simple architecture
independent solution to the problem is first developed. Later, this solution is mapped 
to a shared-memory architecture through a series of program refinements. These re
finements are based on some of the theorems reported here and address issues such as 
synchronization of shared data, implementation of abstract data types, and scheduling 
of processes. Because the refinements are correctness preserving, the correctness of the 
final refined program is based solely on the correctness of the original simple program. 

In this paper, we address both property preserving and fixed-point preserving refine
ments. We state and prove a number of properties and theorems about them. These 
refinements deal with issues such as implementation of abstract objects, strengthening 
of guards, implementation of shared variables by asynchronous channels, and refinement 
of atomicity. We show the applicability of these refinements through a number of small 
examples. Though the presented refinements are individually quite simple, together they 
can be quite a powerful tool in the development of programs [25]. 

Recently, Sanders [23] has proposed a mixed specification language (similar to Lam
port's transition axiom method [15]) for stepwise development of parallel programs. In 
this method, a program is specified by a set of assignment statements and a set of explicit 
program properties. Any fair execution of the assignment statements that satisfies the 
explicit program properties is an acceptable behavior of the program. She defines the 
idea of a refinement in the proposed language and presents theorems about the preser
vation of implicit progress properties. The results presented here differ from her work in 
that we focus on developing conditions under which useful program refinements such as 
refinement of atomicity and strengthening of guards preserve the desired properties of a 
program. 

The rest of the paper is organized as follows. Section 2 discusses Unity and presents 
a brief introduction to its logic. Section 3 defines program refinements in Unity and 
presents some of their basic properties. Section 4 contains a number of theorems about 
program refinements and examples illustrating their application. Finally, Section 5 in
cludes concluding remarks. 

2 A Brief Introduction to Unity 

We discuss the syntax of Unity in Section 2.1 and the logic of Unity along with program 
compositions in Section 2.2. 

2.1 The Unity Syntax 

A Unity program consists of four sections- a declare section that declares the variables 
used in the program, an always section that consists of a set of proper equations, an 
initially section that describes the initial values of the variables, and an assign section 
that consists of a non-empty set of assignment statements. An assignment statement 
consists of one or more assignment components separated by II· An assignment com
ponent is either an enumerated assignment or a quantified assignment. An enumerated 
assignment has a variable list on the left, a corresponding expression list in the middle, 



www.manaraa.com

131 

and a boolean expression on the right called the guard (which by default is true): 
<variable-list > := <expression-list > if <guard>. 

A quantified assignment specifies a quantification and an assignment that is to be instan
tiated with the given quantification; a quantification names a set of bound variables and 
a boolean expression (the range) satisfied by the instances of the bound variables. An 
assignment component is executed by first evaluating all expressions and then assigning 
the values of the evaluated expressions to the appropriate variables, if the associated 
boolean expression is true; otherwise, the variables are left unchanged. 

The set of assignment statements in the assign section is written down either by enu
merating every statement singly and using 0 as the set constructor, or by using a 
quantification of the form { 0 var : range :statement). Symbol 0 is called the Union 
operator. 

A program execution starts from any state satisfying the initial conditions and goes on 
forever; in each step of execution some assignment statement is selected nondeterminis
tically and executed. Nondeterministic selection is constrained by the following fairness 
rule: every statement is selected infinitely often [5). 

Example 1: The following program sorts integer array A[O .. N), N;::: 0, in ascending 
order by swapping adjacent elements if they are out of order. Its assign section consists 
of N statements, one for every pair of adjacent positions. 

Program sort 
assign 

{ 0 i: 0 =::; i < N :: A[l1,A[i + 1) := A[i + 1), A[l1 if A[z1 > A[i + 1]) 
end 0 

Notation: The fixed-point of a program, usually represented by FP, describes the state 
of the program upon termination; it is obtained by replacing the assignment symbol := 
by the equality symbol = in every statement of the program and taking the conjunction 
over all such predicates. For example, the fixed point of program sort is 

(Vi :: A[i] > A[i + 1) => A[z1 = A[i + 1]) , 
which simplifies to (Vi :: A[i) =::; A[i + 1]) . 0 

2.2 The Unity Logic 

Program properties are expressed using four relations on predicates - unless, invariant, 
ensures, and leads-to. The first two are used for stating safety properties whereas the 
last two are used for stating progress properties. 

Unless: For any two predicates p and q, the property p unless q holds in a program 
iff for all statements s in the program the following Hoare triple [10) holds 

{p 1\ -.q} s {p v q}. 
Informally, if p is true at some point in the computation, then either q never holds 
and p holds forever from this point on, or q holds eventually and p continues to 
hold until q holds. 

Invariant: For any predicate p, the property invariant p holds in a program iff p 
holds initially and the program never falsifies p, i.e., 

initially p 1\ p unless false. 



www.manaraa.com

132 

An invariant can be substituted for true and vice-versa in the context of a program 
(this includes both the proof and the text of the program). This is referred to as 
the Substitution axiom. Sometimes, for invariant p, we simply write p. 

Ensures: For any two predicates, p and q, the property p ensures q holds in a program 
iff p unless q holds in the program and there exists a statement s in the program 
such that 

{p 1\ ...,q} s {q}. 
Thus, if p is true at some point in the computation then q holds eventually and p 
continues to hold until q holds. Statements that establishes q is called the helpful 
statement. 

Leads-to: The relation leads-to is denoted as ~---+ 1 and is defined to be the strongest 
relation satisfying the following three rules. 

- p ensures q => p ~---+ q, 

(p~---+q 1\ q~---+r) => p~--+r,and 

For any set W, 
(Vm : m E W : p.m ~---+ q) => ((3m : mE W : p.m) ~---+ q). 

The first two rules imply that ~---+ includes the transitive closure of ensures and 
the third rule allows us to induct over sets. Given that p ~---+ q in a program, we 
can assert that once p becomes true, eventually q becomes true. However, unlike 
p ensures q, we cannot assert that p will remain true as long as q is false. 

2.2.1 Program Composition by Union 

Let F and G be programs with compatible declare sections (i.e., the declaration of the 
variables are non-conflicting), compatible always sections (i.e., the two sets of equations 
are consistent), and compatible initially sections (i.e., the initial values of the variables 
are non-conflicting). Then, their composition is a new program denoted F 0 G; every 
section of this program is obtained by a union of the corresponding sections ofF and G. 
The following theorem, called the Union theorem, follows from the definitions of unless 
and ensures. 

p unless q in F 0 G = p unless q in F 1\ p unless q in G, and 

p ensures q in F 0 G (p ensures q in F 1\ p unless q in G) V 
(p unless q in F 1\ p ensures q in G) 

2.2.2 Program Composition by Superposition 

Superposition is another mechanism to structure programs. Suppose we are given a 
program F and a statement r that does not assign to any of the variables of F. Then, 
the statement r can be superposed on program Fin two ways- either it can be combined 
with a statements ofF to yield an augmented statement sllr, or it can be added by itself 
to F, thus resulting in the composite program F 0 r. In either case, all the unless, 
ensures, and leads-to properties of the original program are preserved. Moreover, the 
fixed-point of the transformed program implies the fixed-point of the original program. 
This result is referred to as the Superposition theorem. 



www.manaraa.com

133 

3 Program Refinement in Unity 

Program refinements in Unity can be divided into two classes: those that preserve all 
unless (safety) and leads-to (progress) properties [5], and others that preserve the fixed
point (i.e., if the original program terminates, then so does the refined program and 
moreover, the fixed-point of the refined program implies the fixed-point of the original 
program). The first kind of refinement is useful for interactive programs whereas the 
second kind is useful for terminating programs. Formally, the two refinements are defined 
as follows. 

Let F be a program, let G be a refinement of F, and let F P-F and F P-G be the 
fixed-points of the two programs. We say that G is a property preserving refinement of 
F iff for all predicates p, q the following two assertions hold. 

• (p unless q holds in F) => (p unless q holds in G), and 

• (p 1-+ q holds in F) => (p ~-+ q holds in G). 

Note that the preservation of ensures properties is not required in this definition. This 
is because leads-to (and not ensures) is used as the basic relation for the specifying 
progress properties, and preservation of leads-to is all that is required in most situations. 
Similarly, we say that G is a fixed-point preserving refinement of F iff the following two 
assertions hold. 

• (true 1-+ F P-F m F) => (true ~-+ F P-G m G), and 

• FP-G => FP-F in G. 

It is not too difficult to construct fixed-point preserving refinements that are not prop
erty preserving. The existence of property preserving refinements that are not fixed-point 
preserving is more interesting. The relationship between the two kinds of refinements is 
considered next. 

Theorem 1: A property preserving refinement that does not introduce any new vari
ables (i.e., does not modify the state space) is also fixed-point preserving. 

Proof: Consider a program F and its property preserving refinement G. Let F P-F and 
F P-G be the fixed-points ofF and G. Let p be a predicate that defines a unique value 
for each program variable, i.e., p represents a point in the state space of the programs. 
Consequently, -.p denotes the state space minus the state denoted by p. Now, observe 
the following. 

p => FP-F 
=>{property of fixed-points [5]} 
p unless false in F 

=>{preservation of unless} 
p unless false in G 

=>{property of fixed-points} 
p => FP-G 

=>{property of fixed-points} 
-.(p ........ -.p in G) 



www.manaraa.com

=>{preservation of leads-to} 
-.(p 1-+ -.p in F) 

=>{property of unless [5]} 
p unless false in F 

=>{property of fixed-points} 
p => FP-F 

134 

Thus, FP-F = FP-G. Therefore, FP-G => FP-F, which is the second condition 
for fixed-point preserving refinements. The first condition for fixed-point preserving 
refinements follows from the fact that leads-to properties are preserved and F P-F = 
FP-G. o 

Example 2: For an example of a property preserving refinement that is not fixed-point 
preserving, consider any terminating program F and add to it a statement t :: :c := :c+ 1 , 
where :c is a fresh variable. It follows from the Superposition theorem that program 
F ~tis a property preserving refinement of F. However, since F ~ t does not terminate, 
program F 0 t is not a fixed-point preserving refinement of F. 0 

The following theorem also relates the two kinds of refinements. 

Theorem 2: If G is a property preserving refinement of F and if both F and G 
terminate, then G is also a fixed point preserving refinement ofF. 
Proof: Because program G terminates, our proof obligation is to show that F P-G => 
F P-F. Observe the following. 

true ~--+ F P-F in F 
true ~--+, F P-F in G 
-.F P-F 1-+ F P-F in G 
F P-G 1\ -.F P-F unless false in G 
F P-G 1\ -.F P-F 1-+ false in G 
-.(F P-G 1\ -.F P-F) in G 
FP-G => FP-F in G 

, assumption 
, G is a property preserving refinement 
, strengthening [5] 
, property of fixed-points 
, PSP theorem [5] on above two 
, impossibility theorem [5] 
, predicate calculus 0 

Theorem 3: The relations "is a property preserving refinement of' and "is a fixed
point preserving refinement of' are preorders (i.e., reflexive and transitive). 

Proof: Follows from the reflexivity and transitivity of implication. 0 

4 Some Useful Program Refinements 

In this section we discuss some program refinements that are useful in the formal deriva
tion of programs. Though these refinements are stated in the UNITY logic, equivalent 
formulations in other formal frameworks such as temporal logic are possible. In Section 
4.1 ·we consider the subject of data refinements. In Section 4.2 we consider the strength
ening of guards. Finally, in Section 4.3 we consider the question of atomicity refinement. 
The proof of one of the theorems appears in the appendix; the rest of the proofs appear 
in [26]. 



www.manaraa.com

135 

4.1 Data Refinement 

Data refinement is a very effective tool in program derivation as it provides a programmer 
the freedom to express his algorithm using a convenient abstract data type. Later, the 
chosen abstract data type is implemented by an available data type on the target machine 
while preserving the correctness of the original algorithm. In this section we develop 
conditions under which data refinement can be carried out for reactive programs. 

Let F 0 s be a program using a variable x of abstract data type X. Assume that 
statement s :: x := f(x) if p(x) , which performs operation f on the abstract object x 
provided guard p holds, is the only statement modifying x. We wish to examine conditions 
under which variable x can be implemented by a fresh variable y of the concrete data 
type Y. For this purpose, let t :: y := g(y) if q(y) be a statement that performs 
operation g on concrete object provided guard q holds. In order for program F 0 t to 
simulate program F 0 s, there should exist a function h (called the abstraction function) 
from Y to X such that h(y) simulates x at all times. Before we state the theorem we 
discuss some preliminaries. 

Notation: For any expression e, define e' to be the expression obtained by a syntactic 
substitution of term x by the term h(y) and define F' to be the program obtained by 
syntactically substituting x by h(y) everywhere. Let F P0 , F P1 denote the fixed-points 
ofF 0 s and F 0 t respectively. Define conditions AO, Al, A2, and A3 as follows. 

• h(initial value of y) = initial value of x. · · · · · · (AO) 

• p(h(y)) => h(g(y)) = f(h(y)) , for all y. · · · · · · (Al) 

• p(h(y)) = q(y) , for all y. · · ·· · · (A2) 

• p(h(y)) => [h(g(y)) = h(y) => g(y) = y] , for all y. · · · · · · (A3) 

D 
Theorem 4: Program F' 0 t is a property preserving refinement of F 0 s under the 
replacement of x by h(y) (i.e., p unless q in F 0 s => p' unless q' in F 0 t, and 
p ~-~o q in F 0 s => p' ~-~o q1 in F 0 t) if conditions AO, Al, and A2 hold. Furthermore, 
F' 0 t is a fixed-point preserving refinement ofF 0 s under the replacement of x by h(y) 
(i.e., F P1 => F P~ , and true ~-~o F Po in F 0 s => true ~-~o F P1 in F 0 t) provided all 
four conditions AO - A3 hold. D 

The above theorem is motivated by Hoare's correctness conditions for implementation 
of abstract data types for sequential programs [11]. In its current form, it was used to 
implement a set of elements by a hash table in [25]. Sanders develops similar conditions 
for refinements in [23]. 

Note: If the program to be refined includes multiple statements Si that modify the 
abstract variable, then it can be refined by including a new statement ti corresponding 
to each abstract statement Si. The correctness condition for the refinement now includes 
AO, and a set of conditions Al- A3 corresponding to each pair of statements (si, ti)· D 

Given a property preserving refinement of an abstract object x by a concrete object y 
through an abstraction function h, it is possible to add a statement t :: y := g(y) if q(y) , 



www.manaraa.com

136 

where h(g(y)) = h(y) for all y. Statements refines a skip statement s :: :z: := :z: if q(y) 
of the abstract program. Condition AI is satisfied because f is the identity function and 
h(g(y)) = h(y). Condition A2 is satisfied vacuously. Such statements that preserve h(y) 
by merely restructuring the concrete object are called restructuring statements. As an 
example, consider implementing a bank account x by a checking account y and a savings 
account z through the abstraction function h(y, z) = y + z, i.e., the sum of accounts 
y and z is meant to simulate abstract account x. In this case, if conditions AD- A2 
(which link program variables :z:, y, and z and are needed for the proof of correctness of 
the refinement) hold, then a restructuring statement s :: y, z := y- 1, z + 1 if y ;:::: 1 
that transfers one dollar from y to z can be added without affecting the correctness of 
the refinement. Restructuring statements cannot be added freely in the case of fixed
point preserving refinements because these statements may never reach a fixed point. 
For example, if we add another restructuring statement t :: y, z := y+ 1, z -l if z 2:: 1 , 
then the refinement may not terminate even if the original program terminates. 

Example 3: Consider the following program in which the variable x is a natural 
number. 

Program simple 
initially X = D 
assign 

:Z: := :1: + 1 if X > 5 
0 z := x2 

end 

We wish to replace variable x by a fresh variable y of the type queue. The abstraction 
function h that we choose here maps a queue to the number of elements in the queue, 
i.e, h(y) = size(y). 

The incrementing of :z: is replaced by the appending (the symbol ';' denotes concate
nation) of some arbitrary element e to the queue. Condition AD is satisfied by setting y 
to null initially. ConditionAl is satisfied because size(y; e) = size(y) + 1. Condition A2 
is satisfied vacuously. Condition A3 is satisfied because size(y; e) ::j: size(y). Thus, we 
obtain the following refined program that preserves all unless and leads-to properties as 
well as the fixed-point. 

Program simple 
initially y = null 
assign 

y := y; e if size(y) > 5 
0 z := (size(y)) 2 

end 0 

Example 4: In this example taken from [5], we consider replacing a shared variable 
by unbounded FIFO channels. Consider a shared variable x that is shared between two 
processes F and G. Process F accesses x only be statements and process G accesses x 
only by statement t; these statements are defined as follows: 

8 •• X := X $ d if p, and 
t .. vs,:z: := f(v.~,x),g(x) if b(x) A q. 



www.manaraa.com

137 

Variable vs represents local variables of G. It is assumed that predicates p, q do not 
mention:&. Let type(z) =X, type(cl) =X and type($)= X x X -+ X. It is apparent 
from examining the statements that process F only modifies z while process G tests, 
reads, and modifies :&. 

We wish to replace the shared variable z by two variables: one, a channel from process 
F toG called c and the other, a local copy of z at G called y. Thus, type(y) =X and 
type( c) = x•. We wish to transform the assignment statements to a statement s' in 
which variable dis appended to the channel variable c. Similarly, we wish to transform 
the assignment statement t to a statement t' in which process G accesses variables y and 
c instead of variable z. 

s' .. c := c; d if p, and 
t' .. vs, y := f(vs, y EEl c),g(y) if b(y·Ef) c) A .q. 

The question then arises: under what conditions does this transformation preserve 
all unless and leads-to properties? The answer lies in the conditions AO, Al, and A2 of 
Theorem 4 presented earlier. Here z represents the abstract object and the pair (y, c) 
represents the concrete object. We choose a representation function h as follows: 

h(y, c) = y EEl c, 
where the function EEl is extended to handle a string input as follows: 

EEl { y if c = null 
Y c = (y EEl head( c)) EEl tail(c) otherwise 

Condition AO of Theorem 4 is satisfied by choosing initial values for y and c such that 
the initial value of z = initial value of y EEl c. Condition A2 of the theorem is satisfied as 
b(y EEl c)= b(h(y, c)). Henceforth, we concentrate on the satisfaction of conditionAl. In 
order to satisfy it, we have to show that 

• h(y, c; d)= h(y, c) EEl d, and 

• b(y EEl c)::? h(g(y), c)= g(h(y,c)). 

The proof of satisfaction of the first condition is as follows: 

h(y,c;d) 
= {definition of h} 

y$ (c;d) 
= {definition of$, induction} 

(y EEl c) EEl d 
= {definition of h} 

h(y, c) EEl d 

In order to prove that the second condition is satisfied, we assume property BO defined 
as follows: 

b(z EEl c) ::? fg(z EEl c)= g(z) EEl c], for all z,c. .. .... (BO) 
Based on this property, the proof of second condition is as follows. 



www.manaraa.com

second condition 
= {definition} 

b(y EB c) => [h(g(y), c)= g(h(y, c))] 
= {definition of h} 

b(y EB c) => [g(y) EB c = g(y EB c)] 
= {assumption BO} 

true 

138 

This proves that the transformation of statements s, t to statements s', t' is legal if 
condition BO is satisfied. Note that property BO follows from the simpler property BO' 
defined below. (The proof is by induction on the length of sequence c.) 

g(z EB d)= g(z) EB d · · · · · · (BO'). 
Next, we add a restructuring statement u to the transformed program: 

u :: y, c := y EB head( c), tail( c) if c =/=null. 
This transformation fulfills the conditions of restructuring statements because 

c =/= null => h(y, c) = h(y EB head( c), tail( c)). 
At this point let us recapitulate what we have done so far. We set out with the task 

of replacing shared variable z by an asynchronous channel from F to G. Statements' in 
process F represents the transmission of a data item to channel c and so fits in with the 
message passing paradigm. Statement u (which is a part of process G) represents the 
reception of a data item (along with an update oflocal variable y) and therefore, also fits 
in with the message passing paradigm .. However statement t' (which is a part of process 
G) is not yet in the right form as it mentions the channel variable c. Thus, this statement 
will require further transformation. We will return to this example in the next subsection 
after we have stated and proved another theorem about program transformations. 0 

4.2 Strengthening of Guards 

Strengthening the guard of a statement obviously preserves all the safety properties of 
a program as any state that is reachable in the refined program is also reachable in 
the original program. In this section we develop conditions under which this program 
transformation preserves all the desired program properties including progress properties. 

Theorem 5: Let F be a program and let s :: A if p be a statement. Let statement 
t :: A if p 1\ q be obtained by strengthening the guard of statement s. Then, program 
F ~ t is a property and a fixed-point preserving refinement of the program F ~ s if the 
following two conditions hold in F. 

•p~---+q 

• Let z be the set of variables ofF 0 s. Then, there exists a non-increasing function 
g of z that is bounded from below such that 

g(z) = k 1\ q unless -.p V g(z) < k, for all k. 0 

Proof: Appears in Appendix. 

Corollary 1: Let statements be A if p, statement t be A if p 1\ q, and F be 
any program. Then, program F 0 tis a property and fixed-point preserving refinement 
ofF 0 s if the following two conditions hold in F: 



www.manaraa.com

139 

• p ~--+ q, and 

• q unless -.p. 

Proof: Define g to be a constant function. Thus, g is non-increasing and bounded from 
below. Consequently, both the conditions of Theorem 5 are satisfied. 0 

Corollary 2: Let statement s be A if p, statement t be A if q, and F be any 
program. Then, program F ~ t is a property and fixed-point preserving refinement of 
F ~ s if the following three conditions hold: 

• q => p in F ~ t, 

• p ~--+ q m F, and 

• q unless -.p in F. 

Proof: Let statement u be A if p/\q. Then, it follows from Corollary 1 that F ~ u is a 
property and fixed-point preserving refinement ofF ~ s. Because q => p is an invariant 
ofF ~ t and u has a stronger guard than t, it follows that q => p is also an invariant 
ofF ~ u. Therefore, p 1\ q = q in F ~ u. Consequently, the guard of statement u can 
be changed from p 1\ q to q by the substitution axiom, thus yielding program F ~ t. The 
desired theorem follows. 0 

Theorem 5 was first reported in [28] and used in [25] to synchronize processes that 
accessed a common resources. Processes accessed the resource when a certain predicate 
was set to true by an underlying mutual exclusion algorithm. This predicate was added 
to the guard of each statement that accessed the resource. The correctness of the refine
ment followed from the starvation-freedom property of the mutual exclusion algorithm. 
Corollary 2 first appeared in [5]. 

Example 4: (Continued from previous subsection) In the last section we discussed 
the implementation of variable x shared between processes F and G by a channel c from 
F to G and a local variable y at G. We transformed the pair of statements s (in F) 
and t (in G) to three statements s' (in F), t' (in G), and u (in G). The transformation 
was proved to be correct provided condition BO (or the stronger condition BO') held. 
The transformed statements s' and u were in the right form whereas statement t' needed 
further refinements. Here, we use Theorem 5 to transform statement t' into statement v 
defined as follows: 

v :: vs,y := f(vs,y),g(y) if b(y) 1\ q 
This statement is in the right form as it mentions only variables local to process G. 

In order to carry out the transformation from t' to v, we assume the following two 
conditions: 

b(x) => b(x €9 d), for all x,d, and · · · · · · (Bl) 
b(x) => f(vs,x€9d)=f(vs,x), forallx,d,vs. · · · · · ·(B2) 

The proof of correctness is in two steps: first, statement t' is transformed to statement 
t" :: vs, y := f(vs, y €9 c),g(y) if b(y) 1\ q and later, statement t" is transformed to 
statement v. 



www.manaraa.com

140 

It follows from condition Bl and induction on the length of c that b(y) => b(y Ef) c). 
Therefore, by Corollary 2, the guard of statement t' can be strengthened to b(y) A q 
provided the following two conditions hold in the remainder of the program (i.e., the 
program without statement t'): 

1. y Ef) c = m ,...... y = m, and 

2. b(y) unless false. 

For a proof of Condition 1, observe that on account of statement u, y Ef) head( c)= k 
ensures y = k. The required condition follows from the repeated application of this 
progress property. For a proof of Condition 2, observe that statement u is the only 
statement in the remainder of the program that modifies variable y. Furthermore, from 
condition B1, b(y) ::} b(y Ef) head( c)). Consequently, b(y) unless false holds over the 
remainder of the program. This completes the proof of correctness of the transformation 
of statement t' to statement t". 

Next, we consider the refinement of statement t" to statement v. It follows from 
repeated application of conditions B 1 and B2 that 

b(y)::} f(vs,yEf)c) = f(vs,y). 
Consequently, by the substitution axiom, the expression f( vs, y Ef) c) may be substituted 
by the expression f(vs,y) in statement t". As a result, we obtain statement v, our goal 
statement. 

Summing up the sequence of refinements, the statements s and t can be replaced by 
the statements s', u, and v provided conditions BO, B 1, and B2 hold. Similar conditions 
were defined by Chandy and Misra in [5] as the Asynchrony Condition. Our stepwise 
derivation of the condition provides a useful illustration of the program refinement theo
rems discussed here, in addition to providing some insight into their theorem. Recently, 
Sanders has also presented a development of the Asynchrony Condition in the framework 
of mixed specifications [23]. 

If, in addition, we want the above program refinement to be fixed-point preserving, 
then it can be shown, on the basis of condition A3 of Theorem 4, that the following two 
conditions suffice: 

p::} [xEt>d f. x],forallx,d,and 
b(xEt>c) A q::} [g(x)Et>c = xEf)c::} g(x)=x],forallx,c. 

...... (B3) 

.. .... (B4) 
0 

The following example taken from [5] illustrates an application of the refinements devel
oped here. 

Example 5: Let statements sand t be defined as follows: 

S .. X := X - d if p, and 
t .. vs, x := vs + 1, x + e if x < 0 A q , where d;::: 0 and e;::: 0. 

Conditions BO' (which implies BO), B1, and B2 for this example translate to the 
following three properties respectively. 

(x- d)+ e = (x +e)- d, 
x < 0 ::} x - d < 0, and 
X < 0 ::} VS + 1 = VS + 1. 



www.manaraa.com

141 

Because all these conditions hold, statements s, t can be transformed to the following 
set of statements that use a channel c and a local variable y while preserving all unless 
and 1-+ properties. 

c := c;d if p 
y, c := y- head( c), tail(c) if c f:. null 
VS I Y := VS + 1 I Y + e if Y < 0 1\ q 

It follows from conditions B3 and B4 defined earlier that this refinement also preserves 
the fixed-point provided p =? d > 0 is an invariant of the program. 0 

4.3 Refining Atomicity 

It is often easier to prove or derive a program with a coarse grain of atomicity than 
a program that uses a fine grain of atomicity. Consequently, one method for program 
development is to derive a program with a coarse grain of atomicity and later refine it 
into another program that uses a finer grain of atomicity [14]. In this section we develop 
conditions under which such atomicity refinements preserve all the desired properties. We 
focus our attention to the refinement of a complex guard in an assignment statement. We 
consider two syntactic forms - one in which the guard to be evaluated is a disjunction of 
predicates and another in which the guard to be evaluated is a conjunction of predicates. 
These are examined in sections 4.3.1 and 4.3.2 respectively. 

4.3.1 Transforming Existential Quantification in Guards 

Theorem 6: Let F be any program and s :: A if (3i :: p.i) and t :: ( ~ i :: t.i) 
where t.i ::A if p.i, be any group of statements. Then, the program F ~ t is a property 
and a fixed-point preserving refinement of the program F ~ s if program F meets the 
following safety property: 

p.i unless -.(3i :: p.i), for each i. 0 

A simplified version of the above theorem was used in [25] to map a program onto a set 
of processes. There, an assignment statement represented a unit of work. The dummy 
in the existential quantification of the guard of a statement ranged over all the processes 
and the term of the existential quantification represented· the mapping of a unit of work 
to a process. The code of a process was then obtained by an application of the theorem. 

4.3.2 Transforming Universal Quantification in Guards 

Theorem 7: Let F be any program and s :: p := true if -.p 1\ (Vi :: q.i) be any 
statement. Consider a refinement of statements in which the predicates q .i are computed 
asynchronously with the help of fresh variables y.i as follows: variables y.i are initialized 
to false and statement s is replaced by the following set of statements G: 

p 
ll(lli :: y.i 

~ ( ~ i :: y.i 

true 
false 
true 

if -.p 1\ (Vi :: y.i) 
if -.p 1\ (Vi :: y.i) ) 
if -.p 1\ q.i} 



www.manaraa.com

142 

Then program F ~ G is a property and a fixed-point preserving refinement of program 
F ~ s if program F satisfies -.p A q.i unless false , for each i. D 

The above theorem originates from the two-phase handshake used in network protocols 
and can be understood as follows. The statement that sets program variable p to true 
represents a controller process and the statements that assign predicates q.i represent 
subordinate processes. After setting q.i to true, a subordinate process waits for an ac
knowledgement from the controller (in the form of variable p being set to true) before 
resetting it to false. The controller polls each subordinate (through local variable y.i) 
and sets p to true when it finds all the y.is to be true. The correctness of the refinement 
is based on the fact that the subordinate processes do not reset predicates q.i while they 
are being polled by the controller. It is possible to introduce more asynchrony into the 
above refinement by setting variables y.is to false asynchronously. However, it has to 
be ensured that the next phase of polling q.is does not begin until all the y.is from the 
previous phase have been reset. 

The refinement of a synchronous computation of guards by an asynchronous compu
tation is similar to the idea of delay insensitivity discussed in the context of electronic 
circuits by Seitz in [24] and Martin in [20], and in the context of programs by Chandy 
and Misra in [5]. A program is said to be delay insensitive if for all the assignment 
statements, the right hand side of the assignment does not change as long as the left 
hand side of the assignment does not equal the right hand side. Thus, delay insensitivity 
allows an electronic circuit to be designed without using a common clock. For example, 
consider the statement s :: p := p V (q A r) that represents a combinatorial logic-gate. 
(Note that this statement is equivalent to the statement p := true if -.p V (q A r) .) For 
this statement to be delay insensitive, the program that s is a part of should satisfy the 
following property: 

-.p A q A r unless p. · · · · · · (P) 
In other words, a state in which pis false and q and r are true persists until pis set to true. 
On the other hand, the conditions for refinement of atomicity derived earlier ensure that 
the expression on the right hand side of a statement can be computed piecemeal. Delay 
insensitivity in general does not ensure this piecemeal evaluation; it ensures asynchrony 
among different statements as opposed to atomicity refinement which ensures asynchrony 
in the execution of a statement. For example, consider the statement s defined earlier 
and let us try using property P as the condition for atomicity refinement. In that case, 
it is possible that predicates q and r keep oscillating between true and false such that 
they are never true at the same time. In that case, condition P is vacuously satisfied. 
However, if q and r are evaluated asynchronously then it is possible that both will be 
found to be true and the subsequent setting of p to true will be incorrect. This shows that 
condition P is not acceptable as the correctness requirement. As evident from Theorem 
7, the correct conditions for refinement of atomicity in this case are: 

-.p A q unless false and -.pAr unless false. 

5 Concluding Remarks 

In this paper we discussed the idea of property preserving and fixed-point preserving 
refinements and presented some theorems under which some common program transfor
mations are correct. We hope that these theorems will be a first step towards building 



www.manaraa.com

143 

an adequate set of tools for program transformations. Once a sufficient number of theo
rems have been developed, it may be possible to implement recurring themes in parallel 
program derivation such as abstract data type implementation, process synchronization, 
and process scheduling, by program refinements alone. 

Acknowledgements 
The ideas and theorems discussed here have been motivated by discussions with Jay 
Misra. 

References 
[1] Abadi, M., and L. Lamport, The Existence of Refinement Mappings, Proceed

ings of the 3rd IEEE Symposium on Logic in Computer Science, 1988, pp. 165 
- 175. 

[2] Back, R. J. R., Correctness Preserving Program Refinements: Proof Theory 
and Applications, Mathematical Center Tracts, 131, Center for Mathematics 
and Computer Science (CWI), Amsterdam, 1980. 

[3] Back, R. J. R., A Method for Refining Atomicity in Parallel Algorithms, Parallel 
Architectures and Languages Europe 1989, Eindhoven, June 1989, pp. 199 -
216. 

[4] Back, R. J. R., and K. Sere, Stepwise Refinement of Parallel Algorithms, Sci
ence of Computer Programming, 13, 1989-90, pp. 133 - 180. 

[5] Chandy, K. M., and J. Misra, Parallel Program Design: A Foundation, Reading, 
Massachusetts: Addison-Wesley, 1988. 

[6] Dijkstra, E. W., A Discipline of Programming, Englewood Cliffs, New Jersey: 
Prentice-Hall, 1976. 

[7] Emerson, E. A., and J. Y. Halpern, "Sometimes" and "Not Never" Revisited: 
On Branching Time versus Linear Time Temporal Logic, Journal of the ACM, 
33(1), January 1986, pp. 151- 178. 

[8] Floyd, R. W., Assigning Meaning to Programs, Proceedings of American Math
ematical Society Symposia in Applied Mathematics, 19, 1967, pp. 19-32. 

[9] Gries, D., The Science of Programming, New York: Springer-Verlag, 1981. 

[10] Hoare, C. A. R., An Axiomatic Basis for Computer Programming, Communi
cations of the ACM, 12, 1969, pp. 576 - 580. 

[11] Hoare, C. A. R., Proofs of Correctness of Data Representations, Acta Infor
matica, 1(4), 1972, pp. 271- 281. 

[12] Jones, C. B., Systematic Software Development Using VDM, Englewood Cliffs, 
N.J.: Prentice Hall, 1986. 



www.manaraa.com

144 

[13] Lam, S. S., and A. U. Shankar, Protocol Verification via Projections, IEEE 
Transactions on Software Engineering, 10(4), July 1984, pp. 325- 342. 

[14] Lamport, L., and F. Schneider, Pretending Atomicity, Technical Report TR-
89-1005, Department of computer Science, Cornell University, May 1989. 

[15] Lamport, L., A Simple Approach to Specifying Concurrent Systems, Commu
nications of the ACM, 32:1, Jan. 1989, pp. 32-47. 

[16] Lipton, R. J ., Reduction: A Method For Proving Properties of Parallel Pro
grams, Communications of the ACM, 18(12), Dec. 1975, pp. 717- 721. 

[17] Lynch, N., and M. R. Tuttle, Hierarchical Correctness Proofs for Distributed 
Algorithms, Proc. Sixth Annual ACM Symposium on the Principles of Dis
tributed Computing, 1987, pp. 137- 151. 

[18] Manna, Z., and A. Pnueli, How to Cook a Temporal Proof System for Your 
Pet language, Proceedings of the 9th ACM Symposium on Principles of Pro
gramming Languages, 1983, pp. 141 - 154. 

[19] Manna, Z., and A. Pnueli, Adequate Proof Principles for Invariance and Live
ness Properties of Concurrent Programs, Science of Computer Programming, 
4, 1984, pp. 257-289. 

[20] Martin, A. J ., Compiling Communicating Processes into Delay-Insensitive VLSI 
Circuits, Journal of Distributed Computing, 1(3), 1986. 

[21] Milner, R., Calculi for Synchrony and Asynchrony, Theoretical Computer Sci
ence, 25,1983, pp. 267-310. 

[22] Owicki, S., and D. Gries, An Axiomatic Proof Technique for Parallel Programs 
I, Acta Informatica, 6, 1976, pp. 319-340. 

[23] Sanders, B., Stepwise Refinement of Mixed Specifications of Concurrent Pro
grams, Proceedings of IFIP Conference on Programming Concepts and Meth
ods, Israel, April 1990, eds. M. Broy and C. B. Jones, Elsevier Science Pub
lishers B. V. 1990. 

[24] Seitz, C., System Timing, in Introduction to VLSI Systems, eds. C. Mead and 
L. Conway, Reading, Massachusetts: Addison-Wesley, 1980. 

[25] Singh, A. K., and R. Overbeek, Derivation of Efficient Parallel Programs: An 
Example from Genetic Sequence Analysis, International Journal of Parallel 
Programming, 18(6), Dec. 1989, pp. 447- 484. 

[26] Singh, A. K., Program Refinement in Fair Transition Systems, Technical Report 
91-2, University of California at Santa Barbara, March 1991. 

[27] Singh, A. K., Leads-to and Program Union, Notes on Unity: 06-89, The Uni
versity of Texas at Austin, Texas, May 1989. 

[28] Singh, A. K., On Strengthening the Guard, Notes on Unity: 07-89, The Uni
versity of Texas at Austin, Texas, June 1989. 



www.manaraa.com

145 

Appendix 

Proof of Theorem 5: The proof is in four parts: first, we show that F ~ t preserves 
all the safety properties ofF ~ s; second, we show that F ~ t preserves all the progress 
properties ofF ~ s; next, we show that the fixed-point ofF ~ t implies the fixed-point of 
F ~ s; finally, we show that ifF ~ t terminates then F ~ s also terminates. 

Part 1: Let b unless c be a property ofF ~ s. Because the Hoare triple 
{b 1\ -.c} s {b V c} implies {b 1\ -.c} t {b V c}, b unless cis also a property ofF~ t. 
Thus, F ~ t preserves all unless properties ofF ~ s. {End of Part 1) 

Part 2: Let b 1-+ c be a property ofF ~ s. We prove that b 1-+ c in F ~ t by induction 
on the proof of b ...... c in F ~ s. 

Base case: b ensures c in F ~ s. 

From the definition of ensures, b unless c in F ~ s and there exists a statement u in 
F ~ s such that { b 1\ -.c} u { c}. If u E F then the proof follows as the refinement 
preserves all the safety properties. Otherwise, u = s, i.e., {b 1\ -.c} s {c}. Therefore, 

b 1\ -.p :::? c, and 
{ b 1\ -.c} A { c}. 

······(CO) 
· · · · · · {C1) 

We prove the following two properties of program F ~ t, 

b 1\ p 1\ g(x) = k ...... (b 1\ p 1\ q 1\ g(x) = k) V c V g(x) < k, and · · · · · · (C2) 
b 1\ p 1\ q 1\ g(x) = k 1-+ c V g(x) < k, · · · · · · {C3) 

and then observe the following in F ~ t: 

b 1\ -.p :::? c 
b 1\ -.p 1-+ c 
g(x) = k unless g(x) < k 
b 1\ -.p 1\ g(x) = k ...... c V g(x) < k 
b 1\ p 1\ g(x) = k ...... c V g(x) < k 
b 1\ g(x) = k 1-+ c V g(x) < k 
b I-+ c 

Proof of C2: 
p ...... q in F 
-.(p 1\ q) :::? t.F P 
p 1-+ q V (p 1\ q) in F 0 t 
p ...... qinFOt 
b unless c in F 0 s 
b unless c in F 0 t 
b 1\ p ...... (b 1\ q) V c in F ~ t 
b 1\ p 1-+ (b 1\ -.c 1\ q) V c in F 0 t 
b 1\ p 1-+ (b 1\ -.c 1\ p 1\ q) V c in F ~ t 
b 1\ p 1-+ (b 1\ p 1\ q) V c in F ~ t 

, property CO 
, property of ...... [5] 
, g is non-increasing 
, PSP theorem 
, transitivity on C2, C3 [5] 
, disjunction on above two [5] 
, disjunction over k and 

g is bounded from below [5] D 

, assumption 
, t is A if p 1\ q 
, composition of 1-+ [27] 
, predicate calculus · · · · · · {C4) 
, assumption 
, preservation of safety properties 
, PSP theorem with C4 
, predicate calculus 
, b 1\ -.c => p by CO 
, predicate calculus 



www.manaraa.com

146 

g(x) = k unless g(x) < k in F ~ t , g is non-increasing 
b 1\ p 1\ g(x) = k ~--+ (b 1\ p 1\ q 1\ g(x) = k) V c V g(x) <kin F ~ t 

, PSP theorem 

Proof of C3: 
{b 1\ -.c} A {c} , property Cl 
{ b 1\ p 1\ q 1\ -.c} t { c} , t is A if p 1\ q 
b 1\ p 1\ q ensures c in t , definition of ensures 
g(x) = k unless g(x) <kin t , g is non-increasing 
b 1\ p 1\ q 1\ g(x) = k ensures c V g(x) <kin t , conjunction (5) · · · · · · (C5) 
p unless ...,p in F , property of unless [5] 
q 1\ g(x) = k unless -.p V g(x) <kin F , assumption 
p 1\ q 1\ g(x) = k unless -,p V g(x) <kin F , conjunction 
b unless c in F , assumption 
b 1\ p 1\ q 1\ g(x) = k unless (b 1\ -,p) V c V g(x) <kin F 

, conjunction 
b 1\ p 1\ q 1\ g(x) = k unless c V g(x) < k in F , property CO 
b 1\ p 1\ q 1\ g(x) = k ensures c V g(x) <kin F ~~union theorem with C5 

This concludes the base case. 

Induction step: 

• b ~--+ r in F ~ s , r ensures c in F ~ s. 

b ~--+ r in F ~ t 
r ~--+ cinF~t 
b ~-+ cinF~t 

, induction hypothesis 
, proof similar to base case 
, transitivity 

• b = (3 i :: b.i) and b.i ~--+ c in F ~ s, for all i 

b.i ~-+ c in F ~ t 
(3 i :: b.i) ~--+ c in F ~ t 
b ~-+ c in F ~ t 

, induction hypothesis 
, disjunction over i 
' b = (3 i :: b.i) 

(End of Part 2) 

Part 3: Let F P be the fixed-point of program F and R be the fixed-point of assignment 
A. Then, the fixed-point of programs F ~ s and F D t are F P 1\ (p ::} R) and 
F P 1\ (p 1\ q ::} R), respectively. 

P A ..,q =? (p A q =? R) 
p 1\ -.q ::} fixed-point oft 
F P = fixed-point of F 
F P 1\ p 1\ ...,q ::} fixed-point ofF D t 
F P 1\ p 1\ -,q unless false in F ~ t 
p~-+qinFDt 
FP 1\p/\ ...,q ~-+ false in F D t 
-,(FP/\p/\..,q) in FDt 

, predicate calculus 
, observing t 
, assumption 
, property of fixed-points 
, property of fixed-points 
, property C4 
, PSP theorem 
, impossibility theorem · · · · · · ( C6) 



www.manaraa.com

147 

Now observe the following in the context of program F 0 t. 

fixed-point ofF 0 t 
= {definition of fixed-point} 

F P 1\ (p 1\ q => R) 
= {predicate calculus} 

F P A ( -.p v -.q V R) 
= {predicate calculus} 

F P A ( -.p V (p 1\ -.q) V R) 
= {distributing 1\ over V} 

( F P 1\ ( -.p V R)) V ( F P A p A -.q) 
= {simplifying using C6} 

FP 1\ (p => R) 
= {definition of fixed-point} 

fixed-point of F 0 s ·· ·· ··(C7) 
(End of Part 3) 

Part 4: Let F P and F P' indicate the fixed-points of programs F 0 s and F 0 t, re-
spectively. Observe the following. 

true 1-+ FP in F 
true 1-+ FP in G 
true 1-+ F P' in G 

, assumption 
, preservation of 1-+ 

, FP = FP' from C7 
(End of Proof) 



www.manaraa.com

Communication Abstraction and 
Refinement 

J.T. Yantchev 

Department of Electronics and Computer Science, 
University of Southampton, Southampton S09 5NH, UK 

and 
Department of Electronic and Electrical Eng., 

University of Surrey, Guildford, UK. 

Abstract 

Concurrent systems ate collections of data., processes, and communication chan
nels. Top-down, hierarchical design of concurrent systems needs powerful abstraction 
facilities provided by the implementation language. While most languages provide 
some structuring mechanisms for data and process abstraction, none seems to pro
vide any equivalent mechanisms for communication structuring. Communication 
channels are to communicate data and, therefore, a.ll data structuring mechanisms 
provided by a programming language must be a.va.ila.ble to structure channels as 
well. In order to preserve behaviour through successive levels of design refinement, 
these means of communication structuring must preserve the abstraction of atomic 
transfers of values of arbitrary types. 

key words: interprocess communication and synchronisation, multiparty inter-
action, abstraction and refinement. 

Introduction 

Most concurrent programming languages [5, 6, 8, 1] support the abstraction of concur
rent systems as collections of data, processes, and communication channels. However, 
while they provide some structuring mechanisms for data and process abstraction, none 
seems to provide any equivalent mechanisms for communication structuring. Interprocess 
communication is almost universally viewed as a synchronised atomic exchange of values 
between two concurrently active processes. This affects the whole design process and in
tervenes with the freedom and ease in the refinement of the process structure. The design 
transformation steps may be non-trivial in some cases and, therefore, difficult to arrive 



www.manaraa.com

149 

at and verify. In addition, the implementation may be less efficient, both in storage and 
speed, because of unnecessary data copying and context creation for process spawning. 

The data structuring mechanisms supported by the contemporary programming lan
guages provide a uniform view on data and data types. Paraphrasing Einstein's principle 
that 'Physics is simple only when viewed locally', we can say that they allow the com
ponent data within a large data structure to be subject to the same general principles 
of organisation. Structured data types may consist of components of arbitrary types, 
including themselves, and values of such types are treated as wholes and may be passed 
as parameters, returned as results of functions, and assigned to variables. 

The same principle applies to processes [5, 8). No distinction of kind need be made 
between systems with and without substructure and, indeed, a system which at one level 
of abstraction may be considered to consist of a process and the environment in which 
it evolves, may be considered as a single system at a higher level of abstraction. Thus 
the term process is used very broadly to mean any system whose behaviour consists of 
atomic communications; a process which for one purpose is taken to be atomic may, 
for other purposes, be decomposed into a collection of processes acting concurrently and 
independently. 

It should be possible to abstract over communications, just as it is possible to abstract 
over processes and data. The communication of a data structure has a very natural inter
nal structure, which matches the structure of the data, and can be conceived as the result 
of the simultaneous participation of more than two processes. For example, a number of 
concurrent processes may cooperate to provide the components of the data structure at 
the output end of a communication channel and, similarly, several concurrent processes 
may cooperate at its input end to consume the data structure. Overall synchronisation 
ensures that the data structure communicated on the channel is in a consistent state and 
that the atomic character of communication remains unchanged; atomicity, however, need 
only be temporal and not spatial. 

In other words, communication channels are to communicate data and, therefore, all 
data structuring mechanisms provided by a programming language must be available to 
structure channels as well. Einstein's principle applied here means that no distinction 
should be made between communications with structure and communications without 
structure. A channel that communicates values of some structured type V may be viewed 
and, indeed, used both as a single channel of that type and as a structure of channels 
which communicate the components of V. Furthermore, no distinction should be made 
between the execution of a structured action by one process and by a system of processes. 
Just as a process may be either atomic or composed of concurrently acting subprocesses, 
an output {or input) action may be executed either by a single atomic process or by a 
collection of concurrent processes, where each process outputs {resp. inputs) one of the 
components of V. 

This provides a means of communication abstraction and refinement, which is close to 
our intuitions and complements the means for data and process abstraction and refine
ment. It facilitates a top-down hierarchical design methodology and, furthermore, allows 
the design of more efficient programs. It is the purpose of this paper to introduce the 



www.manaraa.com

150 

concept and consider some of its implications on design, implementation, and efficiency. 
The language CSP [5], which captures very well the notions of concurrency and process 
interaction, will be used as a notational tool. CSP has a well defined semantical model 
[2, 5] and has served as an underlying model for many concurrent programming languages, 
eg. [6]. The new formulation of communication will be modelled in basic CSP as a class 
of interactions which may involve an arbitrary number of processes. 

1 Communicating Sequential Processes 

C.A.R. Hoare's CSP [4], first published in 1978, is one of the most widely known program
ming languages for concurrency. In this language input and output, i.e. communication 
between two concurrent processes, was taken as primitive programmer-specified action 
with synchronisation as the mechanism for communication. The language, based on 
Dijkstra's guarded commands, allowed input requests to be used in guards, so that com
munication could determine process behaviour in a very elegant way. Non-determinism 
is inherent in the operation of concurrent systems, and a CSP process may exhibit non
deterministic behaviour, for example, when executing a guarded command in which more 
than one guard is satisfied. 

In this early version of CSP communication channels are not named. Instead, the 
component processes of a parallel construction have unique names and communication 
channels are established by direct process naming. A channel is, therefore, between two 
processes only and it is logically impossible to violate this restriction. Within process A, 

proc P =AilE where, proc A= proc B = 

B!v; A?x; 

the command B!v outputs the value v to the process named B. The value is input by a 
command A?x occurring within the process B. 

CSP was later developed [5] into a more basic mathematical language, refered to as 
TCSP (for Theoretical CSP), which abstracts from the details of interprocess communi
cation by representing behaviour using the primitive notion of event. The occurrence of 
an event is regarded as an instantaneous or an atomic action without duration. Events 
may require the simultaneous participation of several processes in which case they are 
also called multiway synchronisations. 

A process in TCSP is considered to be an agent which interacts with its environment 
in some universal alphabet ~ of events. The alphabet of a particular process P will be 
denoted as o:P, with the obvious requirement that o:P ~ ~. In the version of TCSP to 
be used here processes will be constructed using the following set of operators, where P 
and Q denote processes. 



www.manaraa.com

151 

1. STOP, the deadlocked process which never engages in any action. 

2. SKIP, the process which terminates immediately. 

3. prefix, a - P, (a E L:). The unary operator a - has the effect of prefixing the 
event a to the behaviour of P. 

4. general choice, PDQ, behaves either as P or as Q, the control being exercised by 
their environment on the first action. If the first action is possible for both P and 
Q, the choice between them is non-deterministic. 

5. sequential composition, P; Q, is a process which first behaves like P, but when P 
terminates successfully, (P; Q) continues to behave like Q. 

6. concurrent composition, PIIQ, has the effect of concurrently combining the two 
processes which may evolve independently or interact through synchronising actions 
that are in both their alphabets aPnaQ. (PIIQ) terminates successfully when both 
components do so. 

7. hiding, P\C, (C ~ L: and C is finite), is a process which behaves like P, except 
that each event in C is concealed. Actions in C become internal to P\ C and occur 
without being observed or controlled by the environment. 

While it is certainly possible not to take the assignment of conventional sequential lan
guages as primitive, but rather model it together with program variables as processes, we 
will choose not to do so. For we are just as interested in the internal state transformation 
of a process as in its external behaviour. The process 

(x:=e;P) 

will then behave as P, except that the initial value of x will be defined to be the initial 
value of the expression e. Single assignments generalise easily to multiple assignments in 
an obvious way 

In addition, conditional iteration will be denoted by 

hP 

where b is a boolean expression, with (true* P) often abbreviated as (*P). 

1.1 Communication of values 

Communication in TCSP follows closely the concept of communication of early CSP 
as a synchronised exchange of values by two concurrently active processes. However, 
rather than directly naming the participating processes, it uses the notion of explicit 



www.manaraa.com

152 

communication channels on which the communications take place [5]. The communication 
of a value of type V is an event that is described by a pair 

c.v, with v E V 

where cis the name of the channel and vis the value of the message. 

A process that first outputs a value v on channel c and then behaves like P is defined 
as 

(c!v--+ P) = (c.v--+ P) 

the only event in which it is initially prepared to engage is the communication event c.v. 

A process which is initially prepared to input any value :c E V, and then behave like 
P(:c), is defined as 

(c?:c--+ P(:c)) = Ovev(c.v--+ P(v)) 

The abstraction of binary communication is maintained by the syntactically enforced 
convention that channels are used for communication in one direction only and between 
only two processes. 

Channels will be declared and internalised using channel declarations. The scope of a 
declaration is between the enclosing pair of brackets and is defined as 

( c : chan of T; P) = P\ {c. v I v E T} where T is finite 

1.2 Process creation and program structure 

The II and ; operators impose some structure on a concurrent program that allows easy 
identification of program segments that can be executed concurrently. For example, the 
execution of 

Pdi .. ·IIPn 
causes the concurrent execution of P1 , ..• , Pn. Its execution terminates only when exe
cution of all Pt , ... , Pn have terminated. 

Since no sharing of program variables is allowed, this explicit single-entry, single-exit 
control structure allows the state transformation implemented by a program segment 
to be understood by itself. The understanding of a complete program is built up by 
understanding its constituent parts. 

Earlier proposals, like fork and join, allowed the specification of arbitrary control 
structures, but failed to separate process definition from process synchronisation. Because 
fork and join can appear in conditionals and loops, the resulting program structure can 
be very difficult to understand and reason about. Program transformation is perhaps 
even more difficult to attempt. 

On the other hand, the ability to specify arbitrary program control structures al-



www.manaraa.com

153 

lows the design of very efficient programs which exploit all the parallelism available in 
a computation, where using only II and ; would impose over-constrained sequentiality. 
This occurs, for example, when the external synchronisation graph is mapped onto the 
data flow graph of the internal state transformation. Although both graphs may have 
single-entry, single-exit structures, the resulting graph need not. 

1.3 Data types 

In addition to the conventional atomic types like integer, char, real, etc., we will assume 
the existence of the array, record, and union types. An. array is a data type which is a 
rectangular collection of items, all of the same type. 

m : array[n, n] of T; 

declares m to be ann x n matrix of items of type T. The items of mare indexed in the 
usual way, eg. m[i,j]. 

A record is a data type which has a number of named fields. 

r: {a: integer, b: real}; 

r is a record of two fields a and b of type integer and real, respectively. The components 
of r are referenced using the the dot notation, as in r.a, for example. Values of record 
types can be constructed as in {26, 2.5} or {a : 26, b : 2.5}. 

A union is a data type which has a number of variant fields. 

u : { e: integer++ f : real}; 

u is a union of two types. The components of a union type are denoted using the dot 
notation, as before. Values of union types may be constructed as in { e : 27}. 

In addition, types may be given names. For example, 

t = {a : integer, b : real}; 

gives the name t to the record type {a : integer,.b : real}; t may be then used to 
refer to that type. Variable and type declarations obey the same scope rules as channel 
declarations. 

2 The problem with binary communication 

One of the aims of the previous section was to emphasise that communication of values 
in CSP has been conceived from the outset as a binary interaction primitive. It remained 
essentially unchanged despite later developments that provided the notational tools to de
scribe multiway interactions which may affect process behaviour in complex and intricate 
ways. 



www.manaraa.com

154 

The expressive power and elegance of TCSP, however, are to a large extent due to 
the ability to consider an event a as being executed by a single process P at one level of 
process abstraction and by several concurrently active processes P1 , ••• , P,. at a different 
level. Although events in TCSP have no inherent structure and each P; when taken in 
isolation will still be executing the same event a, this may, nevertheless, be considered 
as providing some form of event refinement. It is orthogonal to process structuring and 
facilitates the design process of refining one atomic process into concurrent subprocesses. 
For example, the equivalence 

(b-. a-. (PIIQIIR)) =(b-. a-. P)ll(a-. Q)ll(a-. R), b f/ o:Q U o:R 

which is easily proved correct in TCSP, may be interpreted as describing a design trans
formation step that refines a sequential process into a set of concurrently active processes 
implementing the same behaviour as the original process. 

The lack of a comparable refinement mechanism for value communications seems 
rather arbitrary and, more importantly, hinders design refinement and may result in 
over-constrained and inefficient programs. There are two aspects to the computation per
formed by a process. The first is the internal state computation, which may be specified 
by the possible sequences of state transformations. The second is the external behaviour 
in terms of the communications between the process and its environment. Design refine
ment aims to implement the internal state transformations by an optimal in some sense 
structure of processes by a sequence of program transformations, while preserving the ex
ternal behaviour from one level of design to another. This, however, may not be a trivial 
task if the designer is not given the right tools. 

Since there may be only one process connected to any of the ends of a communication 
channel, a communication of a process P with its environment cannot be used to synchro
nise concurrently active component processes of P. Therefore, although the sole purpose 
of external communications is to create a consistent data structure which is to be commu
nicated to the environment or updated by the value received from the environment, there 
are no means to describe this in a natural way, when the components of the data structure 
are distributed over concurrently active processes. The program control structure that 
implements the internal state transformations will also have to implement the necessary 
synchronisations. As the following example demonstrates, this may over-constrain the 
execution order and/or result in storage and speed inefficiencies. 

Example: design of a sequence generator. Assume that a process P must be imple-

~ 
~ 

mented with the following specification S 



www.manaraa.com

155 

channels(P) ={a!, b!}, where 

a : chan of {! : T, g : T}; and b : chan of {g : T, h : T}; 

tr(P) = (a!, b!)* 

The external behaviour of P is specified by the set of its possible sequences of communi
cations or traces tr(P). It interacts with the environment by communicating on a and b, 
starting on a, and alternating between a and b in a strict sequence. 

In addition, the values output must satisfy the following recurrence equations 

a.!l = c, 
a.f; = F(a.f;-1) 

a.g1 = C9 

a.g; = Ga(b.g;-1) 
b.g; = Gb(a.g;) 

b.h1 = c" 
b.h; = H(b.h;-1) 

where a.J;, for example, denotes the f component of the ith communication on channel a. 

Perhaps, the simplest and most obvious solution which we may be tempted to try is 

P = /, g, h := C" Ca, C"; 
*( a!{f,g}; 

J,g := F(f), Gh(g); 
b!{g, h}; 
g,h := Ga(g),H(h) 

) 

There may be at most two concurrent processes active at any time and these are denoted 
by the concurrent assignments. However, consider the state transformation graph, derived 
from the recurrence equations and without the additional synchronisations imposed by 
the behavioural specification, given in figure l.a. The nodes represent states and the arcs 

'F t 
al bl 

Figure 1: a) State transformation graph. b) Synchronisation graph 

represent state transformations. There are three independent concurrent computations 
and, therefore, our first implementation of P has over-constrained the execution order. 



www.manaraa.com

156 

We may hope that further refinement will result in an implementation that does not 
constrain the execution more than specified by S. Consider now figure l.b, which shows 
the state transformation graph with the synchronisations imposed by the outputs. There 
may still be three concurrently active processes. The graph is, however, not single-entry, 
single-exit and cannot be constructed using II and ; alone. The additional synchronisations 
between the three concurrent processes must be implemented by using a pair of local chan
nels, as shown in figure 2. Process P9 computes the 9 component of the internal state and 

Figure 2: Sequence generator with hidden channels. 

communicates it in alternating order to P1 and Ph on channels c and d, respectively. P1 
and Ph output the whole pairs to the environment. Channel sync is used for synchronising 
P1 and Ph to ensure that the outputs on a and b occur in a strict sequence. 

Although this implementation exploits all the concurrency available in the original 
specification, it also introduces notable inefficiencies both in storage and in speed. There 
are three more channels and the values of 9 are explicitly communicated from P9 to P1 
and Ph. These values must also be stored in both PJ and Ph; storage for 9 is therefore 
duplicated twice. 

In addition, the design transformation involved is not trivial, although it may appear 
as such in this simple example. t\ 

3 Communication Refine1nent 

The requirement that communication channels are used between two processes only is 
unnecessarily restrictive. The communication of a data value has a very natural internal 
structure, which matches the structure of the data and can be conceived as the result of the 
simultaneous participation of more than two processes. At the output end of a channel, 
for example, several concurrently active processes may synchronise and provide different 
components of the data structure that must be output. The complete output event may 
then be considered as being composed of many partial outputs. Similar arguments apply 
for the input end of the channel, but note that the two ends may be distributed over con
current processes in different ways. The requirement for overall synchronisation ensures 
that the data structure communicated on the channel is in a consistent state and that the 
atomic character of communication remains unchanged. 



www.manaraa.com

157 

3.1 Syntax and Semantics 

Communication channels are to communicate data and, therefore, all data structuring 
mechanisms provided by a programming language must be available to structure channels 
as well. A channel that communicates values of some structured type V may be viewed 
and, indeed, used both as a single channel of that type and as a structure of channels 
which communicate the components of V. In addition, the same syntax that is used to 
denote the components of a data structure should be used to denote the components of a 
channel. 

A communication event is, as before, described by a pair 

c.v, with v E V 

where c is the name of the channel and v is the value of the message. 

The representations of complete outputs and inputs remain unchanged and process 
that first outputs a value v on channel c and then behaves like P is defined as 

(c!v-+ P) = (c.v-+ P) 

and a process which is initially prepared to input any value x E V, and then behave like 
P(x), is defined as 

(c?x-+ P(x)) = O.ev(c.v-+ P(v)) 

If the communicated value v is of a record type V with 

V = {a1: Tb ... ,an: Tn} 

·then a process that is initially prepared to participate in communication on c by outputting 
the value u E 1i ( i E { 1, .. , n}) as the a; component of v and then behave as P is defined 
as 

(c.a;!u-+ P) = D .. ev•(c.x-+ P), 

i.e. it is prepared to engage in all communication events c.{xh ... ,x;_I,u,x;+1, ... ,xn}, 
which have u as the value of their a; component. 

A process which is initially prepared to participate in a communication on c, input 
any value x E T; (i E {l, .. ,n}) as the a; component of v, and then behave like P(x), is 
defined as 

(c.a;?x-+ P(x)) = 011ev(c.y-+ P(y.a;) 

i.e. it is initially prepared to engage in any communication event on the channel c, but 
its future behaviour is determined by the value of the a; component alone. 

Partial inputs on channels of array type, which are also product types, have similar 



www.manaraa.com

158 

semantics, but the syntax differs. For example, given c : chan of array[n, n] of T 

(c[i,j]!v- P) 

is a process that outputs the i,j component of a matrix in the atomic communication of 
the whole matrix on channel c. 

If the value u communicated is of a union type U with 

U = {bt : T1 ++ • • · ++an : Tn} 

then a process that is initially prepared to output a value e from the b; (i E {l, .. ,n}) 
component of U and then behave as P is defined as 

(c.b;!e- P) = (c.{b;: e}- P) 

The only event in which it is initially prepared to engage is the communication event 
c.{b;: e}. 

As with TCSP, we will insist that a channel has the same alphabet at both ends and 
that an inputting process is prepared to accept any communicable value. This means that 
we cannot write for c defined as above 

(c.b;?x- P(x)) 

as this may allow for obscure deadlock situations. 

A convention is imposed that a. component of a channel may be with one process 
only at each end and communication .is in one direction only. In the rest of this pa
per the language with structured channels will be called CR-CSP, which derives from 
Communication Refinement CSP. TCSP restricted to binary named channels as the only 
interaction mechanism will be refered to as CSP. 

3.2 Some equivalences 

The translation of the input and output commands of CR-CSP into TCSP allows the 
easy proof of a set of equivalences between process, which we will intuitively expect to 
hold. Obviously, the equivalences given in [5] for binary value communications will hold 
in CR-CSP unchanged. 

First consider two laws for record types. Assume V ={a: Ta,b: n}. 

Ll (c.a!u- P)ll(c.b!v- Q) = (c!{u,v}- (PIIQ)) 

L2 (c.a?x- P(x))ll(c.b?y- Q(y)) = (c?{x,y}- (P(x)IIQ(y))) 

i.e. a process which at one level of abstraction is taken to be atomic and connected to 
one end of the channel c may, at another level of abstraction, be decomposed into two 
concurrent processes each connected to a component of the channel c. 



www.manaraa.com

159 

A channel c of a union type 

can communicate values of any of the types T,. or Tb. 

L3 (c.a!u--. P) = (c!{a;: e}--. P) 

Note, that there is no equivalent law for the input end of c. It may appear that 
component selection for channels of union type does not add any expressive power, but 
this is not so. It provides the means to denote the distribution of the output end of a 
channel for union subtypes that are themselves of some structured type, as the following 
example illustrates. 

c:chanof{a:T,. ++b:{f:T1 ,b:n}} 

(c.b!{f: u, g: v} __. (PIIQ)) = ((c.b.f!u __. P) II (c.b.g!u __. Q)) 

3.3 Examples 

The sequence generator revised. The ability to use partial outputs to synchronise 
concurrently active process connected to the output end of a channel allows a straightfor
ward implementation of the sequence generator. It consists of three concurrent processes 
implementing the state transformation graph in the obvious way and cooperating to out
put to the environment. 

P1 = f := C1; 
*( a.f!f; 

f := F(f) 
) 

where, 

P9 = g := 0 9 ; 

*( a.g!g; 
g := Gb(g); 
b.g!g; 
g := G,.(g) 

) 

Ph= h := Ch; 
*( b.h!h; 

h := H(h) 
) 

It is clear that this program, while of a single entry, single exit control structure, im
plements the flow graph of figure 3. It imposes no additional restrictions on the execution 
order, specifies only the minimum synchronisation needed, and avoids all inefficiencies of 
which the other implementations suffered. Surprisingly, perhaps, it is even more efficient 
than the first implementation, which has to create contexts for the assignments after every 
external communication. -" 

Generic adder. Assume we have designed a. simple process A to repeatedly input two 
real numbers :z; and y from channels a and b, respectively, add the numbers together, 



www.manaraa.com

160 

a.nd output the result on another channel c. In addition, we will assume that process 
definitions ca.n be parameterised in the obvious way. 

A(a,b,c: chan of real)= (x,y: real; *(a?x;b?y;c!(x+y))) 

The process A can then be used as a building block to implement, for example, a 
process M that must repeatedly add two n x n matrices, each input from the environ
ment in one atomic communication, and output the result back, again in one atomic 
communication. 

a, b, c: chan of array[n, n] of real; 

M = ll;,j .. 1 A(a[i,j],b.[i,j],c[i,j]) 

This illustrates how communication abstraction improves our ability to write modular 
programs. For example, a self-contained design module with a.n input port, or interface, 
of type Tt can be used to build a bigger system with a composite interface c of type 
C ={a: Tt,b: T2}, say. a!t 

3.4 Implementation and Efficiency 

It must be obvious that the class of CR-CSP programs subsumes the class of CSP programs 
and a programmer can, therefore, use binary communications wherever and whenever she 
or he deems necessary. In other words, in CR-CSP we can write programs that are a.t 
least as efficient as their CSP equivalents. In many cases, however, the ability to preserve 
local context upon multiwa.y synchronisation allows us to do even better. 

At a very general and abstract implementationallevel, a. program in CR-CSP seems 
to always specify either the same or less synchronisation, data. movement, and context 
creation than its equivalent CSP program. For example, 

if c: chan of {at: Vi, ... , an: V..} then 

P,. = (11;.,1 Pi)i c!{vt,···,vn}i {11; .. 1 P;) and 

Pb = 11; .. 1 (P,; c.a,!v1; P;) 

obviously implement the same behaviour. Before the output on call n processes P1 must 
synchronise. In P,. this is upon termination and in P6, which can only be written in CR
CSP, this is upon communication. After the output, however, P,. will have to spawn n new 
processes P; with the associated cost of context creation, which in some implementations 
may be even higher than the cost of communicating on c. 

In other cases where a CR-CSP program has no trivial translation into CSP, the 
contrast is even greater. For, collecting the components of a. data. structure together in 
order to perform an atomic communication certainly involves no less synchronisation and 
perhaps always more data. movement and storage duplication. 



www.manaraa.com

161 

4 Multiway Communication 

Communication, both binary or structured, has so far been considered to be a directed 
activity, where one or more processes either send or receive a value or its components. 
However, the concept of communication as the occurrence of an event c.e from a set of 
events C = {c.v I v E V} as a result of the cooperation of several concurrently active 
processes, with some of them partially specifying the value e and others using these choices 
to determine their future behaviour, is more powerful than that. A participating process 
can both make some or none of the choices and use some or none of the choices made by 
the other processes to determine its future behaviour. 

This introduces a. view of communication as a. multiwa.y undirected activity which ma.y 
involve an arbitrary number of processes. The participating processes interact by ea.ch 
possibly exposing a. value of some type a.nd/or reading the values exposed by the other 
processes in an arbitrary way. The overall data structure created from the individual 
contributions determines the type of the interaction. 

4.1 A Novel Multiway Communication Primitive 

The interaction patterns that served as a model for the syntax introduced in Section 3.1 
constitute a set richer than the one denoted by the input and output commands used 
so far. A more expressive syntax is needed that can be used to denote all interaction 
patterns from that set. It should, ideally, retain the simplicity of the input and output 
commands to denote directed communications and provide a proper extension to the 
originai language. 

Let us consider more carefully the three most primitive ways in which a process can 
participate in the communication of a value v E V on a channel c. 

synchronisation a process may simply synchronise on the occcurrence of the communi
cation event, without making or allowing any of the choices made to determine its 
future behaviour; it, therefore, need not even know the type of the communicated 
value. 

output a process may output or expose either a component of the value v or the whole 
ofv. 

input a process may input or read arbitrary components of v or, indeed, the whole of 
v. This reflects the fact that an input does not influence which event from the 
set actually occurs, but the process that performs the input may use the event to 
determine its future behaviour in any way it likes. 

Multiway communication means that a process may engage in an arbitrary combina
tion of inputs and outputs and a multiway communication primitive must be sufficiently 
expressive to denote all such combinations. 

The following convention on the use of composite names will be observed 



www.manaraa.com

162 

Given c: chan of V; The prefix ( c ~ P) will be defined as 

(c ~ P) = [J.ev(c.v ~ P) 

The name c will be interpreted as a partially specified event name which may denote any 
event from the set { c.v I v E V}. The equivalences 

L4 (c ~ P) II (c!e ~ Q) =(de~ (P II Q)) 

L5 (c ~ P) II (c?x ~ Q(x)) = (c?x ~ (P II Q(x))) 

will then be valid for all e E V. 

The expression 

(c ~ P) 

denotes a process which is initially prepared to engage in any communication on c with
out actually observing the value which is communicated. This will be used for pure 
synchronisations. 

As before 

(c!v ~ P) 

will denote the process which is initially prepared to engage in the communication of the 
value v on c. Similarly, 

(c?x ~ Q(x)) 

will denote the process which is initially prepared to engage in any communication on c 
and will store in the variable x the value actually communicated. 

If the communicated value is of some structured type, eg. V = {f: V1,g: Vg, h: Vh}, 
then more complicated input/output actions are possible. For example, the process 

(c{f!e,g?x} ~ Q(x)) 

is initially prepared to engage in the communication on c by outputting the f component 
of the value v and will store in the variable x its g component. Similarly for 

(c{f!e,g?x,h?y} ~ Q(x,y)) 

The description of a communication action is then a partial description of the struc
ture of the value that is to be communicated, with the components of the value being 
either fixed by'!' or observed and copied by'?', in a manner reminiscent of the classical 
parammeter passing mechanisms. 



www.manaraa.com

163 

4.2 Examples 

Merger. The new communication primitive does, indeed, retain the denotational sim
plicity of the conventional input and output commands. The (possibly unfair) merger 
process M will be defined by an expression which can be written in CR-CSP and, indeed, 
CSP. 

M(a, b, c: chan ofT)= (a:: T; *((a?x; c!x) 0 (b?x; c!x))) 

where T is some type. 

Generic synchroniser. A process which simply synchronises on a communication need 
not know the type of the communicated value, which may, indeed, be different in different 
contexts. The process 

S[t](a, b: chan oft) =*(a; b) 

may then be used to constrain the communications on any two channels to occur in a 
strict sequence, as in 

a, b, c : chan of real; 

M(a, b,c) II S[real]{a,b) 

where S[t]( ... ) denotes a generic process definition, which may be instantiated with dif
ferent types substituted fort, as in S[real]{a, b). A distinct denotation is used to ephasise 
that types are not treated as first class values. 

In this case it may seem simpler to design from scratch a new merger process M' with 
the required behaviour. In many other cases, however, this may be a non-trivial task, 
especially when the internal structure of M is not known and/or it has a more complex 
external behaviour. Practice has convincingly shown that component reusability is a pow
erful design tool. • 

Swap. Two processes swapping values can be defined as 

c: chan of {! : T, g : T9 }; 

(c{f!x,g?x}--. P(x)) II (c{f?y,g!y}--. Q(y)) 

Similarly for a ring like swap which involves three processes. 

c: chan of{!: T, g: T9 , h: Th}i 

(c{f!x,g?x}--. P(x)) II (c{g!y,h?y}--. Q(y)) II (c{f?z,h!z}--. R(z)) 

Grid relaxation. Multiway communication admits a. very natural solution to the classi
cal 2-D relaxation problem. This examples demonstrates how this novel communication 



www.manaraa.com

164 

primitive bridges the gap between data concurrency and process concurrency. 

k: integer= 1; 
m : array[n, n]of real; 
c : chan of array[n, n]of real; 

P = II~. (k < N) * (c[ [i,j]!m[i,j], ,,,=1 -

) 

[i,j -l]?l, 
[i -l,j]?u, 
[i,j + l]?r, 
[i + l,j + l]?d]; 

m[i,j] := (l + u + r + d)/4; 
k := k+ 1; 

In a single atomic action each P;J exposes its current grid value and reads the values 
of its neighbours. The index expressions can be suitably modified to take into account 
boundary effects and wrap-around. The equivalent program with binary communications 
is not as intuitive and the possibility of deadlock must be considered explicitly. 

5 Conclusions 

Binary value communication is too restrictive a communication primitive. It is an abstrac
tion over synchronised point-to-point message passing, and as such is more appropriate 
for an assembly language to program distributed systems than for a. high-level concurrent 
programming language. It makes the description of intricate synchronisation patterns and 
complex transfers of data. difficult to program. 

This paper advocates the view that communication has a very natural internal struc
ture, which matches the structure of the communicated data and can be conceived as the 
result of the simultaneous participation of an arbitrary number of processes. A number 
of concurrent processes may cooperate to provide and/or consume the components of the 
data structure in an arbitrary way. 

TCSP is sufficiently powerful to model this novel concept in terms of its more primitive 
and well studied concepts. The result is a communication primitive that subsumes di
rected, both binary and structured, and undirected communications in a very elegant way. 
It provides a. means of communication abstraction and refinement, which is close to our 
intuitions and complements the means for data. and process abstraction and refinement. 

There have been some recent research efforts to define a multiwa.y communication 
primitive. Most of them define an abstraction which encapsulates representation details 
and processing activity on the combined state during an interaction. This, however, vio
lates the intuitive notion of a communication primitive and is more appropriate for process 
abstraction. These and other issues are discussed in a recent paper [3) which formulates a 
set of criteria to view and define an interaction as a. generalised communication primitive, 
albeit in a somewhat informal way. It is an undirected activity, which synchronises all 



www.manaraa.com

165 

participants to create a global state, where each participant may provide and use state 
variables. 

Although similar in some respects to the communication primitive introduced here, 
it, however, fails on several points. Firstly, communication is via arbitrary reads of the 
local variables of the participants, which does not admit any information hiding, ele
gant parameterised process definitions, nor communication abstraction. This seems to be 
counter-intuitive as a process should be allowed upon communication to expose as much 
of its internal state and hide the rest as necessary. Secondly, again because of the explicit 
interprocess access to variables, it fails to model directed communications in a natural and 
elegant way. The familiar CSP programs will look very cumbersome indeed, if expressed 
in this notation. In addition, considering communication to be orthogonal to interaction 
does not admit a natural model in terms of more primitive and abstract concepts. 

Acknowledgments 

I would like to acknowledge the support of my Supervisor of Studies Prof. C.R. Jesshope, 
now at the University of Surrey, and fellow research student P.R. Miller during the course 
of this work. It has also greatly benefited from discussions with Bill Roscoe and Mark 
Josephs at PRG, Oxford University, and Andy Gravell and Denis Nicole at Southampton 
University. 

On the financial side, the support of the Bulgarian Ministry of Education and the lEE 
must be gratefully acknowledged. 

References 

[1] ANSI/MIL-STD 1815A, Ada™ Reference Manual. 

[2] Brookes, S.D., Hoare, C.A.R., Roscoe, A.W., A theory of Communicating Sequential 
Processes, Journal of ACM, Vol. 31, pp560-599,1984. 

[3] Evangelist, M, Francez, N, Katz, S, Multiparty Interactions for Interprocess Commu
nication and Synchronisation, IEEE Tran. on Software Engineering, Vol.15, No.ll, 
pp1417-1426, 1989. 

[4] Hoare, C.A.R., Communicating Sequential P1·ocesses, Communications of ACM, Vol 
21, pp666-677,1978. 

[5] Hoare, C.A.R., Communicating Sequential Processes, Prentice Hall, 1985. 

[6] Inmos Ltd. occam™ Programming Manual, Prentice-Hall, 1984. 

[7] Inmos Ltd. The Transputer Reference Manual, Prentice-Hall, 1988. 

[8] Milner R., Communication and Concurrency, Prentice-Hall, 1989. 



www.manaraa.com

On the semantics of languages 
for massively parallel SIMD architectures 

(Extended Abstract) 

Luc Bouge 
LIP, ENS Lyon, 

46 Allee d'Italie, 

F -69364 Lyon Cedex 07, France 
Emrul: bouge~lip.ens-lyon.fr 

Abstract 

We define a small language which embodies the main concepts of parallel lan
guages for massively parallel SIMD architectures such as the Connection Machine, 
and give its Structured Operational Semantics. It yields two related program equiv
alen_ces, corresponding respectively to two views of SIMD architectures. They are 
studied in detail. We then extend the language with parallel counterparts of non
local control transfer structures such as break and continue in C, and show that 
many classical control structures in real SIMD languages can be expressed thanks 
to them. 

Key words Semantics - Parallel languages - SIMD - Massively parallel ar
chitecture- Connection Machine - Structured Operational Semantics - Program 
equivalence - The C language 

Parallel ARchitectures and Languages have been the subject of an impressive amount of 
work in the last recent years (not only in Europe!) This work has led to definite progress, 
for both parallel MIMD architectures and SIMD ones. In this latter case, we can cite 
MPP (Massively Parallel Processor, [1]), DAP (Distributed Array Processor, [9]), CLIP4 
(Cellular Logic Image Processor, [5]), GAPP {Geometric Arithmetic Parallel Processors, 
[10]), and the popular Connection Machine {[7), [6]). 



www.manaraa.com

167 

Yet, this does not carry over when it comes to languages. Much effort has been 
devoted to designing and implementing languages for MIMD architectures. Consider for 
instance the achievements of Ada and Occam. This has resulted in considerable advances 
in semantics and programming models, based in particular on Petri nets and Milner's 
CCS process algebra. In contrast, very little has been said about SIMD languages and 
their programming models. In fact, this aspect is hardly even mentioned in surveys on 
processor arrays. Many processor arrays are still programmed in Fortran-derived ad-hoc 
languages, or even assembly code. Of course, some languages have been proposed. We 
can cite Actus for Illiac IV ([14]), Parallel Pascal for MPP ([15]), DAP Fortran initially 
designed for the DAP, which inspired the Fortran 8X standard ([8]), *Lisp, an extension 
of Common Lisp for the Connection Machine ([17]), PariS, the macro-assembler for the 
Connection Machine ([13]) and POMPC, an extension of C currently under design and 
implementation for Connection Machine-like architectures ([12]). But very little work has 
been done on their formal semantics and their abstract programming model. 

This paper is a step towards redressing this imbalance. It is organized as follows. We 
first describe the SIMD model we have in mind, basically the Connection Machine in its 
NEWS mode. Then, we define a small programming language called L which encapsulates 
the basic concepts of this model, and give its semantics. It gives birth to two program 
equivalences which will be studied in detail. Finally, we show that advanced control 
structures such as non-local escapes can be defined in these semantics, and can serve as a 
basis for expressing the parallel extension of the control structures of the C language. An 
extended version of this paper can be found in [2]. 

1 The L Ia nguage 

1.1 The programming model 

We have in mind an SIMD model similar to the Connection Machine (CM), as described 
in [4]. It is composed of a number of parallel processors (64000 in the largest configuration 
of the CM) or processing elements (PEs), each of them managing its private store. All 
PEs are controlled by a unique external sequencer. At each point in the computation, 
the sequencer broadcasts to all PEs the common instruction to be executed. Each PE 
may then update its private store accordingly, at the constant address included in the 
instruction. Yet, each PE is equipped with an additional flag, called the context. The 
local store of aPE is updated only if the local context is in its active state. This possibility 
is crucial in implementing conditional branching in a SIMD discipline where each PE "does 
the same thing at the same time". Also, a feedback bus passes to each PE and conveys to 
the sequencer the or-ing of all local elements of a specified boolean array value. This is 
crucial in implementing conditional iterations, as the sequencer has to get informed that 
all PEs have satisfied their exit condition in order to stop repeatedly broadcasting the 
loop body and continue with the rest of the program. 

The Connection Machine can operate in two communication modes. In the general 



www.manaraa.com

Affay 
Processing 

Unit 

Arrays Memory 

(a) A processor of arrays 

168 

~ Instructions 
:I 

!6 
fl) 

Global OR of feedback registers 

(b) An array of processors 

Figure 1: Two views of a massively parallel SIMD architecture 

mode, each PE can send a message to any other PE through the hypercube network. 
Specialized routers attached to each group of PEs are in charge of conveying messages 
to their destination. In the NEWS mode (for North, East, West, South), the PEs are 
(possibly virtually) interconnected by a grid network. Communications are carried out 
by shifting values on the grid in a given direction. In this paper, we only consider this 
latter mode, as it is much more basic and moreover common to most processor arrays. 
For simplicity, we will consider an infinite square NEWS grid so as to avoid problems with 
borders, but everything would extend to regular topologies of higher dimension without 
borders. Observe finally that, in a SIMD discipline, there is no difference between sending 
and receiving. If everyone sends, then everyone is implicitly ready to receive too. 

As pointed out by Steele and Hillis {[16)), there are two different views of such an 
SIMD architecture. 
In the macroscopic view {see figure 1 (a.)), it a.ppea.rs a.s a. sophisticated sequential processor 
with the capability of operating on arrays instead of scalars. Parallelism is thus on the 
data level. This is the user's viewpoint: a processor of arrays. 
In the microscopic view (see figure 1(b)), it appears as an array of elementary sequential 
processors operating in parallel on their private scalar da.ta.. An external sequencer is 
in charge of synchronizing them. Parallelism is thus on the control level. This is the 
implementer's viewpoint: an array of processors. 

The next sections show how this duality can be expressed at an abstract level. Steele 
and Hillis actually proposed in [16] a. quite elegant functional framework, called CM-Lisp, 
where this duality is caught by an algebraic relation between operators: •0: = a• = 
Identity. In contrast, we propose in this paper an operational approach. As will be seen, 
this approach is much closer to "real" languages than the functional one, and it gives 
many interesting insights into them. 



www.manaraa.com

169 

1.2 The language 

We now describe the L language. We adopt the following convention. Identifiers with an 
initial uppercase letter denote arrays of objects, whereas those with an initial lowercase 
letter denote scalar objects. Array locations will be denoted u, v etc. If X is an array of 
objects, then Xlu denotes its local element located at u. 

No action The instruction skip simply does nothing. 

Local store management The instruction X := E stores into variable X the value of 
expression E. We stress that E should evaluate elementwise: its value at loca
tion u depends on the value of its variables at location u only. For instance, 
E = f(Y, Z), where f denotes a scalar function, is of this type; think of matrix 
addition X:= Y + Z as opposed to matrix multiplication. 

Communication As specified above, we consider only a global shifting of some array along 
some direction. The instruction shift X along d shifts the array X along the 
constant common direction d. Each PE stores into its local variable Xlu the contents 
of the local variable Xl.r(u) of its neighbor along direction il, where dis the direction 
opposite to d. We stress that d is a. syntactic constant North, East, West or South. 

Sequencing The construct P; Q executes P then Q. 

Iteration The construct while B do P end iterates program P up to a point where the 
(elementwise) boolean expression B evaluates to false a.t each PE. This implicitly 
includes a communication, namely a. global reduction of all elements of B's value to 
a single value. 

Conditioning The construct where B do P end inhibits during the execution of program 
P those PEs such that the elementwise boolean expression B evaluates locally to 
false. 

1.3 Two examples 

Consider the following problem. Let A be an image, identified with an array variable: Alu 
is true iff u belongs to image A. Assume that all connected components of A are finite, 
even though A is infinite in general. Consider a point P, identified with an array variable: 
Plu is true iff P is located at u. The problem is to determine the connected component C 
of P in A. We proceed as follows. We build C by dilating a. wave originating at P within 
the image A. Let C' be the last value if C. The result is found when the wave has not 



www.manaraa.com

170 

extended in the current step: C = C'. 

C := AAP; 
C' := ff; 
while ( C' =f:. C) do 

C':=C; 
dilate C; 
C := AAC 

end 

Dilation is obtained by shifting a copy of the image in each direction and accumulating 
it. 

dilate C :: dilate C to North; 
dilate C to East; 
dilate C to West; 
dilate C to South 

dilate C to d .. Aux := C; 
shift Aux along d; 
C := CVAux 

The connected component is found in a number of steps proportional to its diameter. 

In order to illustrate conditioning, consider the following problem. Say each PE holds 
a number 1 ~ n ~ a, where a is some fixed bound. We want to compute each factorial n! 
and assign it to variable f. The idea is to let all PEs iterate the multiplications, inhibiting 
them once they have reached n = 1. 

F:=1; 
while (N > 1) do 

where (N > 1) do 
F:=F*N; 
N:=N-1 

end 
end 

All factorials are computed in a number of steps proportional to the bound a, whatever 
their number. 

2 Semantics and program equivalences 

2.1 The microscopic semantics 

We describe a Structured Operational Semantics for L, according to the microscopic view 
which reflects the implementer's viewpoint. It considers a program in Las the (implicit) 
parallel composition of the (identical) local program of each PE of the array. This is 



www.manaraa.com

171 

thus basically the semantics of an ordinary sequential centralized language, except that 
values are arrays of values, one for each PE, instead of scalars. Environments a map 
(array) variables X to arrays of values a( X). As usual a[V/ X] denotes the environment 
equal to a everywhere except at X where it has value V. alu denotes the projection of 
environment a on the PE located at location u: alu(x) = a(X)Iu, with x = Xlu· Observe 
that an environment is determined by its projections. Environments extend as usual to 
expressions: a( E) denotes the value of expression E in environment a. The condition of 
being elementwise can be expressed by 

'rla,a',u alu = a'lu => a(E)Iu = a'(E)Iu-

The main feature is that each PE can access and explicitly manipulate its context. In 
fact, a stack of contexts is needed to cope with nested conditioning. Its top value is the 
current context. 

The Operational Semantics associates to each program a transition system. It de
scribes the sequence of internal states of some (abstract) machine running the program. 
These states are triples (P, a, s}, where P denotes the program remaining to be exe
cuted, a the current environment and s the context stack. The empty stack is denoted 
e. By convention, we have top(e) = tt, and pop(e) = e. The PE located at u is active 
if top(s)lu = tt. Symbol • denotes the terminated program. The transition system is 
defined by a syntax-directed induction on the program. 

skip 

(skip,a,s} -(•,a,s} 

Assignment We express the idea that an inhibited PE remains passive and does not execute 
the assignment. 

(X:= E,a,s} -(•,a",s} 

with V = a(E), a'= a[V/X], a"lu = a'lu if top(s)lu, and a"lu = alu elsewhere. 

Communication Similarly, an inhibited PE does not take part in any communication, 
though it may let other PE access its memory. Let a'(X)Iu = a(X)IJ(u) and 
a'(T)lu = a(T)lu forT "f; X. 

(shift X along d, a, s} --+(•, a", s} 

with a"lu = a'lu if top(s)lu, and a"lu = alu otherwise. 

Sequencing 

(P,a,s} -(P',a',s'} I (•,a',s'} 
(P; Q, a, s} -(P'; Q, a', s'} I (Q, a', s'} 

Iteration 

(while B do P end,a,s) --+(P;while B do P end,a,s) I {•,a,s) 



www.manaraa.com

172 

For conditioning, we adopt a mode similar to call-by-value. On entering a conditioned 
block, each PE evaluates the (elementwise) condition, and pushes the result onto the 
stack. It is then popped on exiting the block. We introduce a new syntactic construct 
begin Pend to keep track of the blocks. For simplicity, we adopt the following notation. 
Let U be a boolean array value and s a stack. The stack obtained from s by the operation 
push(U A top(s),s) is denoted U.s. 

Conditioning 

(where B do Pend, a, s) ~(begin P end, a, a(B).s) 

(P, a, s) ~(P', a', s') I (•, a', s') 
(begin P end,a,s) ~(begin P' end,a',s') I (•,a',pop(s')) 

2.2 Derived program equivalences 

The semantics above gives birth naturally to program equivalences. We consider here 
functional equivalence, as introduced in (11]: two programs are equivalent if they generate 
the same output result from the same initial state. We follow here a total correctness 
approach: divergence can be observed, it yields a special form of output denoted .L 
Observe that the semantics is deterministic: if a program generates a result from a given 
data, then this result is unique. At this point, some notation will be useful. We write 
S ~ S' between two states of the Structured Operational Semantics if there exists a 
finite (possibly null) derivation S = So~ S1 ~ ••• ~ Sn = S', n ;?:: 0. We write S ~ 
if there exist an infinite derivationS= S0 ~ S1 ~ ••• from S. Throughout the paper, 
subscript M stands for "macroscopic" and m for "microscopic". 

Microscopic equivalence We say that P terminates with result a' from data a and context 
stacks if (P,a,s) ~(•,a',s'), and that P diverges from data a and context stacks if 
(P,a,s) ~. and we define [P](a,s) respectively as a' and . .L. Finally we define the 
microscopic semantics by 

P =m Q <===? Va,s [P](a,s) = [Q](a,s) 

Macroscopic equivalence If we adopt the macroscopic viewpoint of the user, we have 
no control on the context stack. The only thing we can do is to run a program with 
various inputs, but from a trivial initial context where all PEs are active. It is therefore 
meaningful to define that two program are equivalent in this sense if they yield the same 
outputs from the same inputs when started in this "coldbooted" context stack e. We 
define thus 

P =M Q <===? Va [P](a, e)= [Q](a, e). 



www.manaraa.com

173 

Relativization In the sequel, we will often need to introduce auxiliary variables to hold 
temporary values. The final contents of such variables are not significant, only their side
effects are. We define thus a slight refinement of the equivalences above to take this fact 
into account: two programs are equivalent if they generate from the same input data the 
same result data, disregarding the final values of the auxiliary variables. 

Let V be a set of variables, the auxiliary variables. Let uv be the environment u where 
all variables of V are set to some fixed dummy value. For completeness, define .J.. v = .J... 
The relativized versions of the equivalences above are then defined as follows. 

P =~ Q <==> Vu ([P](u,e:))v = ([Q](u,e:))v 

P =~ Q <==> Vu,s ([P](u,s))v = ([Q](u,s))v. 

Observe that the original definition is obtained with V = 0. More generally, assume that 
W ~ V. Then the following holds. 

P::~Q => P::~Q 

3 Studying program equivalences 

3.1 Consistency of the equivalences 

Our goal is now to express that the macroscopic and the microscopic equivalences are 
related in an intrinsic way, without reference to the underlying semantics. We have in 
fact the following theorem. 

Theorem 1 {i} 

{ii) Let B be a variable which appears neither in P nor in Q. 

where B do P end=~ where B do Q end=> P =~ Q 

Observe that the converse of {i) is false as shown by the following example. 

P :: shift X to North; shift X to South 
Q :: skip 

We have P =M Q. Let U be such that Ul(o,o) is true and U is false everywhere else. Let 
u(X)I(.:,y) = :z: and s = push(U,e:). Let u' = [P]m(u,s) and 0'11 = [QJm(u,s). We have 
u'(X)I(o,o) = 1 and u"(X)I(o,o) = 0. The original value of Xl(o,o) gets lost, as the neighbor 
PE is passive and forgets any incoming value. 



www.manaraa.com

174 

Also, observe that the restriction on B is crucial, as shown by the following example. 

P .. where -.B do X := 0 end 
Q .. where -.B do X := 1 end 

Then where B do P end =M where B do Q end holds, but P =m Q is obviously false. 

3.2 The microscopic equivalence is stable 

The microscopic equivalence (m-equivalence) enjoys some interesting properties of sta
bility: under certain smooth conditions, substituting a piece of a program with another 
m-equivalent piece yields a new program which is m-equivalent to the original one. We 
say that a program P does not depend on a set of variables V if 

Vu,u' VX rf. V u(X) = u'(X) =} [P](u) = [P](u') 

This is obviously the case as soon as no variable of V appears in P. A similar notion can 
be defined for expressions B. 

Theorem 2 Assume P =~ Q. Then the following holds. 

P; R =~ Q; R provided R does not depend on V 
R;P =~ R;Q 

while B do P end =~ while B do Q end provided B, P and Q do not depend on V 
where B do P end =~ where B do Q end 

Observe that if we have no auxiliary variable (V = 0), then =~ is a congruence 
in the usual sense. Observe that the restriction on B for the while is crucial. Let 
V = {B}, P :: B := tt and Q :: B := ff. Then P =~ Q, but it is obviously false that 
while B do P end =~ while B do Q end. 

Apart from being stable, the m-equivalence enjoys a very interesting property: any L 
program can be transformed into a m-equivalent program in normal form. In this normal 
form, the where blocks are made of exactly one assignment. In particular, there is no 
nested conditioning, and no communication is conditioned. In some sense, all where's 
have been "pushed" inside and "merged" into the program. Thanks to the stability 
properties of them-equivalence m-equivalence, we can describe the normalization process 
in an incremental way. Auxiliary variables will play a crucial role in the transformation, 
but observe that the transformed programs do not depend on them. Let V be an infinite 
set of new variables which appear nowhere in the program being normalized. We denote 
variables of V with primes. 

skip 

where B do skip _y 
=m skip 



www.manaraa.com

175 

Communication 

where B do shift X along d end B' := B;X' :=X; 
shift X along d; 
where •B' do X := X' end 

(Observe that B may depend on X. Observe also that 

B' := B;X' :=X; 
shift X' along d; 
where B' do X := X' end 

does not work: it is =1, but not =~!) 

Sequencing 

where B do P; Q end _y 
=m 

Iteration 

where B do while C do P end end 

Conditioning 

where B do where C do P end end 

B':= B; 
where B' do P end; 
where B' do Q end 

_y 
=m 

_y 
=m 

B':=B; 
while C do 

where B' do P end 
end 

where ( B 1\ C) do P end 

3.3 The macroscopic equivalence 

The macroscopic equivalence (M-equivalence) is not stable in general. Conditioning two 
M-equivalent programs may result in programs which are no longer M-equivalent! Yet, 
this is in some sense the only problem, as expressed by the following theorem. 

Theorem 3 Assume P =1 Q. Then the following holds. 

P; R =1 Q; R provided R does not depend on V 
R;P =1 R;Q 

while B do Pend =1 while B do Q end provided B, P and Q do not depen<;l on V 

It is therefore tempting to define a stable equivalence, say :::::, as follows. Let R[P] 
denote a program R which contains some occurrences of a program P. Then state that 
for any pair of programs P and Q, P = Q iff for any program R[P], substituting Q for P 
within the text of R[P] yields a program R[Q] such that R[P] =1 R[Q]. It is clear that 
= is stable by virtue of its definition, and that it is the largest contained in =1· It turns 
out that this equivalence is also contained in =~,the microscopic equivalence! 



www.manaraa.com

176 

Theorem 4 Let:= be a stable equivalence contained in =~· Then it is contained also in 
_y 
=m• 

Proof Assume P = Q. Let B be a variable which appears neither in P nor in Q. 
By the stability property, we have where B do P end = where B do Q end, too. Thus 
where B do Pend :=r.,. where B do Q end, and, by Theorem 1, P =~ Q. D 

It is nevertheless interesting to analyze precisely the reason why theM-equivalence is 
not preserved by conditioning. It turns out that it is due to interactions between PEs, 
either explicit {internal) as in the shift instruction, or implicit {external) as in the while. 
Let us consider three examples. 

Example 1 Let f3 be a boolean array constant such that /3l(o:,11) is true if z = O, and false 
otherwise. Let e be an array constant such that el(o:,11) = z. 

P .. shift X along E; shift X along W 
Q .. skip 
R[.] .. X := e; B := /3; where B do [.] end 

Then P ::r.,. Q. But the final value of X at location (0,0) is 1 in R[P], whereas it is 0 in 
R[Q]. In order to preserve M-equivalence, a conditioned program should contain at most 
one shift. 

Example 2 As above, consider 

P .. X := e + 1; shift X along E 
Q .. skip 
R[.] .. X := e; B := /3; where B do [.] end 

Then P ::r.,. Q. But the final value of X at location (0, 0) is -1 in R[P], whereas it is 0 
in R[Q]. In order to preserve M-equivalence, a non-atomic conditioned program should 
not contain any shift instruction, except possibly its first one. 

Example 3 Let "'( be a boolean array constant such that "YI(o:,11) is true if z = 1 and false 
otherwise. As above, consider 

P .. while C do C := f3 end 
Q .. while C do C := "'( end 
R[.] .. C := /3; B := /3; where B do [.] end 

Then P ::r.,. Q, as either they both terminate at once with the same value of C {namely 
false everywhere) or they both diverge. Yet, R[P] diverges, whereas R[Q] terminates 
in one iteration. In order to preserve M-equivalence, a conditioned program should not 
contain any while construct. In effect, such a. construct implicitly specifies a. possibly 
infinite number of interactions. 



www.manaraa.com

177 

More formally, consider the following grammar 

(local-prog} .. X:= E 
where B do (local-prog} end 
(Jocal-prog}; (local-prog) 

(safe-prog) .. shift X along d 
(Jocal-prog) 
where B do (safe-prog) end 
(safe-prog); {local-prog) 

and say that a program is local if it is a {local-prog) and safe if it is a (safe-prog). 
Informally, a local program is a linear program (that is a program without any loop) in L 
which contains no interaction. A safe program is a linear program which contains at most 
one interaction, in which case it is the first instruction to be executed. As expected, those 
programs behave more or less as atomic macro-instructions. In fact, they could as well 
be run asynchronously as an atomic block. This amounts thus to the well-known SPMD 
(Single Program Multiple Data) model! 

Theorem 5 Let P and Q be safe, such that P =1 Q. Then 

where B do Pend =rr where B do Q end. 

Corollary 6 If P and Q are safe, then P =1 Q iff P =~ Q. 

4 Advanced control structures 

The microscopic semantics provides a convenient framework for expressing and studying 
non-trivial control structures through the explicit manipulation of the context stack. in 
this section, we will focus on the parallel extension of non-local control transfer structures 
such as exit, return, break, continue inC, or the catch/exit pair in Lisp. 

4.1 Definition 

For this purpose, we define a new construct escape n, where n is a syntactic positive 
constant, with the following effect. On executing escape n, each active PE becomes 
passive up to the end of the nth enclosing where block. In some sense, it jumps to the 
exit label of this block, and remains there, waiting for the other PEs. 

This can be achieved in our semantics by masking the n upper levels of the context 
stack with the negation of the current context, that is the value at the top. Let 8 be a 
context stack, and let U be a boolean array value. We define the following functions. 

mask(s,U,O) = 8 
mask(8, U, k + 1) = push(top(s) AU, mask(pop(s), U, k)) 

escape(8,k) = mask(s,-.top(s),k) 



www.manaraa.com

178 

We can then give the microscopic semantics rule for escape. 

Escape 

(escape n, a, s} ---+m { •, a, escape(s, n)} 

Observe this instruction is conditional in the following sense. Only the active PEs 
are affected by it. It is thus interesting to define an unconditional version of it, called 
interrupt. If some active PE executes the interrupt n instruction, then all PEs be
come passive up to the end of the nth enclosing where block. Define interrupt(s, n) = 
mask(s,.ff,n). 

Interrupt 

Vu top(s)lu = tt I .fJ 
{interrupt n, a, s} ---+m {•, a, interrupt(s, n)} I {•, a, s} 

The effect of the escape and the interrupt instructions is to restrict the context. 
It is thus important to define an iteration construct whose exiting is determined by the 
context, in opposite to the while iteration construct, whose exiting is determined by the 
value of the test without regard to the context. We call it loop. 

Conditional iteration 

Vu top(s)lu = tt Iff 
{loop P end,u,s} ---+{P;loop P end,u,s} I {•,u,s} 

Finally, observe that the where blocks will then play a new role in conjunction with the 
escape and interrupt instructions. In particular, the where true do P end construct 
will often be used to add an exit label at the end of P. For clarity, we give a specific name 
to this construct. 

Execution 

exec Pend:: where true do Pend 

4.2 Examples and applications 

Parallel factorials 

We can recast the second example of section 1.3 in this new setting. 

F:=1; 
exec 

loop 

end 
end 

where (N:::; 1) do escape 2 end; 
F := F*N; 
N:=N-1 



www.manaraa.com

179 

Parallel iteration 

The POMPC language ([12]) defines an iteration construct called whilesomewhere B do 
P end which is both value- and context-determined. At each iteration, only those active 
PEs such that B evaluates to true execute the body P. The iteration stops when B 
evaluates to false at all currently active PEs. This effect can be achieved as follows. 

exec 

end 

loop 
exec 

end 

end; 

where B do interrupt 2 end; 
interrupt 2 

where B do P end 

Parallel non-local loop exits 

On executing the break instruction, active PEs become passive up to the end of the 
whilesomewhere construct. On executing the continue instruction, they become passive 
up to the end of the current iteration. Let k be the current number of enclosing where 
blocks within P at the instruction under consideration. We have 

Parallel switching 

break .. escape (k + 2) 
continue .. escape (k + 1) 

This language defines a switching construct (for simplicity, we consider 3 cases only, with 
a default case). 

swi tchwhere X do case A1 : P1 case A2 : P2 case A3 : P3 default: P4 end 

The intended effect is the following. The current value of X is evaluated and tested succes
sively against the expression At, A2 and A3 • Each PE then enters the body P1 ; P2 ; P3 ; P4 



www.manaraa.com

180 

at the case label corresponding to its first match, default if none is found. 

exec 
exec 

exec 
exec 

exec 
where (X= A1 ) do escape 2 end; 
where (X = A2) do escape 3 end; 
where (X = A3 ) do escape 4 end; 
where true do escape 5 end 

end; 
PI 

end; 
p2 

end; 
p3 

end; 
p4 

end 

The effect of a break in P; is achieved by the instruction escape (5- i) + k, where k is 
the current number of enclosing where blocks within P; at the instruction under study. 

Parallel conditional branching 

This language also provides a parallel equivalent of the usual if B then P else Q end 
construct. It is denoted where B do P elsewhere Q end, and the intended effect 
corresponds to 

B':=B; 
where B' do P end; 
where --,B' do Q end 

where B' is a new auxiliary variable (in practice, a temporary register value). We can 
easily express this construct in our setting as follows. 

exec 
where B do P; escape 2 end; 
Q 

end 

In fact, the context stack is used here to hold the temporary value. Observe that P 
and Q do not have the same level of nesting, which may be error-prone. The following 



www.manaraa.com

181 

symmetric expression is therefore probably better. 

Returning and exiting 

exec 

end 

where B do P; escape 2 end; 
where true do Q end 

The net effect of the return or exit instructions is to inhibit any activity in the currently 
active PEs up to the end of the (sub-)program. This effect can be easily achieved in our 
setting, thanks to an interesting side-effect of the mask function. Consider the expression 
mask( s, U, n ), where n is greater than the size of the stack s. The result is a stack greater 
than s, namely of size n. This holds because pop(e) = e, so that push( top( e), pop( e)) is of 
size 1, and not 0! In consequence, escaping n levels of where blocks, with n greater than 
the current number of enclosing blocks, will let the stack grow downwards. Everything 
happens as if the program were surrounded by an unbounded number of exec blocks, 
and the resulting effect is exactly as wanted. In this sense, we can express the exit and 
return instructions by escape (k + 1), where k is the number of enclosing where blocks. 

5 Conclusion and future work 

This work shows that it is possible to define a clean and simple programming model for 
massively parallel SIMD architectures, and to study it at a sufficiently abstract level. 
Section 4.2 demonstrate that it is general enough to model many control structures found 
in "real" SIMD languages. Nevertheless, it can be shown that it is minimal in the sense 
that none of its constructs can be simulated (up to =~) by some combination of the 
others. A main feature of this model is to give an account of the two views of SIMD 
architectures through program equivalences. 

This work is a preliminary attempt and it could be improved in many aspects. The 
definition of the while B do P end construct of L should probably be modified so 
that the iteration stops when B evaluates to false at each active processor. Also, the 
escape/interrupt construct should probably use symbolic addresses instead of nest
ing depth. This would correspond to the notion of tagged exception in Lisp and other 
languages. The break and continue constructs would then be simulated by using two 
different tags. Also, the normal form of section 3.2 should be studied in more details. In 
particular, it is not clear whether it carries over to the advanced control structures. We 
are currently working on these problems. 

A number of research directions remain to be explored. One could add to L scalar 
variables besides array variables, and define an interface between the two worlds through 
a pair of instructions broadcast x and reduce X with $. We have considered only 



www.manaraa.com

182 

shift communications. We could consider general communications too, as provided in 
the Connection Machine for instance. A possible approach is to equip the language L' 
with a pair of instructions: get X from A and send X to A with ffi. Finally, a major 
challenge is to use this work in proving the correctness of SIMD programs. The definition 
of the microscopic semantics and the existence of simple normal forms up to microscopic 
equivalence, as shown in section 3.2, is a definite step in this direction. 

This study gives some insight into certain constructs found in "real" languages. The 
semantics of L' guarantees that the memory of a passive PE cannot be modified, and that a 
passive PE may not become active again within the current block. Yet, real programming 
languages do not enjoy this property in general. In POMPC ([12]), a passive PE may 
receive a message from an active PE by the send instruction. In *Lisp ([17]), the form *all 
selects all PEs whatever their current context is. We believe that such behaviors should be 
avoided, and that languages should adhere to this discipline as a basic safety requirement. 
This is not to say that those constructs may not be useful under certain circumstances. 
The situation is rather reminiscent of the celebrated GOTO statement 20 years ago. A safe 
and structured programming discipline should probably avoid such irregular constructs. 

Acknowledgments 

The author wishes to thank Patrick Garda, Nicolas Paris and Gerard Berry for numerous 
and stimulating discussions. This work was done while the author was working at the 
LIENS, Paris. The support of the CNRS Coordinated Research Program C3 and the 
comments of anonymous referees are gratefully acknowledged. 

References 

[1] Batcher K (1979) The design of a Massively Parallel Processor. IEEE Trans. on Computers 
C-29, 9, pp 836-840. 

[2] Bouge L (1990) On the semantics of languages for massively parallel architectures. Rept. 
No. 90-13, LIENS, Paris, 1990. 

(3] Bouge L, Garda P {1990) Towards a semantic approach to SIMD architectures and their 
languages. In: Semantics of Systems of Concurrent Processes, Proc. 18th Spring School of 
the LITP, Lect. Notes Comp. Science 469, Springer, pp 142-175. 

[4] Connection Machine Model CM-2 Technical Summary (1987) Techn. Rept. HA 87-4, Think
ing Machine Corp. 

[5] Fountain TJ {1981) CLIP4: A Progress Report. In: Duff MJB, Levialdi, S (eds) Languages 
and Architectures for Image Processing, Academic Press, pp 283-291. 

(6] Frenkel K (1986) Evaluating two massively parallel machines. Comm. ACM 29, 8, pp 752-
758. 

(7] Hillis WD (1985) The Connection Machine. MIT Press, Cambridge, Mass. 



www.manaraa.com

183 

[8] Hockney RW, Jesshope CR {1988) Parallel Computers 2: Architectures, Programming and 
Algorithms. lOP Publishing Ltd. 

[9] Hunt DJ {1981) The ICL DAP and its application to image processing. In: Duff MJB, 
Levialdi S ( eds) Languages and Architectures for Image Processing Academic Press, pp 275-
282. 

[10] Lua KT, Wong WF {1987) Geometric Arithmetic Parallel Processor- An Evaluation. Proc. 
Interdepartment Seminar on Supercomputers and Applications, Publ. TRI0/87, Dept. In
formation Systems and Comp. Science, Nat. Univ. Singapore, pp 44-61. 

[11] Olderog E-R, Apt K {1988) Fairness in parallel programs: the transformational approach. 
ACM Trans. on Progr. Lang. and Systems 10, 3, pp 420-455. 

[12] Paris N (1990) Definition de POMPC (version 1.5). Typescript, LIENS, Paris. 

[13] PariS: The C Interface. Reference Manual (1987) Thinking Machine Corp. 

[14] Perrott RH (1979) A language for array and vector processors. ACM Trans. Progr. Lang. 1, 
2, pp 177-195. 

[15] Reeves RW {1985) Parallel Pascal and the Massively Parallel Processor. In: Potter JL (ed) 
The Massively Parallel Processor), MIT Press, pp 230-260. 

[16] Steele GH, Hillis WD {1986) Connection Machine Lisp : Fine-Grain Parallel Symbolic 
Processing. Proc. 1986 ACM Conf. on Lisp and Funct. Progr., Cambridge, Mass., pp 279-
297. 

[17] *Lisp Language Reference Manual {1988) Thinking Machine Corp. 



www.manaraa.com

A Denotational Real-Time Semantics for 
Shared Processors 

Jozef Hooman* 

Dept. of Mathematics and Computing Science 
Eindhoven University of Technology 

P.O. Box 513, 5600 MD Eindhoven, The Netherlands 
e-mail: wsinjh@win.tue.nl 

Abstl·act 

To describe tlte real-time behaviour of an Occam-like real-time language with 
concurrency and synchronous message passing, a. denota.tional semantics is pre
sented. New in this paper is the generalization of U1e maximal parallelism model, 
where ea.clt process has its own processor, to multiprogramming where several pro
cesses may share a. processor and statements are scheduled according to dynamic 
priorities. Our compositional semantics based on several assumptions about the 
sclleduling policy and tile communication mechanism. These assumptions are mo
tivated by a.n operational description of program execution. 

1 Introduction 

The aim of this paper is a formal, denotational, semantics to describe the timing be
haviour of programs. Determining this real-time behaviour requires more information 
about implementation details than is usual in non-real-time models. For instance, in 
a non-real-time semantics one can abstract from details about the execution time of 
statements and the implementation of parallelism (such as scheduling policies). This 
abstraction is no longer possible when time can be observed. The timing of a paral
lel program clearly depends on the assignment of processes to processors and on the 
scheduling policy. 

As a starting point for the formal description of distributed real-time systems, several 
papers have used the maximal parallelism model where it is assumed that each process 
has its own processor. This assumption is used in (KSR+SS] where a denotational se
mantics for a real-time version of CSP is given, based .on the linear history semantics 
of [FLP84]. A fully abstract version of this semantics has appeared in [HGR87]. Reed 
and Roscoe [RR87] give a hierarchy of timed models, based on a complete metric space 
structure. A fully abstract tilned failure senu\ntics for an extended CSP language has 

*Partially supported by ESPRIT-BRA pmjccL 3096 (SPEC). 



www.manaraa.com

185 

been developed in [GB87]. To prove that a program satisfies a specification expressing 
real-time properties, compositional proof systems have been given in [HW89,Hoo90], all 
based on the maximal parallelism assumption. 

In practice, however, many applications deal with uniprocessor-implementations where 
several processes share a single processor and actions are scheduled according to some 
scheduling policy. As a first study to investigate the precise timing behaviour of such 
implementations, we consider in this paper a progranuuing language with a construct to 
express that (part of) a program, possibly containing parallel processes, is executed on 
a single processor. By means of this construct we can distinguish between parallel pro
cesses executing on a single processor and concurrent processes each executing on their 
own processor. Parallelism on one processor is in principle modelled by an arbitrary 
interleaving of atomic actions. This interleaving can be restricted by assigning priorities 
to statements. 

The ultimate aim of our work is to develop a formal framework for the specification 
and compositional verification of real-time properties of programs. Compositionality 
can be considered as a prerequisite of hierarchical, structured, program derivation. It 
requires that the properties of a compound programming construct can be derived from 
properties of its constituent parts without any further information about the internal 
structure of these parts. A good starting point for such a compositional proof theory 
is the formulation of a denotational, and hence compositional, semantics. In such a 
semantics the meaning of a program (or program-part) must be defined without any 
information about the environment in which it will be placed. Hence, this semantics 
must characterize all possible executions of the program in any environment. When 
composing the program with (part of) its environment, a number of these executions can 
be removed, since more information about the environment becomes available. 

To be able to describe all potential computations of a statement and to select the 
correct executions at composition, it is often needed to add, so called, non-observable 
entities to the denotations. For instance, in the ma.ximal parallelism model we must be 
able to express when a program is waiting for a communication. (The need for this addi
tional information in a compositional framework follows from the fully abstract semantics 
given in [HGR87].) In general, any influence of the environment on the behaviour of a 
progran1 must be made explicit in the semantics of that program. The introduction of 
shared processors and priorities strongly increases the dependency of a progran1 on its 
environment. E.g., certain statements that are ready to execute will not be executed, 
since they have a low priority and at most one statement can be executed at a time 
on a uniprocessor. Modelling the timing behaviour of such statements requires that the 
semantics contains primitives to state explicitly when a statement is executing and when 
it is requesting processor-time with a certain priority. By adding this information, we 
achieve in this paper a denotational real-time semantics for our programming language. 
Such a semantics requires several assumptions, for instance, about the execution time 
of atomic statements, the implementation of the communication mechanism, and the 



www.manaraa.com

186 

scheduling strategy. These assumptions are motivated by an operational description of 
the execution of programs. This opemtional meaning has been inspired by the imple
mentation of Occam-programs on transputers. 

This paper is structured as follows. Section 2 contains the syntax of our real-time 
programming language. The informal meaning of programs is discussed, including a 
number of questions about the precise execution model. To answer these questions, we 
describe an implementation of the language in Section 3. To emphasize the essential 
new points of our framework, in Section 4 we remove the program variables from the 
programming language. There we also mention the basic timing assumptions. A deno
tational semantics for the programming language can be found in Section 5. Section 6 
c~>ntains a conclusion and an indication of future work. 

2 Real-Time Programming Language 

In this section we describe our real-time programming language. Section 2.1 contains 
the syntax of this language and an informal semantics. In Section 2.2 we show that 
this informal description leads to a number of questions about the precise meaning of 
programs. 

2.1 Syntax and Informal Semantics 

Our programming language is akin to OccAM [Occ88b], with communication by syn
chronous message passing, that is, both sender and receiver wait until a corresponding 
partner is available. Furthermore, the language includes delay-statements by which a 
process can release the processor for a certain period of time. By allowing such delay
statements to occur in the guard of a guarded command, we can program a time-out, 
i.e., restrict the waiting period for a communication. 

Let CHAN be a nonempty set of channel nan1es. We assume that channels are 
unidirectional and that they connect exactly two processes. Let VAR be a nonempty set 
of(names for) program variables, and IN be the set of natural numbers (including 0). The 
syntax of our programming language is given in Table 1, where e is an expression, yielding 
a non-negative value, b and bi are boolean expressions, n E IN, n ;::: 1, c, c11 ... en E 
CHAN, and z, z1, ... zn E VAR. 

Statement 

Guarded-Command 

Network 

Progmm 

Table 1: Syntax Programming Language 

S ::= skip I x := e I delay e I c!e I c?z I 
S1;S2 I G I *G I prio e (S) I S1IIS2 

G .. _ .. -
N"

P::= 

[Of=lb;- Si] I [Of=lbiiCi?:l!i- SiOb;delaye- S] 
<S~ I NliiN2 
SIN 



www.manaraa.com

187 

Informally, the statements of our programming language have the following meaning: 
Atomic statements 

• skip terminates immediately. 
• x := e is used to assign the value of expression e to the variable x. 
• delay e suspends execution for (the value of) e time units. 
• c!e is used to send the value of expression e on channel c as soon as a corresponding 

input command is available. Since we assume synchronous communication, such 
an output statement is suspended until a parallel process executes a statement c?x. 

• c?x is used to receive a value via channel c and assign this value to the variable 
x. Similar to the output command, such an input statement has to wait for a 
corresponding partner before a communication can take place. 

Compound statements 

• Sequential composition S1; S2. 
• Guarded command [~?= 1 bi;ci?Xi--+ Si~b;delay e--+ S]. A guard (the part before 

the arrow) is open if the boolean part evaluates to true. If none of the guards 
is open, the guarded command terminates after the evaluation of the booleans. 
Otherwise, wait until an input-command of an open input-guard can be executed 
and continue with the corresponding Si. If the delay-guard is open (b evaluates to 
true) and no input-guard can be taken within e time units after evaluation of the 
booleans, then S is executed. 

• Iteration *G indicates repeated execution of guarded command G as long as at 
least one of the guards is open. When none of the guards is open *G terminates. 

• prio e (S) assigns priority e to statement S. Statements without such an explicit 
priority assignment obtain priority 0. A higher number corresponds to a higher 
priority. 

• ~ S ~is called processor closure; it expresses that program S has its own processor 
and no process outsideS executes on this processor. 

• P1 II P2 indicates parallel execution of P1 and P2. If this operator occurs inside the 
brackets ~ and ~ of processor closure, then it expresses uniprocessor parallelism 
and the statements P1 and P2 are executed on the same processor. Otherwise, the 
networks P1 and P2 are executed concurrently on disjoint sets of processors. No 
variable should occur in both P1 and P2. 

Observe that parallel processes are not allowed to have shared variables. Hence, to 
achieve a uniform framework, parallel processes that are executed on a single processor 
may only communicate by synchronous message passing. An implementation of this 
communication mechanism could, however, use shared variables. Further, for prio e (S) 
we require that S does not contain any parallel composition operator. 

Henceforth we use :: to denote syntactic equality. For a guarded command 
[~f:1 b;; Ci?x; -+ S; ~ b; delay e --+ S], we write [Qi=l bi; c;?x; --+ S;] if b = false. Further, 
boolean expressions equivalent to true are omitted in guards. 



www.manaraa.com

188 

2.2 Examples and Questions 

Observe the difference between~ x := 511 y := 6 ~.expressing an interleaved execution 
of the two assignments, and ~ x := 5 ~ II ~ y := 6 ~. expressing true concurrency. 
Although we have given an informal explanation of programs, there are a number of 

questions about the precise meaning of programs. For instance, 

• When and how are statements interrupted to allow the execution of statements 
with a higher priority? 

• How are communications performed? By the main processor or by special IO

devices? 
• Is there any distinction between internal communications (within a single processor) 

and external communications that conned two processors? 
• What is the priority of internal communications? 

Example 2.1 Consider ~ pl'io 1 (c!O) II pl'io 2 (x := 2) II pl'io 3 (c?y) ~. 
Should the priority of the c-communication be the maximum of the priorities of 
the two partners, or should it be the minimum-first executing the assignment? 0 

• What is the priority of e....::ternal communications? What is the relation between 
priorities on different processors? 

Example 2.2 Consider the following program 
~ prio 1 (c!O) II prio 5 (d?x) ~II ~ prio 4 (c?y) II prio 3 (d!l) ~-
In which order are the two communications executed, or are they performed con
currently? Or maybe this program leads to deadlock? Is it significant that the 
maximum of the priorities of the statements for the d-communication is higher 
than the priorities of the statements for the c-communication? 
Compare this program with the following one: 
~ pdo 1 (c!O) II p1•io 2 (d?x) ~II ~ pl'io 2 (c?y) II prio 1 (d!l) ~. 
Is there any difference between the· execution of the two programs above? 
Consider also the program 
~ pdo 1 (c!O) II p1·io 2 (x := 4) ~ II ~ prio 3 (c?y) II prio 2 (z := 5) ~
Is the c-communication performed before or after the assignments? 

• What is the precise meaning of delay-guards and delay-statements? 
Example 2.3 Consider the following program: 

0 

~ pdo 1 ([c?x-+ sl Ddelay 4-+ S:d) II prio 3 (y := 1; *[Y < 6-+ y := y + 1]) ~ 

II ~c!O~. 
Note that the first process contains a time-out of 4 time units. When does this time
out period exactly start? Is S2 always executed, assuming that the second process 
(which has a higher priority) takes more than 4 time units? Compare it with the 
following program where the high-priority process contains a delay-statement: 
~ prio 1 ([c?x-+ S1Ddelay 4-+ S2]) 

II prio 3 (y := 1; *[Y < 6-+ y := y + 1; delay 1]) ~ II ~ c!O ~. 
Will the second process, with priority 3, release the processor by the delay-statement, 
thus allowing the execution of statements with a lower priority? 0 



www.manaraa.com

189 

• Finally, there are the usual questions about fairness assumptions. 
Example 2.4 Consider ~ *[t1··ue - c?:z:] II d?y ~. Is it possible to execute the 
first loop forever, neglecting the d-communication forever? D 

3 Operational Behaviour 

To answer the questions from the previous section about the informal meaning of pro
grams, we give an operational description of program execution. This operational inter
pretation of programs also motivates the assumptions made in our formal denotational 
semantics. Our operational model is inspired by the implementation of Occam on trans
puters. Therefore we briefly describe the main ideas behind this implementation in 
Section 3.1. The execution model is then given in Section 3.2. Based on this operational 
description, the questions from Section 2.2 are answered in Section 3.3. 

3.1 Occam Implementation on Transputers 

In this section we describe an Occam implementation on transputers .(see, for instance, 
[Occ88a]) as far as it is relevant for our operational semantics. A transputer is a processor 
with internal memory and (four) communicatio1l li1lks for connection with other trans
puters. Each link implements two channels (in opposite direction). Communication links 
are connected to the main processor via link interfaces. These interfaces can, indepen
dently, manage the communications of the link, including direct access to memory. As a 
result of this architecture, a transputer can simultaneously communicate on all links (in 
both directions) and execute an internal statement. Much of the power of the transputer 
comes from this facility. 

On transputers there is a clear distinction between the implementation of internal 
channels, which are within a single transputer, and external ones that must be mapped 
onto links. Assume each statement has a unique identification number (id). Internal 
channels are implemented by a single word of storage. Initially, this memory location is 
loaded with a special value nil (distinct from any id). The first process that is ready to 
communicate finds this value nil, places its id in the location and becomes suspended. 
The second process that is ready to communicate finds the id of the first process and 
performs the communication. Extemal channels are implemented as follows. When a 
process on the main processor tries to communicate on an external channel its execution 
becomes suspended and the main processor delegates responsibility to the autonomous 
link interface. If the interfaces on both processors are ready to communicate, the message 
is transferred and both processes involved become executable. 

3.2 Execution Model 

We describe an execution model for our programming language which will be based on 
ideas from the previous section, but differs in many respects from the Occam implemen-



www.manaraa.com

190 

tation on transputers. For instance, on transputers there are only two levels of priority 
which are statically assigned to processes, whereas we use dynamically changing priorities 
ranging over the value domain of program variables. Further, we do not distinguish be
tween internal and external channels. Conceptually the mechanism of external channels 
is used, assuming that all communications arc performed by special link interfaces. 

We describe the execution of~ S ~. i.e., the execution of programS on a single 
processor. First, all skip-statements are removed from S, and all priority assignments 
are distributed such that for each statement there is an e..xpression that determines its 
priority. The priority of a statement is derived from the closest surrounding priority 
assignment that yields a positive value. If the statement is not embedded in a priority 
assignment then the priority is 0. These transformations lead to a program P. 

Execution of a program is defined in terms of basic statements, that is, assignments, 
delay-statements, input- and output-statements (io-statements), and guarded commands. 
Assume that for a given program Peach occurrence of a basic statement in P has a unique 
identification number (id). We use s, s, so, s1 , •.• to denote such a number, and id(S) to 
denote the identification number of S. Henceforth we will often identify an id and the 
corresponding statement. 

Lets be a basic statement in P. During execution of P we can determine the priority 
of basic statements in the current state, denoted by P1··io(s). Similarly, we can determine 
the set of basic statements that can be executed in the current state immediately after 
'the execution of s. Let Fo/low(s) denote the set of id's of these statements. For instance, 
for a guarded command this set is defined to consist of the statements that are ready 
to be executed when all the boolean guards evaluate to false. For a statement S in 
P (S need not be a basic statement), we define First(S) as the set of the id's of the 
first basic statements from P that can be executed in the current state when control is 
immediately before S. Let Value(e) and Value(b) yield the value of expressions e and 
b, respectively, in the current state. Assume that the current time can be read using the 
variable currenLtime. On each processor we have 

• A set requesting of pairs ( s, p), where s is an id and p is a priority. This set 
represents the executable statements that request processor-time. 

• A set delayed of pairs (s,exp_time) and triples (s1,s2,exp_time) where s, s1 , 

and s2 are id's and exp_time is the expiration time of the statement; a triple 
(s1,s2,exp_time) corresponds to a delay-statement s2 in a guarded command s1. 

• For each output channel c there is a special variable send( c) which is either nil or 
some id. 

• For each input channel c there is a special variable rec(c) which is either nil, or 
some ids, or a pair of id's (s1, s2). Here (s1 , s2) corresponds to an input-guard s2 
in a guarded command s1. 

Note that if a delay-guard .s2 in a guarded command s1 expires, which corresponds to 
a triple (s1, s2, exp_time) in delayed with exp_time :$ cw·renLtime, then all input at
tempts of guarded command s1 must be removed. That is, all variables rec(c) which 



www.manaraa.com

191 

have a value (st, sa) must be set to nil. By means of Follow(s2) the ·next executable 
statements are determined. Similarly, when a communication along channel c is per
formed and rec(c) = (s, s2), then all other input attempts of guarded command s are 
discarded and any triple (8, s4, exp_time) in delayed must be removed. Hence the main 
processor and the link interfaces may all change the variables rec(c) and the set delayed. 
To guarantee that the decision by a link interface to perform a communication and the 
updating of the rec variables and delayed are performed atomically, we use statements 
LOCK and RELEASE to obtain exclusive read/write access to these rec variables and 
the set delayed. 
The execution of the program P is described by the following algorithm: 

requesting:= {(s, Prio(s)) Is E Fi1·st(S)} ; delayed:= ~i 
For all output channels c, send( c):= nil ; For all input channels c, rec(c) :=nil; 
REPEAT 
IF requesting :j: ~THEN non-deterministically select a pair (s,p) E l'equesting 

such that p = max({Po I (so,Po) E 1•equesting}; 
requesting :=requesting- {(s,p)}; 
CASE s corresponds to the following statement: 

• x := e DO execute x := e ; 
requesting :=requesting U {(so, Prio(so)) I so E Follow(s)} 

• delay e DO delayed:= delayed U {(s, currenLtime +value( e))} 

• c!e DO send(c) := s 

• c?x DO LOCK rec(c) := s RELEASE 

• [0 ?:1 b, -1- S,] DO 
IF for all i E {1, ... , n }, Value(bi) = false 
THEN requesting:= requesting U {(so,PI·io(so)) I so E Follow(s)} 
ELSE non-deterministically select an i such that Value(b,) =true; 

requesting :=requesting U {(so, P1·io(so)) I so E First(S,)} 

• (Of=1b,;c,?x,-~-S,0b;delaye-~-So] DO 
IF for all i E {1, ... ,n}, Value(bi) =false and Value(b) =false 
THEN requesting:= 1·equesting U {(so, P1•io(so)) I so E Follow(s)} 
ELSE for all i E {1, ... , n}; LOCK 

ENDCASE 

IF Value(b,) =true THEN 7'ec(c,) := (s,id(c,?x,)) 
IF Value( b)= t1•ue THEN delayed:= delayed U 

{ ( s, id( delay e), Ctt7'7'enLtime + value( e))} 
RELEASE 

For each (s, exp_time) E delayed with exp_time :::; cu7·renLtime: 
requesting:= requesting U {(so, P1·io(so)) I so E Follow(s)}; 
delayed := delayed- {(s, exp_time)}; 



www.manaraa.com

192 

LOCK For each ( s1 , s2 , exp_time) E delayed with exp_time :5 currenLtime: 
for all c, IF rec(c) = (s1, sa), for some sa THEN rec(c) :=nil; 
requesting:= requesting U {(so, Prio(so)) I so E Follow(s2)}; 
delayed:= delayed- {(s11 s2 , exp_time)} 

RELEASE 
UNTIL 1•equesting = {1.1 and delayed= {1.1 and for all c: send( c) = rec(c) = {1.1 

In parallel with this algorithm on the main processor, the link interfaces perform a 
communication as soon as both partners are ready, i.e. have set their send and rec 
variables. Let Pk.send(c), Pk.?'ec(c), Pk.requesting and Pk.delayed be the variables on 
processor Pk, then the interfaces establish the following: 
LOCK 
IF Pi.send(c) = s1 =/=nil and either Pj.rec(c) = s2 =/=nil or Pj.rec(c) = (s,s2) 
THEN IF Pj.rec(c) = (s,s2) THEN for all channels d: 

IF Pj.rec(d) = (s,sa), for some s3 THEN Pj.rec(d) :=nil; 
Pj.delayed := Pj.delayed- {(s, s4, exp_time) I for all s4 and exp_time}; 

Pi.send(c) :=nil; Pj.rec(c) :=nil 
RELEASE 
The communication along cis performed; 
Pi.requesting := Pi.requestiny U {(so, P1•io(so)) I so E Follow(s1)}; 
Pj.requesting := Pj.1'equesling U {(so, P1•io(so)) I so E Follow(s2)} 

ELSE RELEASE 

Note that, for uniformity, we allow i = j although such an internal communication might 
be implemented more efficiently. 

3.3 Answers to Questions 

Using the execution model from the previous section, the questions from Section 2.2 
can be answered. Observe that priorities are only taken into account at the start and 
termination of the execution of basic statements; then a statement can only execute if 
there are no other statements with a higher priority on the same processor which request 
processor-time. The execution of an assignment, a delay-statement, or an io-statement 
cannot be interrupted. After the execution of an io-statement there are two possibilities: 
either it waits for a partner or it starts the communication if a partner is available. In 
both cases other statements can be executed simultaneously. Observe that: 

• The priority of an internal communication is the minimum of the priorities of both 
communication statements, since both partners must have been executed before 
the communication takes place. 

Example 3.1 Consider again ~ prio 1 (c!O) II prio 2 (x := 2) II prio 3 (c?y) ~. 
According to the algorithm above, first the input statement is executed because it 
has the highest priority. It will update the variable rec(c). Next the assignment 
has the highest priority and is executed. Finally, the output statement is the only 



www.manaraa.com

193 

requesting statement and after its execution the communication along channel c 
takes place. o 

• In case of equal priorities a nondeterministic choice is made (to abstract from 
specific scheduling policies). No fairness assumptions are made. 

Example 3.2 In the program ~ *[t1•ue - c?x] II d?y ~ it is possible that the 
input statement d?y is never executed. 0 

• The priorities of statements on different processors are incomparable. Only the 
relative ordering of priorities on a single processor determines the execution order 
on that processor. 

Example 3.3 Consider 
~ p1io 1 (c!O) II p1·io 5 (d?x) ~ II ~ prio 4 (c?y) II prio 3 (d!l) ~-
Then first the two input statements are executed on each processor. Next the 
two output statements are executed and, assuming that the execution times of 
statements on both processors are equal, the two communications are performed 
simultaneously. The program above has exactly the same behaviour as 
~ prio 1 (c!O) II prio 2 (d?x) ~II ~ prio 2 (c?y) II prio 1 (d!l) ~-
Compare this with 
~ pl'io 1 (c!O) II p1·io 2 (x := 4) ~II ~ pl'io 3 (c?y) II prio 2 (z := 5) ~ 
where first the assignment to x is performed concurrently with the execution of 
the input statement. As soon as the assignment to :v has terminated the output 
statement is executed, and then-when the input statement has terminated-the 
communication takes place. Note that, depending on the execution times, the 
c-communication might overlap in time with the assignment to z. o 

4 Programming Language and Timing Assumptions 

To highlight the essential points of our denotational semantics, we remove the variables 
from the programming language. The techniques to deal with program variables are 
well-known (see e.g, [Zwi89]), and our semantics can be extended easily with states that 
give the values of the variables (see also [Hoo!H]). Hence we use c! for an output action 
and c? for input. Instead of assignments, we use a statement atomic(t) that represents 
an atomic action with an execution time oft time units. Let TIME be some denumerable 
domain of time points, and P RIO a set of priority values. The syntax of our programming 
language is given in Table 2, where c, c; E CJIAN, t E TIME, p E PRIO, and n E JN. 
Let DCHAN be the set of channels extended with, so called, directed channels: 
DCHAN= CHAN u {c! IcE CHAN} U {c? IcE CHAN}. 

Definition 4.1 (Cham1els Occur1·iug iu Statemeut) The set of (directed) channels 
occurring in a statementS, notation dch(S), is defined as the smallest subset of DCIIAN 
such that if cis an output channel of S then { c, c!} s;; dch(S), and if cis an input channel 
of S then {c, c?} s;; dch(S). 



www.manaraa.com

194 

Table 2: Syntax Programming Language 

Statement 

Guarded-Command 

Network 

Program 

S ::= skip I atomic(t) I delay t c! I c? I 
Sl;S2 I G I *G I prio p (S) I Sdl s2 

G ··-.. -
N ··-.. -
P ··-.. -

[0?=1c;?-+ S;Udclayt-+ S] 
~s~ 1 N1IIN2 

SIN 

4.1 Basic Timing Assumptions 

To determine the real-time behaviour of programs, we have to make assumptions about 
the execution time of atomic statements and· the overhead needed for compound con
structs. For simplicity we make in this paper the following assumptions: skip does not 
take any execution time, priority assignments do not take any execution time, atomic(t) 
takes exactly t time units, and a process that has executed a delay t statement starts 
requesting processor-time for the next statement after exactly t time units. Assume 
given constants Ke > 0 and Kc > 0 such that the execution of io-statements and delay
statements requires Ke time units, the overhead for a guarded command is K 6 , there is 
no overhead for other compound statements, and the actual communication (i.e., without 
waiting) takes Kc time units. Observe that this is indeed a simplification, since these 
assumptions do not correspond to our operational model from Section 3.2. For instance, 
the execution of a statement may have to be postponed to guarantee mutual exclusion. 
The semantics can be easily adapted for the case that the execution times are be given 
by lower and upper time bounds (see [I:Ioo91]). 

Moreover, bounds must be given on how long a process is allowed to wait with the 
execution of a primitive statement when a processor is available, and with the execution 
of an io-statement when a communication partner is available. Based on the operational 
description from Section 3, we assume maximal progress which means that a process 
never waits unnecessarily; if execution can proceed it will do so immediately. There are 
two possible reasons for a process to wait: 

• Wait to execute an io-statement because no communication partner is available. 
Since we assume that for each channel special link interfaces are available, we 
have maximal progress for communications. Hence two statements c! and c? are 
not allowed to wait simultaneously. As soon as both partners are available the 
communication must tal•e place. Thus ma.ximal progress implies minimal waiting 
for communications. 

• Wait to execute an atomic statement because the processor is not available. The 
maximal progress constraint implies that if a processor is idle (that is, no statement 
is executing) then also no statement on that processor requests execution time. 
Hence we also have minimal waiting for processor-time. 



www.manaraa.com

195 

5 Denotational Semantics 

5.1 Computational Model 

Our formal model of real-time communication behaviour consists of a mapping from 
points of time to sets of channel names, indicating the channels along which messages 
are being transmitted at that time, and directed channel names to record information 
about those processes waiting to send or waiting to receive messages on these channels. 
Using this information, the formalism enforces minimal waiting for communications by 
requiring that no pair of processes is ever simultaneously waiting to send and waiting 
to receive on a shared channel. In addition to this information, which is also present in 
maximal parallelism models, we now also record at each point of time whether or not 
a process is executing with a certain priority and, moreover, the priorities of processes 
that request execution time. 

For simplicity, the time domain used in the semantics equals the domain TIME which 
is used in the syntax. In this paper we take a dense time domain; we assume that TIME 
equals the nonnegative rationals, i.e., TIME = { r E OJ I r ~ 0}, where OJ is the set of 
rational numbers. For notational convenience, a special value oo, oo ¢(TIME U PRIO), 
is used with the usual properties. Further, assume that 0 :5 p, for all p E P RIO. For a 
set A, the powerset of A (the set of all subsets of A) is denoted by p(A). A model of a 
real-time computation is defined as follows: 

Definition 5.1 (Model) Let roE TIME U {oo}. A model is a mapping 
u: [O,ro)- p(DCHAN) x p(PRIO) x p(PRIO U {oo}). 

Hence, for all r E TIME,.r < ro, we have that u(r) = (comm,req,ezec) with comm ~ 
DCHAN, req ~ PRIO and ezec ~ PRIO U {oo}. Henceforth, we refer to the three fields 
of u(r) by u(r).comm, u(r).1•eq, and u(r).e:vec, respectively. 

Definition 5.2 (Leugth of a Model) For a model u with domain [0, ro) the length of 
u, denoted lui, is defined by lui= ro. 

Informally, if lui = oo then u represents a non-terminating computation, and if lui < oo 
it corresponds to an execution which terminates at time lui. For a point of time r, with 
r < lui, the fields of u( r) have the following meaning in the semantics of program S: 

• c E u(r).comm if a communication takes place along channel cat timer; 

• c! E u(r).comm if Sis waiting to send along channel cat timer; 

• c? E u(r).comm if Sis waiting to receive along channel cat timer. 

• u(r).ezec is either the empty set (when S is not executing at r) or a singleton, 
containing the priority of the currently executing statement from S at time r. At 
the start of the execution this will be the priority assigned to the statement, and 
during execution - when the execution can not be interrupted- we use priority oo. 

• u( r).req is the set of priorities from all st·atements in S which are requesting to be 
executed at time r. 



www.manaraa.com

196 

Definition 5.3 (Concate11atio11 of Models) Define concatenation of two models u1 
and u2, denoted u1u2, by lu1u2l = lud + lu2l and 

{ u1(r) for all r <lull 
u1u2 r = 

( ) u2(r -10'11) for alllu1l $ r < lu1l + I0'2I 

Definition 5.4 (Concatenation of Sets of Models) For two sets of models :E1 and 
:E2, we define the concatenation of these sets as follows: 

SEQ(:E1, :E2) = { 0'10'2 I u1 E :E1, and u2 E :E2}. 

Since concatenation of models is associative, so is SEQ. We use SEQ(:E1, ... ,:En) to 
denote SEQ(:E1, SEQ(:E2, SEQ(:Ea, ... , :En)···)). 

5.2 Formal Semantics 

In this section we define the semantic function M which assigns to each statement a 
set of models. Since we give a compositional semantics, the meaning of a statement 
in isolation must characterize all potential computations of the statement. Thus the 
semantics represents the behaviour of a statement in any arbitrary environment. When 
composing this statement with (part of) its environment, the semantic operators must 
select the models corresponding to the computations that are still possible and remove 
all other models. 

Skip A skip-statement terminates imniediately and requires no execution time. 

M{skip) = {u 110'1 = 0} 

Atomic To formulate the semantics of an atomic(t) statement, we observe that there 
are in general two periods (see Figure 1): first the statement is requesting processor-time 
(with default priority 0), and then the statement is executed for a certain period. At 

u(r1).exec = {0} termination 

O'(r).req = {0} f O'(r).exec = {oo} f 
0 

Figure 1: A model u from of M(atomic(t)) 

the start of this execution period, it claims that it has the highest priority by placing its 
priority in the exec-field. When composing processes in parallel we require that there 
is no statement requesting processor-time with a higher priority at that point of time. 
Once the execution has been started, it cannot be interrupted-not even by a requesting 
statement with a higher priority. This is modelled by using the special priority value oo, 
which is higher than any other priority, in the exec-field. Formally, using Request and 
Execute(t) defined below, 



www.manaraa.com

197 

M(atomic(t)) = SEQ( Request, Execute(t)) 

where Request= {0' I there exists a r1 E TIME U{oo}, such that 10'1 = r 1 , 

for all T < 10'1: O'(r).1·eq = {0} and O'(r).comm = O'(r).exec = 9.1} 

Execute(t) = {0' I O'(O).exec = {0}, for all r, 0 < r < t: O'(r).exec = {oo}, 
for all r < t: O'(r).comm = O'(r).req = 9-1, and 10'1 = t}. 

Note that models from Request need not terminate, and hence the statement is allowed 
to wait forever. At processor closure, however, we require that no statement is requesting 
to be executed when the processor is idle. 

Delay A delay t statement first requests processor-time. If processor-time is available, 
this statement is executed during Ke time units. After this execution period there is a 
delay period of exactly t time units. 

M(delay t) = SEQ(Request,Execute(I(e), Delay(t)) 

with Delay(t) = {0' I for all 7" < t: O'(r).comm = O'(r).1·eq = O'(r).exec = 9-1, and 10'1 = t}. 

Input and Output For an io-statement we also have the two periods mentioned above, 
i.e., first it requests processor-time, and then is executed during Ke time units. There 
are, however, two additional periods (see Figure 2): after its execution an io-statement 
starts to wait for a corresponding partner and when such a partner is available the 
communication takes place (during I(c time units). 

O'(rl).exec = {0} termination 

O'(r).req = {0} O'(r).exec = {oo} O'(r).comm = {c!} O'(r).comm = {c} 

0 

Figure 2: A model 0' from M(c!) 

Using Wait(c!) and Comm(c) defined below, this leads to the following definition 

M(c!) =SEQ( Request, Execute(Ke), WaitSend(c), Comm(c)) 

where WaitSend(c) = {0' I there exists a r 2 E TIME U {oo}, such that 10'1 = r2, and 
for all r < 10'1: O'(r1).comm = {c!}, O'(r).req = O'(r).exec = l?l} 

Comm(c) = {0' I for all r < 10'1: O'(r).comm = {c}, O'(r).1·eq = O'(r).exec = 11), and 
jO'j = Kc} 

Note that Request and WaitSend(c) allow non-terminating models which corresponds 
to a process which is, respectively, continuously waiting to be executed and continuously 
waiting for a communication partner. Similarly, we define 

M(c?) =SEQ( Request, Execute(Ke), WaitRec(c), Comm(c)) 



www.manaraa.com

198 

where WaitRec(c) is defined similar to WaitSend(c). 

Sequential Composition Using the SEQ operator, as defined above, we have 

Guarded Command For a guarded command G = [fif=1 c;? --~o S; fidelayt --~o S] there 
are two possibilities after the usual requesting and executing periods: 

• Either a communication along one of the c; can be performed, represented by 
Comm(G) below, before t time units have elapsed. Then this communication 
is preceded by a period shorter than t time units during which G is ready to 
conununicate on all channels c1, ... , en. 

• Or there is a time-out, that is, no communication is possible within t time units. 
Then there is a waiting period oft time units, followed by the execution of S. 

This leads to the following definition: 

M( G) = SEQ( Request, Execute(Ke), Limi-ledW a it( G), Comm( G)) 

U SEQ( Request, Execute(Ke), TimeOut(G),M(S)) 

where LimitedW a it( G) = { (!' I (!' E Wait( G) and 1(1'1 < t } and 

TimeOut( G) = { (!' I (!' E Wait( G) and 1(1'1 = ·t } with 

Wait(G) = k I there exists aTE TIMEU {oo} such that for all r1 < 1(1'1: 
(!'( r1).comm = { c1?, ... , en?}, (!'( rl).req = (!'( r1).exec = 111 and 1(1'1 = T} 

Comm(G) ={(!'I there exists a k E {1, .. , n} such that(!' E SEQ(Comm(c,.), M(S,.)) }. 

Iteration Every computation of *G either consists of a finite number of computations 
from G where the last one is non-terminating, or it consists of an infinite number of 
computations from G. Hence, the semantics of the iteration construct *G is defined as 

M(*G) = {(!'I there exists a k E IN, k;::: 1 and models (1'1, ... , (J'J; such that 
(!' = (1'1 ···(!'~;,with(!'; E M(G), fori E {1, .. , k}, 
1(1';1 < oo, fori E {1, .. , k- 1}, and I(!'~; I= oo } 

U { (!' I there exists an infinite sequence of models (1'1, (1'2, ... such that 
(!' = (1'1(1'2 ···,with(!'; E M(G) and 1(1';1 < oo, fori;::: 1 } 

Observe that M(*G) = M(G; *G)= SEQ(M(G),M(*G)), that is, M(*G) is a (non
empty) fixed point of the function F(X) = SEQ(M(G), X). Moreover, we can prove that 
M (*G) is the unique non-empty fixed point ofF. The proof is based on the observation 
that 1(1'1;::: I<e for all(!' E M(G). (By this property also an infinite loop in finite time is 
avoided.) 



www.manaraa.com

199 

Priority Assignmeut Let u[p/0] be the model obtained from u by substituting p for 
each occurrence of priority 0 in the req- and e:eec-fields of u. Formally, lu[p/O]I = lui 
and for all r < lui, u[pfO](r).comm = u(r).comm, 
u[pfO](r).req = {pllpl E u(r).1·eq A pi :f. 0} U {pI 0 E u(r).req}, and 
u[pfO](r).e:eec = {pi I piE u(r).e:eec A pi :f. 0} U {pI 0 E u(r).e:eec}. Then we have 

M(p1·io p (S)) = {u(p/0] I u E M(S)} 

Pa1•allel Compositiou For notational convenience, assume u(r).comm = u(r).req = 
u(r).e:eec = !21, for all r ~lui. Then we can define the pointwise union of two models u1 
and U2, denoted Utl:JU2, as follows: lutl:JU21 = ma:e(lutl, lu21), and for all T < lutl:JU21, 
(utl:Ju2)( r).comm = u1( r).commUu2( r).comm, (u1l:Ju2)( r).req = u1( r).reqUu2( r).req, 
and (u1 l:J u2)(r).e:eec = u1(r).e:eec U u2(r).e:eec. The semantics of P1 II P2 consists of 
all models u such that there exists Ut E M(Pt) and u2 E M(P2) with u = u1 l:J u2. 
Note that this includes lui = ma:e(lutl, lu21), which corresponds to the notion that the 
parallel composition of two processes terminates when both processes have terminated. 
Furthermore we have the following requirements: 

1. If that P1 and P2 are executed on a single processor, then at most one of the 
processes should execute at any point of time. This condition (and the next one) 
will be trivially fulfilled for networks (see the definition of processor closure below). 

2. The priority of an executing statement should be greater than or equal to the 
priority of any executing statement. 

3. Since we have synchronous communication, Pt and P2 should communicate simul
taneously on shared channels, connecting the two processes. Note that these joint 
channels are represented by the set dch(P1) n dch(P2). 

4. In our execution model we assume minimal waiting for communications, that is, 
two processes should not be simultaneously waiting to send and waiting to receive 
on a shared channel. 

Hence, the semantics of parallel composition is formulated as: 

M(Ptll P2) = {u I there exist u1 E M(Pt) and u2 E M(P2) such that u = Utl:J u2, 
for all r < lui and for all c E dch(P1) n dch(P2): 

u1 ( r).e:eec = !21 V u2( r).e:eec = !21, 
P1 E u(r).e:eec Ap2 E u(r).req- Pl ~ P2, 
c E u1{r).comm +-+ c E u2(r).comm, and 
-,(c! E u(r).comm A c? E u(r).comm)} 

Parallel composition is commutative and associative. 

P1·ocessor Closm·e In the semantics of processor closure we require that if the pro
cessor is idle at time r, represented by u(r).e:eec = !21, then no statement is request
ing, i.e., u(r).req = !21. On a model u that satisfies this requirement we then apply 



www.manaraa.com

200 

the network abstraction operator, netw(o-), which removes all executing and request

ing information from O", since this should not be visible on the network level. Define 

lnetw(o-)1 = lo-1 and, for all r < lo-1, (netw(o-))(r).exec = (netw(o-))(r).req = ~. and 

(netw(o-))(r).comm = o-(r).comm. Then we define 

M(<t::. S ~) = {netw(o-)1 O" E M(S), for all r < lo-1: o-(r).exec = ~- o-(r).req = ~} 
Note that the programs<(( prio 1 (c!) II prio 5 (d?) ~and<(( prio 2 (c!) II prio 3 (d?) ~ 

obtain the same semantics. 

6 Concluding Remarks 

We have defined a denotational semantics to describe the real-time behaviour of an 

Occam-like language where several processes may share a single processor. The inter

leaving of atomic actions on one processor is restricted by dynamic priorities which are 

explicitly assigned to statements in the program. Communications are performed by 

separate link interfaces. Observe that the ma.ximal parallelism assumption, where each 

process has its own processor, can now be expressed in our programming language. In 

general, given the design of a parallel program, we can express and compare different 

assignments of processes to processors. 

Closely related to our work is the research done by Gerber and Lee. In a recent pa

per [GL90] they describe a resource based execution model with interleaving on a single 

resource and true concurrency among multiple resources. Their formal framework, how

ever, is based on process algebraic techniques. Further, they have defined an operational 

semantics, although this semantics does not deal with priorities. Such a semantics could 

serve as a basis for comparison, since we also plan to define an operational semantics for 

our language and to prove that it is equivalent to our denotational semantics. Future 

research also includes the definition of a fully abstract semantics for our programming 

language and to compare this with fully abstract models for maximal parallelism. The 

main point is the influence of 1·cquesting and executing information on the abstractness 

of the semantics. 

Based on the denotational semantics given in this paper, we have formulated in [Hoo91] 

two compositional proof systems for multiprogramming. In the first proof system, which 

is an extension of [HW89], one can prove that a program satisfies a specification written 

in a real-time version of temporal logic. The second proof system is based on extended 

Hoare triples (i.e., pre-condition, program, post-condition), using a first-order language 

with references to time (similar to [Hoo90]). In future work we intend to investigate the 

application of these formalisms to realistic examples. 



www.manaraa.com

201 

Acknowledgements 

Willem-Paul de Roever is gratefully acknowledged his stimulating interest in this work 
and many useful comments on the semantic model. Thanks also to Amir Pnueli for his 
illuminating remarks during the meetings in the context of Esprit projects DESCARTES 
and SPEC. Frank Zoontjens is thanked for his contribution to a preliminary version of 
the semantics. The referees are acknowledged for their accurate comments. 

References 
[FLP84] N. Francez, D. Lehman, and A. Pnueli. A linear history semantics for dis

tributed programming. Theoretical Computer Science, 32:25-46, 1984. 

[GB87] R. Gerth and A. Boucher. A timed failures model for extending commu
nicating processes. In Proceedings in the 14th International Colloquium on 
Automata, Languages a11d Progmmmi11g, pages 95-114. LNCS 267, Springer
Verlag, 1987. 

[GL90] R. Gerber and I. Lee. CCSR: a calculus for communicating shared resources. 
In CONCUR '90, pages 263-277. LNCS 458, Springer-Verlag, 1990. 

[HGR87] C. Huizing, R. Gerth, and W.P. de Roever. Full abstraction of a real-time 
denotational semantics for an OCCAM-like language. In Proceedings of the 14th 
ACM Symposium on Principles of Progmmming Languages, pages 223-237, 
1987. 

[Hoo90] J. Hooman. Compositional verification of distributed real-time systems. In 
Proceedings Workshop 011 Real-Time Systems - Theory and Applications, 
pages 1-20. North-Holland, 1!)90. 

[Hoo91] J. Hooman. Specification and Compositional Verification of Real-Time Sys
tems. PhD thesis, Eindhoven University of Technology, 1991. 

[HW89] J. Hooman and J. Widom. A temporal-logic based compositional proof system 
for real-time message passing. In Parallel Arc/Litectures and Languages Europe, 
volume II, pages 424-441. LNCS 366, Springer-Verlag, 1989. 

[KSR+ss] R. Koymans, R.K. Shyamasundar, W.P. de Roever, R. Gerth, and S. Arun
Kumar. Compositional semantics for real-time distributed computing. Infor
mation and Computation, 79(3):210-256, 1988. 

[Occ88a) 

[Occ88b] 

[RR87] 

(Zwi89) 

!NMOS Limited. Communicating process architecture, 1988. 

JNMOS Limited. OccAM 2 Reference Manual, 1988. 

G. Reed and A. Roscoe. Metric spaces as models for real-time concurrency. 
In Proceedings Workshop on the Mathematical Foundations of Progmmming 
Languages Semantics, pages 331-343. LNCS 298, Springer-Verlag, 1987. 

J. Zwiers. Com.positionality, Conct~rrency and Partial Correctness. LNCS 
321, Springer-Verlag, 1989. 



www.manaraa.com

CONCURRENT CLEAN 

Nocker E.G.J.M.H., Smetsers J.E.W., Eekelen M.C.J.D. van, Plasmeijer M.J. 

Abstract 

Faculty of Mathematics and Computer Science, 
University of Nijmegen, 

Toemooiveld 1, 6525 ED Nijmegen, The Netherlands 
E-mail: clean@cs.kun.nl 

Concurrent Clean is an experimental, lazy, higher-order parallel functional programming language 
based on term graph rewriting. An important difference with other languages is that in Clean graphs 
are manipulated and not terms. This can be used by the programmer to control communication and 
sharing of computation. Cyclic structures can be defined. Concurrent Clean furthermore allows to 
control the (parallel) order of evaluation to make efficient evaluation possible. With help of sequential 
annotations the default lazy evaluation can be locally changed into eager evaluation. The language 
enables the definition of partially strict data structures which make a whole new class of algorithms 
feasible in a functional language. A powerful and fast strictness analyser is incorporated in the system. 
The quality of the code generated by the Clean compiler has been greatly improved such that it is one 
of the best code generators for a lazy functional language. Two very powerful parallel annotations 
enable the programmer to define concurrent functional programs with arbitrary process topologies. 
Concurrent Clean is set up in such a way that the efficiency achieved for the sequential case can largely 
be maintained for a parallel implementation on loosely coupled parallel machine architectures. 

1. 0 Introduction 

Historical context 

Concurrent Clean (Eekelen eta!. (1990)) is an experimental, lazy, higher-order functional programming 
language based on term graph rewriting (Barendregt eta!. (1987a)). The first work on Clean started in 1984 
in the Dutch Parallel Reduction Machine project (Barendregt eta!. (1987), Brus eta!. (1987)) in which the 
feasibility of the realization of a parallel reduction machine was investigated. The Nijmegen research 
focussed on the fundamentals of graph reduction and its implementation on sequential and parallel 
architectures. The fundamental idea is that graph reduction should not be considered as merely an 
optimisation in the implementation of functional languages, but that graph reduction is a fundamental basis 
for any implementation and that graph reduction itself must be investigated and optimised. In this context 
together with the University ofEast-Anglia a more general non-functional computational model, Generalized 
Graph Rewriting Systems (GGRS's) has been designed (Barendregt et al. (1987b)) of which the semantics 
and pragmatics currently are further investigated in the Esprit Basic Research Action "Semagraph". The 
Dactl-language used in the declarative UK-Flagship projects is based on GGRS's (Glauert et al. (1987)) as 
well as the jointly with the University of East-Anglia (UEA) defined language Lean (Barendregt et al. 
(1987b,1988)). Based on restricted GGRS's the functional graph rewriting language Clean (Brus eta!. 
(1987)) was developed as an intermediate language for the compilation of functional languages. 
hnplementations (compilers and interpreters) of Clean (Brus eta!. (1987), N&ker (1989), Smetsers (1989)) 
have been developed as well as a Miranda-to-Clean conversion program (Koopman & Nocker (1988)). 
Concurrent Clean is partly developed as a part of the Esprit TIP-M Tropics project (Eekelen eta!. (1989)). 

The language Concurrent Clean 

In this paper the language Concurrent Clean is presented that extends the sequential language Clean to a 
concurrent language suited for efficient code generation for both sequential and parallel machine 
architectures. Concurrent Clean has many features in common with other lazy, higher-order functional 



www.manaraa.com

203 

languages, such as a Milner/Mycroft based polymorphic type system (including algebraic types, synonym 
types and abstract types). A key aspect of the language is that the object that is manipulated is a graph and 
not a term. Consequently, the programmer can explicitly control sharing of computation. For instance, cyclic 
data structures can be created. The most important aspect of Concurrent Clean discussed in this paper is the 
way in which the order of evaluation can be controlled. Lazy evaluation can be locally changed in eager 
evaluation. Eager evaluation has the advantage that in general it can be implemented considerably more 
efficiently than lazy evaluation. Even more speed-up can be achieved by changing sequential evaluation into 
parallel evaluation. 

Changing lazy into eager evaluation 

An important feature of the Concurrent Clean system is that strictness annotations are generated automatically 
by a strictness analyser. This analyser has been designed and implemented based on the concept of abstract 
set reduction (Nocker (1990)). The strictness analyser is an efficient as well as powerful analyser that can 
deal with arbitrary data structures and higher-order functions. To change the default lazy reduction order into 
eager also the programmer can put strictness annotations in the function defmition themselves or in their type 
definition (Smetsers (1989)). Furthermore, considerable efficiency improvements can be realized by defming 
a special kind of data types: partially strict data types (Nocker & Smetsers (1990)) that enable composite data 
structures to be handled on the stack completely without any usage of the heap. 

Changing sequential into parallel evaluation 

In Concurrent Clean the programmer can control the parallel evaluation of the functional program with help 
of only two annotations (Eekelen eta!. (1991)). The annotations enable the programmer to allocate processes 
to parts of the graph in such a way that arbitrary, possibly cyclic, process topologies can be specified. 
With the same two annotations the programmer can specify that, when communication takes place, a value 
has to be communicated or that the expression to compute the value has to be shipped. Communication 
between processes takes place implicitly on demand via the concept oflazy copying (Eekelen eta!. (1991)). 
Concurrent Clean is designed for the evaluation on loosely coupled parallel machine architectures. As a 
special case multi-processing on a single processor can be expressed. Complicated parallel algorithms which 
can go far beyond divide-and-conquer like applications can be specified. The design of Concurrent Clean is 
such that the sequential optimisations mentioned above can still be applied in the parallel case. A local 
reservation/locking mechanism is required that introduces a neglectable overhead. 

In this paper an overview is given of the main features of the language Concurrent Clean (Section 2). In 
more detail it is explained how the (parallel) reduction order is controlled (Section 3). The sequential (Section 
4) and parallel (Section 5) implementation of Concurrent Clean is treated. Performance figures are given in 
Section 6. 

2.0 Overview of the Language 

In this section we briefly introduce the flavour of Concurrent Clean by showing how some well-known 
functional programs are written down in this formalism. The first example shows how the factorial function 
can be specified in Clean: 

MODULE Fac; 

IMPORT delta; 

RULE 
.. Fac INT -> INT 

Fac 0 -> 1 
Fac n -> *I n (Fac (--I n)) 

.. Start -> INT 
Start -> Fac 20 



www.manaraa.com

204 

A Clean program is composed of modules. Modules are hierarchical. The top-most module is the main 
module. In the main module a start rule should be declared of which the left-hand-side consists of the 
symbol start and the right-hand-side corresponds with the initial expression to be computed. 

With the IMPORT statement all predefined functions (delta rules) and predefined types are imported. --I 

(integer decrement) and *I (integer multiplication) are such predefined functions defmed on the basic type 
INT. 

Rules starting with : : are either new type definitions or type specifications of rewrite rules. In the latter case 
the type of the corresponding function is specified. In a Clean program all the rules for a certain function are 
called the alternatives for that function. It is required that all the alternatives are grouped together. The reader 
will have inferred that the rule alternatives of a function definition have a priority: they are applied in textual 
order. 

MODULE Map; 

I I Example of'how to use higher order 
I I functions in Concurrent Clean 

FROM delta! IMPORT *I; 

RULE 
-> INT Square INT 

Square x -> *I X X 

.. Map (=>X y) [x) -> [y) 
Map f [) -> [) 
Map f [alb! -> [f a I Map 

.. Start -> [INT) 

f b) 

Start -> Map Square [42,43,44) 

In Clean comments can be specified via preceding the comment with 1 1. This has to be done on every line 
in which a comment is given. Square brackets are used for denoting lists: [ 1 is an empty list, [a, b, c 1 a list 
containing the three elements a, band c and [a 1 fl denotes a list consisting of a list f prefixed with an 
element a. 

The example also shows that higher order functions can be used freely. There is no difference between the 
use of full and partial (curried) applications of functions. Types of higher order functions are specified using 
=>(prefix notation) which corresponds to ->(infix notation) in languages like Miranda1• 

The following example is a solution for the Hamming problem: it computes an ordered list of all numbers of 
the form 2n3m, with n,m~. Note that with the explicit nodeid x, defined in the right hand side, a cyclic 
graph is created that allows the use of computations already performed. 

MODULE Ham; 

FROM delta! 
FROM Map 
FROM Merge 

RULE 

IMPORT *I 
IMPORT Map 
IMPORT Merge 

Ham -> [INTI 
Ham -> x: [1 I Merge (Map (*I 2) x) (Map (*I 3) x) I 

2.1 Type System 

Concurrent Clean is a strongly typed language. It is, however, not required to declare the types of functions 
explicitly: types are deduced by the compiler from the information in the program. The (polymorphic) type 
scheme that is used for this purpose is based on the a combination of the well-known Milner (1978) and 
Mycroft (1984) schemes. 

1 Miranda ™ is a trademark of Research Software Ltd. 



www.manaraa.com

205 

The predefined types in Concurrent Clean and examples of denotations and predefined functions are listed 
below: 

Basic types: 
Examples of denotations: 
Predefmed functions: 
List and tuple types: 
Denotations for lists and tuples: 

Defining New Types 

INT, REAL, BOOL,CHAR,STRING, FILE 
2, 0.31415El,TRUE,'a',"monkey" 
+I,<R,NOT,=C,SLICE,FOpen 
[T], (T" ... ,T0 ) for types T and Ti 
[1,2,3,4], [], [21[]], (!,'?',FALSE) 

There are three mechanisms to introduce new types: algebraic type definitions, synonym type definitions and 
abstract type definitions. 

Synonym types allow the user to define a new name for an already existing type. These types are specified 
by means of a type rule having exactly one alternative of which the right-hand-side is a type instance. 

A type instance is either a type variable or an acyclic graph that has a root symbol that is a type symbol of 
which all the arguments are type instances. A type symbol is either a basic type symbol or a user-defined 
type symbol. 

An example of a synonym type definition: 

TYPE 
Stack x -> [x] 

With the aid of algebraic types it is possible to introduce a new concrete data type based on free algebras. 
These types are specified by means of a type rule whereof each alternative has a right-hand-side with a 
unique root symbol: the constructor. The constructor is said to be of that specific type. All the arguments of 
the constructor are type instances. 

Example of algebraic type definitions. The types Nat and List are being defined. The constructors Zero and Succ are 
said to be of type Nat, Cons and Nil of type List x. 

TYPE 
0 0 Nat -> zero 

Nat -> Succ Nat 

.. List X -> Cons X (List x) 
List X -> Nil 

Abstract types offer the possibility of hiding the representation of a certain type. To distinguish an abstract 
type definition from an ordinary type definition a special kind of type block is provided called an ABSTYPE

block. 

Example of abstract type definition in Clean: 

ABSTYPE 
Stack x 

Abstract type definitions are only allowed in definition modules (see the section on modules). In the 
implementation module the abstract type should either be a synonym type or an algebraic type. The 
realisation of the type is invisible for the outside world. 

Typing Functions 

Each rewrite rule can be typed explicitly by the programmer. This type specification must immediately 
precede the corresponding rewrite rule. 

When typing partial functions one has to ensure that the function symbol itself can be used as a constructor 
by giving an appropriate algebraic type definition for it. An error is generated at run-time if this has not been 



www.manaraa.com

206 

indicated properly (note that in general it cannot be detected at compile-time whether a function is partial). 
First an example that leads to a run-time type error: 

RULE 
.. F INT -> INT 

F 0 -> 0 

.. Start -> INT 
Start -> F 1 

Although the Clean program is correctly typed, the function F applied in the start-rule cannot be matched and therefore F 1 
will not yield the required type: INT. At run-time, an error is generated. 

The second example shows how partial functions should be typed in order to avoid run-time errors: 

TYPE 
.. Num -> Zero 

Num -> Succ Num 
Num -> Pred Num 

RULE 
.. Succ Num -> Num 

Succ (Pred n) -> n 

.. Pred Num -> Num 
Pred (Succ n) -> n 

·=: Start -> Num 
Start -> Succ (Succ zero) 

The graph succ ( Succ zero l in the start rule will not match any rule. Still it is correct because the graph is indeed of 
the wanted type (Num). Notice that Succ and P red are used both as functions as well as constructors. As constructors they 
may appear in the right-hand-side of type defmitions and are of type Num. As functions they also yield type Num. 

2.2 Modules 

A Concurrent Clean program may be split in several modules that can be compiled separately. A Concurrent 
Clean program consists of definition modules and implementation modules. An implementation module 
consists of a set of type and rule definitions that can be exported to other modules via its definition module. 
The latter consists only of a set of type rules, possibly including stricmess information, for exported types 
and for exported functions. Special definition modules, which are called system modules, indicate that the 
corresponding implementation module does not contain ordinary rewrite rules but (abstract) machine code 
instead. On demand the compiler will substitute the code of a function in-line at the place where this function 
is called. 

2.3 Input and Output 

To achieve an efficient implementation of IO facilities in Concurrent Clean the type FILE has been 
predefined. Besides that, a number of basic operations on files can be imported from a predefined module 
called deltaiO. This module contains functions to create files, to read characters or strings from files, to write 
characters or strings to flles and to re-open write-files for reading. 

The efficiency of the IO functions is obtained by implementing FILE's not as (lazy) lists of characters but by 
using strict tuples. This allows the Concurrent Clean compiler to generate code for these 10 functions 
wherein a fast call by value like mechanism of parameter passing and returning results is used. 

3.0 Controlling Reduction Order 

3.1 Graph Rewriting 

A Clean program basically consists of a number of graph rewriting rules which specify how a (program) 
graph has to be rewritten. The program graph, which initially consists of a single start node, is rewritten 



www.manaraa.com

207 

according to these rules. The part of the graph that matches the pattern of a certain rewrite rule is called a 
redex. A rewrite of a redex consists of replacing the redex in the graph by an instance of the right-hand-side 
of the corresponding rewrite rule 

3.2 Reduction Strategies 

A reduction strategy repeatedly determines which redex is going to be reduced next. The strategy of 
Concurrent Clean, the so-called functional strategy. Reducing graphs according to this strategy resembles 
very much the way execution proceeds in most other lazy functional languages: if there are several rewrite 
rules for a particular function the rules are tried in textual order; patterns are tested from left to right; 
evaluation of arguments is forced when it is tried to match an actual argument against a non-variable part in 
the pattern. 

In Concurrent Clean the functional strategy may be locally influenced by the use of annotations. When this 
strategy encounters an annotation it changes its default reduction order which will influence the way in which 
a result is achieved. Changing the order is in particular important if one wants to optimise the time and space 
behaviour of the reduction process. 

Currently, two kinds of annotations are possible: 
strict annotations to locally change lazy evaluation into eager evaluation; 

- process annotations to define interleaved evaluation on the same or parallel evaluation on another 
processor. 

3.3 Sequential Annotations 

The sequential flow of control can be influenced by means of strict annotations. If a strict annotation is 
encountered, the evaluation of the indicated subgraph is forced. This forced evaluation will also follow the 
functional strategy yielding a root normal form. After the forced evaluation has delivered the root normal 
form, the reduction process continues with the ordinary reduction order following the functional strategy. 
So, annotations let the reduction strategy deviate from the default functional evaluation order making the 
evaluation order partially eager instead of lazy. 

We distinguish two kinds of strict annotation, namely, global and local strict annotations 

Global Strict Annotations 

The strict annotations in a type specification are called global because they change the reduction order for all 
applications of a particular function. Annotations in a type specification of a certain function are allowed to 
be placed before the type specification of either an argument on the left-hand-side or an argument of a tuple 
type appearing in a strict context. A tuple type is in a strict context if it has been supplied with a (valid) strict 
annotation itself or if it appears as the root node on the right-hand-side of the type rule. Intuitively, such a 
strict annotation indicates that the corresponding argument is always reduced to root normal form before the 
corresponding rule is applied. 

Example of global strict annotation in type rules: 

IF ! BOOL x X -> x 
IF TRUE· then else -> then 
IF FALSE then else -> else 

Strict annotations may also be used in tuple types appearing in a type synonym definitions The meaning of 
these annotated synonym types can be explained with the aid of a simple prograzy1 transformation with which 
all occurrences of these synonym types are replaced by their right-hand-sides (of course, annotations 
included). These annotated type definitions are a special case of the more general partially strict data types 
which are treated later on in this section. 



www.manaraa.com

208 

Local Strict Annotations 

Strict annotations in rewrite rules are called local. They change only the order of evaluation for a specific 
function application. These annotations appear in the right-hand-side of rewrite rules. 

Before the evaluation continues after applying a rewrite rule all strict annotated nodes of the right-hand-side 
of the applied rewrite rule are evaluated. Strict annotations in rewrite rules can be placed anywhere on the 
right-hand-side. 

Example of strict annotations on the right-hand-side: 

F X y -> IF x !y (! ++I y) 

In this panicular application of IF it is clear that a common part of the then part and else part can safely be reduced. 

Partially Strict Data Types 

Partially strict data types are obtained by supplying the type definitions or type specifications of functions 
with additional (global) strictness information. In a type definition this strictness information specifies for 
each individual part of an instance of such a type whether this part should be evaluated or not (the so called 
evaluation context of that part). In a type specification of a function the strictness information determines the 
evaluation contexts of both the parameters and the result The only partially strict data types that have been 
implemented in Concurrent Clean are the partially strict tuples (these types were already mentioned in the 
section on global strict annotations). An example of the use partially strict tuples is the following definition 
of a complex number: 

TYPE 
Complex -> ( ! REAL, ! REAL) 

RULE 
• • +C ! Complex ! Complex -> Complex 

+C (rl,il) (r2,i2) -> (+R rl r2,+R i1 i2) 

3.4 Parallel Annotations 

The parallel flow of control can be influenced by means of process annotations. Currently only local process 
annotations can be specified in the right-hand-side of rewrite rules. 

If a process annotation is encountered, the evaluation of the indicated subgraph is forced as with a strict 
annotation, following the functional strategy until a root normal form is reached. The important difference 
with strict annotations is that with process annotations new reduction processes are created that perform the 
evaluation. These new reduction processes can run interleaved or in parallel with the original reduction 
process. The original process continues with the evaluation in the ordinary reduction order independently. 

Creating parallel processes 

The 1 P 1 annotation (P for parallel) creates a new graph, which is a copy of the annotated subgraph, on a 
remote processor together with a parallel reduction process (a reducer) which reduces this new graph to root 
normal form. 

Creating interleaved processes 

The 1 I 1 annotation (I for interleaved and internal) creates a new internal process on the annotated sub graph. 
This new internal reducer reduces the corresponding subgraph interleaved with the other processes of this 
processor (so no copy is made). 

Communication Channels 

Communication takes place when the initial graph that is going to be reduced in parallel has to be sent to 
another processor or when the result of such a parallel reduction is needed by another reducer. 



www.manaraa.com

209 

Communication involves the copying of graphs. In Concurrent Clean the concept of lazy-copying is used 
(Smetsers et al. (1991)). When during the copying a subgraph is encountered that is already being reduced 
by another reduction process this subgraph is not copied at that moment. The copying is deferred until the 
other reducer has finished the reduction of this graph. The fact that the copying was stopped temporarily is 
administered with the aid of a special arc, a so-called (communication) channel, that interconnects the new 
copy with the subgraph that is currently reduced. The continuation of the copying is triggered when the 
result of the graph to which a channel refers is needed. 

Besides creating channels implicitly via copying there is another way whereby channels come into existence: 
the initial subgraph of a new parallel reduction process is also connected to the original graph via a channel. 

Note that the above-mentioned method of process creation and communication implies that the only 
interconnections between graphs residing on different processors are channels. 

Divide and Conquer Parallelism 

In the following example it is shown how a divide-and-conquer parallelism can be specified in Concurrent 
Clean: 

Fib 0 -> 1 
Fib 1 -> 1 
Fib n -> +I left right, 

left: {PI Fib (-I n 1), 
right: (PI Fib (-I n 2) 

The {PI annotations specify that both calls of Fib can be evaluated in parallel. The root of the graph on which a process is 
started, is built on another processing element with copies of subgraphs as arguments. The father reducer is waiting for the 
results. A copy of a result is made when a subgraph left or right is in root normal form. The picture below illustrates a 
possible processor structure after one reduction of Fib 5: 

(1+1 I i 1•3----------1 J 
processor 1 +1--------lif------' 

~~ 
processor 3 

Parallel sieving 

The sieve of Eratosthenes is a classical example which generates all prime numbers. A pipeline of Sieve 

processes is created. Those Sieves hold the prime numbers in ascending order, one in each Sieve. Each 
Sieve accepts a stream of integers as its input. Those integers are not divisible by any of the foregoing 
primes in the pipeline. If an incoming integer is not divisible by the local prime as well, it is send to the next 
Sieve. A newly created Sieve accepts the first incoming integer as its own prime and outputs this prime and 
the channel of the next Sieve to a printing process. After that it starts sieving. A process called Gen sends a 
stream of integers greater than one to the first Sieve. 

The combination of process annotations and communication via copying provide that the intended behaviour 
is achieved. Processes are connected to each other by channels through which data is communicated in a 
demand driven way. 

This can be represented in a picture as below (all arrows indicate flow of data on channels). sievel holds 2 
as its own prime, Sieve2 holds 3, Sieve3 holds 5, and so on. The printing process one by one receives the 



www.manaraa.com

210 

channel identifications from these sieves and collects the corresponding primes. Seen through the time this 
can be illustrated as follows (all arrows indicate flow of data on channels): 

I Print 14---j·--·-··--···~1 ····---··-~-----
I I _L_ 

~--~ Sievel ~·····-! Sieve2 ~--·~·-• 

The Sieve: 

Start 

Sieve [pr I stream] 

Genn 

Filter [f I r] pr 

NewFilter f r pr 

Arbitrary Process Structures 

-> Print s, 
s: {P} Sieve q, 
q: {P} Gen 2 

-> [pr I s], 
s: {PI Sieve f, 
f: {II Filter stream pr 

-> [n I rest], 
rest: III Gen I! I (++In) 

-> IF (=I (MOD f pr) 0) 
(Filter r pr) 
(NewFilter f r pr) 

·-> [f 1 rest], 
rest: III Filter r pr 

It is beyond the scope of this paper to treat the expressive power of Concurrent Clean very extensively. At 
this point we only want to claim that it is possible to specify any arbitrary process structure in a Concurrent 
Clean program. To illustrate this we give an example that shows how a cyclic process structure, i.e. a 
number of parallel reducers that are mutual dependent, can be created. It is extracted from quite a large 
program that implements Warshall's solution for the shortest path problem (van Eekelen et al. (1988)). 

First the intended reducer topology is given in a picture: 

This reducer structure can be specified directly in the following way: 

Start -> last:CreateProcs NrOfProcs last 

CreateProcs 1 left -> Process 1 left 
CreateProcs pid left -> CreateProcs (--I pid) new, 

new: {PI Process pid left 

CreateProcs is responsible for the generation of all the parallel reducers. This process, which will finally 
become the first reducer, has initially a reference to itself in order to make it possible to expand it to a cycle 
of reducers. Each reducer is connected to the next one, i.e. the one with the next pid number, by means of a 
channel. During the creation of the processes this channel is passed as a parameter called left. 

4.0 Sequential Implementation 
Both sequential and parallel implementations of Concurrent Clean are based on the abstract ABC machine. A 
Concurrent Clean program is compiled to code for this abstract machine. In this way the Concurrent Clean 
compilation is largely machine independent. Testing the implementations and reasoning about them becomes 
much easier. 



www.manaraa.com

211 

There are two ways in which this code can be executed. First, the ABC code can be interpreted. Second, it 
can be compiled to code for some concrete machine. The abstract machine can be implemented on various 
machines relatively easy. 

In this section we will outline the basic aspects of the ABC machine. The ABC machine resembles advanced 
G-machine like architectures (Johnsson (1987), Peyton Jones & Salkild (1989)). The Concurrent Clean 
compiler exploits all possibilities of the machine. This is discussed in section 4.2. Lastly, we treat how the 
ABC machine can be implemented on a real machine. More detailed information on these aspects can be 
found in (Smetsers (1989), Koopman et al. (1990), Groningen (1990)) 

4.1 The abstract ABC machine 

As mentioned before, the abstract ABC machine is similar toG-machine like architectures: it is a stack based 
graph reduction machine. The main parts of interest are the three stacks (Address, Basic value and Control 
stack) and the heap. 

The C stack is used for storing addresses. The other two stacks are used for evaluating or building 
expressions, and for passing arguments to functions or returning results from functions. The A stack 
contains references to nodes in the heap, whereas the B stack contains values of basic types, such as integers 
or reals. Thus, basic values can be represented in two ways: as node in the heap or as an item on the B stack. 
Note that a B stack item can occupy more entries, for example, a Real value needs two entries. 

Example: 

A stack B stack 

Graphs are stored in the heap. So, the heap contains a collection of nodes. Generally speaking, a node of a 
Clean graph consists of a symbol with a certain number of arguments. Representing nodes as variable sized 
object causes problems with updating: the new node doesn't need to fit in the old one. This can be solved by 
introducing indirection nodes, but this will slow down the access on the contents of a node. In the ABC 
machine we have chosen to split a node in a fixed and a variable sized part. The fixed size part contains a 
representation of the symbol (called the descriptor), a code pointer and a pointer to a variable sized part. 

I descriptor I code pointer I arguments l 

~r·.~·:J~ 
The descriptor is a representation of a Clean symbol. Normally it is an index or pointer in a descriptor table. 
The descriptor is used for pattern matching and for printing. 
The code pointer points to code with which the node has to be evaluated. During reduction this code pointer 
can be changed. For example, after entering the node for evaluation a pointer to code that generates an error 
message can be stored. If the node is entered again (indicating a non-terminating reduction) this code will be 
executed. If a node is updated with a head normal form value, the code pointer points to special code just 
containing a return statement. 
In the variable sized part the arguments of the node are stored. This means that the arguments always have to 
be fetched via an extra indirection. On the other hand, updating a node is simple: update the fixed part, and 
allocate space for the arguments. 

Except nodes containing a Clean symbol with the right number of arguments also other kinds of nodes are 
possible. For such nodes special things are done. 



www.manaraa.com

212 

For nodes containing a basic value, e.g. an integer, the descriptor doesn't represent the Clean symbol (that 
would be the integer value itself!). Instead, all integers share the same descriptor (e.g. INT). The integer 
value itself is stored in the pointer part. For basic values which are too big (e.g. strings) a pointer to the 
value (for which space has to be allocated) is stored. As basic nodes are always in normal form, they all 
contain the head normal form code pointer. 
In Concurrent Clean symbols can be applied on too few arguments. Such a partial application can be 
represented as a spine of applications. In practice, a better way is to build partial nodes, i.e. nodes with a 
partially filled argument part. Such nodes are built as standard nodes, but with special descriptors. So, for 
each Clean symbol of arity n, n+1 descriptors are defined. Mostly, the ABC machine sees no difference 
between such partial nodes and standard nodes. However, if a partial node is applied to another node, a new 
node with a new number of arguments has to be created. 

4.2 The Concurrent Clean compiler 

Syntactically, Concurrent Clean is quite an easy language. Therefore, the main task of the Concurrent Clean 
compiler is to generate efficient code. No complex transformations like lambda lifting, converting ZF· 
expressions etcetera are necessary. 
Many standard optimisation techniques are implemented: tail recursion removal, unnecessary evaluation calls 
etcetera. In the following we will emphasize only those parts of the compiler that differ from other well
known implementations. 

Conceptually, graph reduction is done in the heap: if a node has to be rewritten a new graph is built which 
will replace the original node. Unfortunately, this scheme will not give efficient code. The goal of the 
compiler is to generate code in which graph building is omitted as much as possible. For generating such 
efficient code type and strictness information is necessary. Type information can be fully derived by the type 
inference mechanism. Strictness information can be given by the programmer, or can be derived by a 
strictness analyser. 
In general, deriving strictness information is very difficult. However, some help from the programmer 
normally will lead to more information. Certainly annotating data types can lead to much more efficient code. 

Strictness Analysis 

The strictness analyser in the Concurrent Clean compiler is based on abstract reduction (Nocker (1990)). In 
abstract reduction a domain of sets of values is defined. Reduction in this domain means reduction of sets. 
Because this domain of sets is not finite fixed points techniques are not applicable. Problems due to recursive 
functions are solved with a technique called reduction path analysis. With this method also other kinds of 
strictness can be derived, for example, strictness properties for functions over lists. (however, such 
information is not used by the Concurrent Clean compiler). It appears that this analyser can find much 
information. The analysis itself is quite fast. Consider the functions: 

Append [] y -> y 
Append [aIr] y -> [a I Append r y] 

Fo1dr op r [] -> r 
Fo1dr op r [alx] -> op a (Fo1dr op r x) 

Catenate 1 -> Fo1dr Append [ J 1 

With strictness analysis based on abstract interpretation for the function catenate a fixed point in a rather 
complex domain has to be determined. With abstract reduction the right information is found quite easily (see 
Nocker (1990) for the analysis). 

Nodes in a strict context 

There are two ways in which the compiler uses strictness information. First, nodes in a strict context 
normally don't need to be built. Instead, a call to the code belonging to the function is generated: 



www.manaraa.com

F x -> +I a b 
a: IF cond 3 b, 
b: IF cond a 4, 
cond: P x 

213 

As can be seen easily, the node cond is in a strict context. In this case a direct call toP can be generated. 
However, despite the fact that nodes a and b are in a strict context, nodes for them have to be build because 
they are on a cycle (in fact, they are in a 'semi-strict' context). 

Passing parameters and returning results 

The second way in which strictness and type information is used is in passing values as parameters or as 
results. Values are passed via the A and B stack. The type of the function determines how this is done: 

:: F INT ! (! INT,! [CHAR]) -> (INT, !CHAR); 

The function F with this type is a function which needs two arguments. The first one, is a non-strict integer. 
This value is passed via the A stack. The second argument is a strict tuple. Both elements of this tuple have 
to be reduced to head normal form before calling F. The integer has to be passed via the B stack, whereas the 
character list is passed via the A stack. For the result value similar things have to be done: a (strict) tuple is 
returned of which the frrst element, a on-strict integer, will be passed via the A stack, and the second, a strict 
character, will be returned via the B stack. 
If a value is not in the state in which it is needed for a function call a conversion has to be done. In the case 
of tuples, such a conversion can be quite complex. Such a conversion we will caU a coercion. 

Entry points 

The above calling convention is applicable only if nodes appear in a strict context. However, there are three 
other ways in which a function can be called. 
Firstly, a function application might have been appeared in a non-strict context. In this case a node has been 
built. If this node has to be evaluated first a conversion (in fact a coercion) has to be done before the strict 
code can be executed: arguments have to be fetched from the heap. If necessary, they have to be evaluated 
or, in the case of strict tuples, unpacked. 
The second way in which a function can be called is if a partial application has been built. If, after that some 
applications have delivered the remaining arguments, a similar transformation has to be done. 
Lastly, also special things have to be done for exported functions. The exported type determines the calling 
convention outside the module. However, inside the module another calling convention can be more 
efficiently. This is the case if abstract types are exported (hiding the internal representation), or if the 
strictness analyser finds more information than is exported. For both cases an additional entry point is 
needed. This 'external_strict' entry does some conversions according to the extra strictness and continues 
with the internal strict entry. 
So, in general the layout of the code of a function is as follows: 

apply_entry: 
get arguments 
jump convert_code 

lazy_entry: 
get arguments 

convert code: 
convert strict args 
jump subroutine to strict_entry 
update node 
return 

external_strict_entry: 
convert strict args 

strict_entry: 

For some functions (e.g. many predefined functions like +I etc). special things are done. A call (in a strict 
context) to an addition would be unnecessary expensive. Instead, the addition code itself will be substituted 



www.manaraa.com

214 

directly. This is done by '.inline' directives that are inserted in the strict code part. Such inline code is only 
searched for in the case of SYSTEM modules. Note that the compiler itself knows nothing about such 
functions. In this way new basic functions can be added easily. Even functions for which complex code has 
to be inserted can be expanded inline in this way. 

4.3 Realisation on a concrete machine 

Basic Aspects 

There are two ways of implementing the ABC machine on sequential hardware: by means of an ABC code 
interpreter and by means of a code generator that compiles ABC-code into target machine code. The section 
gives a short description of the code generator for the MOTOROLA 680x0 processors. The interpreter is 
treated in the section on the current status of our research. 

Code generation for an M68k processor 

A straightforward way of generating concrete machine code is by means of macro expansion: each ABC 
instruction is considered as a macro application that is substituted by a sequence of M68k instructions. 
However, the quality of the generated M68k code is mainly determined by the way the registers of this 
processor are utilised. Since the ABC machine does not contain abstract registers it will be evident that the 
resulting code is far from optimal. Therefore the current ABC to M68k code generator uses a more intelligent 
way of generating code than just performing macro expansion. An ABC program is subdivided into basic 
blocks (i.e. sequences of ABC instructions that do not contain any label definitions or jump instructions). 
The code generator considers each basic block as a specification of how the initial state of the ABC machine 
(which is determined by the contents of the stacks and the graph store) at the start of the basic block has be 
converted into the final state at the end of the block. Now the tasks of the code generator becomes to 
implement such state transitions as efficient as possible, in all likelihood, by using registers. Note that, in 
contrast with the macro expansion mechanism, the relation between original ABC code and generated M68k 
code may be difficult to detect. 

Besides using registers for computing intermediate results inside the basic blocks registers are also used for 
parameter passing and returning results between basic blocks. 

As an example we give both the ABC code and M68k code generated for the factorial function that has been 
defined earlier: 

ABC-code: 

Fac.l: 

lab: 

eqi b +0 0 
jmp-true lab 
jmp-sFac.2 

pop b 1 
pushi +1 
rtn 

Fac.2: 
push_b 0 
deer 
jsr Fac.l 
push b 1 
update b 1 2 
update=b 0 1 
pop b 1 
mull 
rtn 

M68k-code: 

Fac.l: 
CMP ltO,DO 
BNE Fac.2 

MOVE ltl,DO 
RTS 

Fac.2: 
MOVE DO, (A4)+ 
SUB ltl,DO 
JSR Fac.l 

MUL - (A4) , DO 
RTS 

The previous example clearly shows that the main task of the Concurrent Clean to ABC-code compiler is to 
define some order of evaluation in which the B-stack is used if possible. It does not try to optimise the stack 
manipulations, for instance by avoiding redundant move operations. The last-mentioned kind of 
optimisations are done by the ABC to M68k code generator. 



www.manaraa.com

215 

5.0 Parallel Implementation 
Also the parallel implementation is based on the ABC machine. In this section we will present the parallel 
ABC machine, and its implementation aspects. 
The basic assumption we make for this machine is that we have a processor topology, where each processor 
has its own local memory. On each processor a number of sequential ABC machines can be running. For 
each new process, created by a {P} or {I} annotation, a new sequential ABC machine (a reducer) is started. 
Each reducer has its own stacks. Reducers on the same processor share the heap of that processor. 

The reservation/locking mechanism 

Because several reducers on one processor can share subgraphs some reservation mechanism is necessary. 
In the parallel ABC machine this is done as follows. 
A reducer evaluates a node by executing the code pointed to by the code pointer of that node. The first this 
code does is changing the code field of the node. The new code pointer points to a piece of code with which 
other reducers that will try to evaluate this node will be suspended: 

_reserve: set wait 0 
suspend 
rtn 

If a reducer executes this code sequence it puts itself (by the set_ wait instruction) into the waiting list of the 
node it wanted to reduce. Thereafter it suspends itself with the suspend instruction. 
After some time the node will be updated by the first reducer (note that nodes are updated only with head 
normal forms). Then also the reducers in the waiting list will be released. They all execute the return (rtn) 
instruction and continue as if they has reduced the node themselves. 
In first instance it seems as if a waiting list will enlarge the fixed size part of all nodes: each node must have 
enough room to store a pointer to such a list. However, a node with a waiting list is under reduction and no 
information of this node is needed anymore. Therefore, in a concrete implementation other fields of the node 
can be misused. 

Communication 

There are two moments at which a graph has to be shipped to another processor. First, with the {P} 
annotation a remote reducer has to be started. The graph this reducer has to evaluate has to be copied to the 
processor on which the reducer will be started. The second case occurs if a result of a reduction is needed on 
another processor. 
These forms of graph copying are basically the same. Copying a graph is not straightforward, since its 
structure has to be preserved. So, the copying algorithm has to take account of sharing and cycles. Also 
special action is needed if reserved nodes or nodes on which a reducer will be started (by an {I} or {P} 
annotation) risk to be copied. Reserved nodes can be recognised by the code pointer (or, alternatively, a flag 
might have been set). For nodes on which a reducer will be started a special node, called a Defer node, is 
inserted. In both cases simple copying of these nodes would mean duplication of work. Instead special 
nodes are created: channel nodes. Such a channel node is also created in the case of the {P} annotation: it 
points to the graph that will be reduced by the new remote reducer. 
So, a channel node can be seen as a node containing a pointer to a remote graph. It has a special code 
pointer: 

channel_code: 
set entry reserve 0 
send_request 0 
suspend 
rtn 

If such a node is evaluated a request will be sent to another processor (by the send_request instruction). 
The reducer sending the executing this code will suspend itself. As soon as the requested graph is in head 
normal form it will be sent. The channel node will be updated with this graph. Note that a request is sent 



www.manaraa.com

216 

only once: the code pointer is set to the reserve code, so other reducers will be suspended immediately. If a 
channel node is reduced, it is needed. Thus a request is sent only if the channel node is needed. Lastly we 
note that also channel nodes can be copied. The result will be a copy of the channel node. 

6.0 Results 

Current Status 

Currently, the Concurrent Clean to ABC compiler has been fully implemented on various machines. It 
includes all aspects mentioned earlier and it compiles quite quickly. On a SUN3/280 it compiles roughly 150 
lines of Concurrent Clean code per second. This is without strictness analysis. With strictness analysis 
compilation time approximately doubles. 

For the ABC machine both a simulator and several code generators exist. The simulator is used for testing 
both sequential and parallel versions of the ABC machine. For the parallel part the simulator has some global 
knowledge of a real run time system of a parallel machine. In particular, it includes a parallel garbage 
collector, and a stack reallocation mechanism. 
At this moment several versions of an ABC code to machine code compiler are available. The best one 
generates code for the MC68020 type of processor, and has been implemented both on the Macintoshll as 
well as on a SUN3. Also for the Transputer a code generator exists. The last one is a preliminary version of 
a code generator for a parallel machine. In the future this code generator will be extended with the same 
optimisation techniques as the other ones. 

Sequential 

We compared the implementation of our system with implementations of Lml, Hope and C on the SUN3 
(with a MC68020, 25Mhz processor). The Lml system is considered as a standard implementation of a lazy 
functional language (notice that we do not present figures for Miranda: most of the benchmarks below do not 
terminate within reasonable time). The Hope system is an example of a fast implementation of a strict 
functional language. The imperative languages are represented by C. It should be stated that, if possible, C 
has been used in an imperative way (i.e. using iteration instead of recursion). The following 
implementations of these languages where used: 

Lml The Chalmers Lazy ML compiler, version 0.99.2, (90/08/20} (Augustsson & Johnsson 
(1989)). 

Hope The Hope+ compiler, release 3.2.1, August 1989 (Burstall et al. (1980)). 

C The gnu C compiler, version 1.36 (which generally gives faster code than the standard 
C compiler). 

The following test programs where used: 

nfib the well known nfib program with argument 30. 

tak the Takeuchi function, called with (tak 2416 8). 

sieve a program which generates the first 10000 primes, using quite an optimal version of the 
sieve of Eratosthenes (outputs only the last one). 

queens counts all solutions for the (10) queens problem. 

reverse a program which reverses a list of 3000 elements 3000 times. 

twice four times the twice on the increment function. 

revtwice four times the twice of the reverse of a list of 30 elements. 

rnfib again the nfib program, but now working on real numbers, with argument 26. 

fastfourier the fast fourier algorithm, on an array of 8K complex numbers. In the Concurrent Clean 
program a complex number is defined as a strict tuple of two reals. 



www.manaraa.com

217 

Clean l.m1 Clean (u!) Hooe c Clean(-!) 
nfib 4.5 25 4.5 5.4 11 30 
tak 4.9 40 4.9 7.2 11 36 
sieve 8.1 25 6.8 9.1 4.5 12 

I aueens 28 62 14 16 4.1 45 
reverse 64 108 50 65 -- 51 
twice 1.7 SegFault 0.5 0.3 -- 1.7 
revtwice 27 OutOfHeao 9 12 -- 39 
rnfib 11 26 11 33 19 19 
fastfourier 34 -- 19 -- 9.0 --

Table 6.1 Performance Overview (All times in seconds cpu time) 

The following notes have to be made: 

The Lml versions of twice and revtwice resulted in run-time errors for these values. 

The reverse and twice programs make no sense in the C context. The sieve and fast fourier 
programs are iterative versions. The other ones are inherently recursive. 

Computing the fast fourier with the other functional languages is impossible: they all would run 
out of heap space. 

The times needed to generate an executable for the example programs vary widely. On an 
average, the Concurrent Clean implementation consumes about 3.5 seconds cpu time, the Lml 
system needs 6 seconds and the Hope system even 15 seconds. 

The frrst two columns of the table compare a standard compilation of Concurrent Clean programs with Lml. 
The default reduction strategy is lazy, but strictness information is added automatically by the strictness 
analyser. It is obvious that in all cases Concurrent Clean outruns Lml. 
The next two columns present a comparison between user annotated Clean and Hope. User annotations are 
inserted at some places that are not indicated by the strictness analyser. Some of these annotations can be 
found automatically by a clever analysis (but not by strictness analysis), as is the case for the sieve and the 
queens programs. The annotations for the fast fourier (in the type definition of the complex number) have to 
be added by the programmer. Again, Concurrent Clean produces in almost all the cases the fastest code 
although the differences are not that great anymore. The only case in which Hope is faster is the twice 
example. This is mainly because Hope uses a smart integer representation. This is indicated by the revtwice 
program, which also tests the implementation of higher order functions but avoids the use of integers. 
The recursive programs written in C appear to be slower than the ones written in Concurrent Clean. 
However, the iterative versions of the examples written in C are faster. But, in comparison with the past, the 
difference between execution times of on the one hand the functional languages and on the other hand the 
imperative languages has significantly decreased. 
The last two rows of the table are measurements for real arithmetic. In fact, they show that of the functional 
languages only Concurrent Clean supports reals seriously. 
Finally, the last column gives execution times for Concurrent Clean programs for which no annotations were 
added, neither automatically by the strictness analyser, nor by the programmer himself. From these figures 
we can conclude that in general strictness annotations increase the efficiency. The largest gain is achieved in 
programs which largely manipulate objects of basic types as is the case with tak and fast fourier. 

Parallel 

Partly funded by the ESPRIT Parallel Computer Action and the Dutch Neural Network Project, recently a 
beginning has been made with the implementation of Concurrent Clean on a Transputer system composed of 
64 Transputers. Currently this implementation supports only multi-processing on a single Transputer. 
Therefore, it is not yet possible to present performance figures of executions on a real parallel machine. 
However, with the PABC simulator a number of preliminary observations have been made. 



www.manaraa.com

218 

The main results concern the kinds of parallelism which are possible, and how the parallel annotations 
influence this. 
The process annotations are very powerful: it appears that many kinds of parallelism can be created. Also, it 
appears that the optimisations of the sequential code can be used in the parallel programs. The main problem 
in here is to assure that the grain size of the tasks is big enough. 
The main disadvantage is that often very many reducers are needed to achieve a certain behaviour (for 
instance, each channel requires a reducer serving it). Also, the process annotations have to be used very 
carefully. Sometimes they have to be combined with local strictness annotation to provide that processes are 
created at the moment they are wanted. Some programs tend to behave sequential or create too many 
reducers if annotation are used wrongly. 

7.0 Future work 
The efficiency of the sequential code can be further improved by adding a special so-called application 
depended "strictness" analysis to the system. Such an analysis tries to determine whether eager evaluation of 
arguments for a certain application is safe because for this specific application it is known that these 
arguments will be evaluated (inspite of the fact that the applied function is not known to be strict in these 
arguments for the general case). Program transformations will be investigated that yield larger basic blocks 
of ABC code such that an optimal use of the new code generator is made. 

We hope to demonstrate in the near future that real speed-ups can be achieved on a parallel architecture such 
as a Transputer system (Kesseler (1990)). At UEA already some promising results have been obtained with 
a previous version of our Clean system (McBurney & Sleep (1990)). 
Furthermore, the presented annotations will be extended in order to enable the fine tuning of load balancing 
on a parallel machine. 
On a higher level of abstraction new annotations are investigated to make parallel functional programming 
more user friendly (Eekelen & Plasmeijer (1990)). 

8.0 Conclusions 
The language Concurrent Clean is a lazy, higher-order functional graph rewriting language with as special 
feature that the sequential and parallel reduction order can be controlled in a general way. In Concurrent 
Clean arbitrary, dynamically changing process topologies can be specified. Parallel evaluation and 
communication can be controlled by the programmer. Parallel programs can also be executed on a sequential 
machine either by using simulated parallelism provided by the Concurrent Clean system or by ignoring the 
annotations giving rise to standard sequential evaluation. 

There are several optimisations incorporated in the compiler such that, after a reasonable compilation time, 
very efficient execution is obtained for the sequentially evaluated parts of the code. The differences in speed 
between functional programs written in Concurrent Clean and programs imperatively written in a language 
like C are now becoming acceptable. Most optimisations are still applicable when code is generated for 
parallel environments. 

The expressive power of the concurrency primitives available in Concurrent Clean make it possible that a 
new class of parallel algorithms can be expressed adequately in a functional language. 

Simulations have shown that the speed obtained for sequential machines can be inherited for parallel 
architectures such that efficient, parallel functional programming will be possible. 



www.manaraa.com

219 

References 
Augustsson L., Johnsson T. (1989), 'The Chalmers Lazy-ML Compiler', The Computer Journal, Vol. 32, No.2 1989. 
Barendregt, H.P., Eekelen, M.CJ.D. van, Glauen, J.R.W., Kennaway, J.R., Plasmeijer, M.J., Sleep, M.R., (1987a), 'Term 

Graph Reduction', Proceedings of Parallel Architectures and lAnguages Europe (PARLE), part II, Eindhoven, The 
Netherlands, LNCS Vol. 259, pp. 141-158, June 1987. 

Barendregt, H.P., Eekelen, M.CJ.D. van, Glauen, J.R.W., Kennaway, J.R., Plasmeijer, M.J., Sleep, M.R., (1987b). Towards 
an Intermediate Language based on Graph Rewriting. Proceedings of Parallel Architectures and Languages Europe (PARLE), 
part II, Eindhoven, The Netherlands. Springer Lee. NoteiComp. Sci. 259, 159-175. 

Barendregt, H.P., Eekelen, M.C.J.D. van, Plasmeijer, MJ., Hartel, P.H., Henzberger, L.O., Vree, W.G., (1987), 'The Dutch 
Parallel Reduction Machine Project', Intern. Conf. on Frontiers in Computing, Amsterdam, Dec. 1987. 

Barendregt, H.P., Eekelen, M.CJ.D. van, Glauen, J.R.W., Kennaway, J.R., Plasmeijer, M.J., Sleep, M.R. (1988). 'Towards 
an Intermediate Language based on Gmph Rewriting'. Revised version. Journal of Parallel Computing 9 with selected papers 
of the conference on Parallel Architectures and Languages Europe (PARLE), Eindhoven, The Netherlands. Nonh-Holland 
163-177. 

Brus, T., Eekelen, M.C.J.D. van, Leer, M. van, Plasmeijer, M.J. (1987). Clean - A Language for Functional Graph Rewriting. 
Proc. of the Third International Conference on Functional Progmmming Languages and Computer Architecture (FPCA '87), 
Portland, Oregon, USA, Springer Lee. Notes on Comp.Sci. 274, 364 - 384. 

Burstall, R.M., MacQueen, D.B., and Sanella, D.T. (1980). Hope: An Experimental Applicative Language. Proceedings of the 
1980 LISP Conference, 136- 143. 

Eekelen, M.C.J.D. van, (1988). Parallel Graph Rewriting, Some Contributions to its Theory, its Implementation and its 
Application. University of Nijmegen. Ph.D. Thesis. 

Eekelen, M.C.J.D. van, Plasmeijer, MJ., Smetsers, J.E.W., (1989b). Communicating Functional Processes. University of 
Nijmegen. Technical Repon 89-3. 

Eekelen M.C.J.D. van, Nllcker E.G.J.M.H., Plasmeijer MJ., Smetsers J.E.W., (1990). 'Concurrent Clean, version 0.6', 
Technical Repon 90-21, University of Nijmegen, December 1990. 

Eekelen, M.C.J.D. van, Plasmeijer, MJ., Smetsers, J.E.W., (1991). 'Parallel Graph Rewriting on Loosely Coupled Machine 
Architectures' proceedings of the workshop on CTRS'90. Montreal Canada .. To appear in 1991. 

Eekelen, M.CJ.D. van, Plasmeijer, M.J., (1990). 'Concurrent Functional Programming'. Proceedings of the conference on 
Unix & Parallelism, NLUUG, may 1990, pp 75-98. 

Glauert, J.R.W., Kennawa)'. J.R., Sleep, M.R., (1987), 'DACTL: A Computational Model and Compiler Target Language 
Based on Gmph Reducuon', ICL Technical Journal, May 1987. 

Groningen J. van. (1990). 'Implementing the ABC-machine on M680x0 based architectures'. Master Thesis, University of 
Nijmegen, November 1990. 

Johnsson Th. (1987). 'Compiling Lazy Functional Progmmming languages'. Dissertation at Chalmers University, G6tenborg, 
Sweden. ISBN 91-7032-280-5. 

Kesseler M., (1990}, 'Concurrent Clean on Transputers', Master Thesis, University of Nijmegen, November 1990. 
Koopman, P.W.M., N!lcker, E.G.J.M.H. (1988), 'Compiling functional languages to Term Gmph Rewriting Systems'. 

Technical Repon 88 - 1, University of Nijmegen. 
Koopman P.W.M., Eekelen M.CJ.D. van, Nllcker E.GJ.M.H., Smetsers S., Plasmeijer M.J. (1990). 'The ABC-machine: A 

Sequential Stack-based Abstract Machine For Gmph Rewriting'. Technical Repon, University of Nijmegen. 
McBurney, D, Sleep, R. (1990), 'Concurrent Clean on Zapp', Proceedings of the Second International Workshop on 

Implementations of Functional Languages on Distributed Architectures, University ofNijmegen, November 1990. 
Milner, R.A. (1978). Theory of Type Polymorphism in Progmmming. Journal of Computer and System Sciences, Vol. 17, no. 

3, 348-375. 
Mycroft, A. (1984). Polymorphic type schemes and recursive definitions. Proc. of the 6th lnL Conf. on Programming, Springer 

Lee. Notes Comp. Sci. 167,217-228. 
Nllcker E.GJ.M.H., (1989). The PABC Simulator, v0.5. Implementation Manual'. University ofNijmegen, Technical Repon 

89-19. 
N6cker E.G.J.M.H. (1990). 'Strictness Analysis based on Abstmct Reduction', in Proceedings of the Second International 

Workshop on Implementation of Functional Languages on Parallel Architectures, pp. 297-321, Technical Report no. 90-16, 
October 1990, University of Nijmegen. 

Nllcker E.GJ.M.H., Smetsers J.E.W., (1990). 'Partially Strict Data Types', Proceedings of the Second International Workshop 
on Implementations of Functional Languages on Distributed Architectures, University ofNijmegen, November 1990. 

Peyton Jones S.L, Salkild J. (1989). 'The Spineless Tagless G-machine'. Proceedings of the Conference on Functional 
Progmmming Languages and Computer Architectures, Addison Wesley, pp 184-201. 

Plasmeijer, MJ., Eekelen, M.C.J.D. van (1989). Functional Progmmming and Parallel Graph Rewriting. Lecture notes, 
University of Nijmegen, to appear at Addison Wesley 1991. 

Smetsers J.E.W., (1989). 'Compiling Clean to Abstract ABC-Machine Code'. University ofNijmegen, Technical Repon 89-20. 
Smetsers, J.E.W., Eekelen, M.C.J.D. van, Plasmeijer, M.J., (1991). Operational semantics of Concurrent Clean. University of 

Nijmegen. Technical Repon: in preparation. · 
Turner D.A. (1985), 'Mimnda: A non-strict functional language with polymorphic types'. Proc. of the conference on Functional 

Programming Languages and Computer Architecture, Springer Lee. Notes Camp. Sci. 201, 1 - 16. 



www.manaraa.com

THE SCRIPTIC PROGRAMMING LANGUAGE 

INTRODUCTION 

Andre van Delft 
Delftware Technology B.V., Gentsestraat 165, 

2587 HP Den Haag, The Netherlands. 
E-mail: delft@fwi.uva.nl 

Over the last years a vast number of parallel languages have been developed. A large 
part of these are not available on 'normal' computers, or they do not cooperate easily 
with other languages. This paper describes Scriptic, a parallel language that extends 
widely used sequential languages (C, C++). Scriptic offers great expressiveness by 
incorporating many concepts from process theory dealing with concurrency and 
communication. Its availability on normal computers allows many software developers 
to experiment with parallel programming. 

Basicly, Scriptic extends the C language with powerful and concise alternatives for 
the sequence operator: instead of the semicolon you can write for instance a comma for 
a parallel composition and a bar for choice. Scriptic has already been applied 
successfully in areas such as simulations, language parsers and graphical user interfaces. 

This article is intended as a brief introduction to Scriptic programming. It will 
discuss some theory, explain most Scriptic operators and language features, and then 
illustrate their use through some real-world examples. Although Scriptic has also been 
designed as an extension to Pascal and Modula-2, these versions will not be discussed in 
this paper. Basic knowledge of C is assumed. 

THE THEORY 

The main flow structure in most programming languages is the sequence. It is often 
represented by a semicolon such as in Pascal and C. In the last decade a family of 
process theories has emerged: CSP, CCS, Process Algebra [2, 3, 4, 6, 7]. These suggest 
that other kinds of flow, such as choice and parallelism, can be covered in a comparable 
way. So if we already have a semicolon for sequence, then why not add a bar for choice, 
a comma for parallelism, and others? 

Scriptic was founded on Process Algebra (PA). This theory is about process 
expressions and other representations of processes, which are well comparable to 
programs. In PA atomic actions are the building bricks (rather than assignments etc.) 
and constructs such as sequence and choice act as a kind of glue. PA basically defines 
axioms for sequence and (exclusive) choice, e.g., 

xly = ylx 



www.manaraa.com

221 

This axiom states that choice is symmetric: the order of operands is irrelevant. Other 
basic axioms state laws of associativity and distribution for sequence and choice. 
Sequence and choice are somewhat comparable with mathematical multiplication and 
addition, and with and and or in logic. Additional axioms in PA define constructs as 
parallelism in terms of sequence and choice. The atomic actions in parallel processes do 
not happen synchronously, but in an interleaved mode. They cannot be preempted by 
other atomic actions. 

PA also defines axioms for two special processes: deadlock and the empty process (or 
immediate success). These correspond with the mathematical zero and one, or with the 
truth values false and true in Boolean Algebra (BA), a mathematical treatment of logic 
to which PA is closely related. 

Currently research is done on combining BA and PA into a single theory dealing 
both with actions and truth values, or booleans. It seems that deadlock and the empty 
process are equal to the boolean values false and true. We see mixtures of actions and 
truth values already in conventional programming languages, where boolean expressions 
that are guards in if-statements determine which actions will be executed. The 
combination of BA and PA appears more directly in Scriptic. It suggests amongst others 
two kinds of parallelism: and-parallelism and or-parallelism. These are pure process 
generalisations of and and or for truth values. Although born as theoretical piece of 
work, or-parallelism has shown of significant practical use in Scriptic programs. 

PRIMARY LANGUAGE CONSTRUCTS 

Scriptic gets Process Algebra to work by letting fragments of C code placed between 
braces playing the role of atomic actions. (Unlike the situation in C, code fragments need 
not to end with a semicolon before the right-hand brace.). With symbols as the 
semicolon for sequence and the bar for exclusive choice you can make script expressions 
which have much in common with statement sequences in C. There is a function-like 
refinement construct named script which can have parameters and local variables. 
Unlike in C function calls, empty parameter lists in script calls may be omitted. One can 
specify groups of scripts in a scripts section, as in 

scripts 
Hello 
Goodbye 
main 

{printf ("Hello world!")) 
{printf ("Goodbye!")} 
Hello; Goodbye 

In later examples we will leave out the keyword scripts. Various operators are 
available for Script expressions, as shown by table 1 in their priority order. Several 
operators denote parallelism: 

• the comma for normal parallelism or each-parallelism: each operand should succeed 
in order to let this parallel composition succeed. 

• the plus for or-parallelism: as soon as one operand terminates successfully the others 
are discarded. 

• the ampersand for and-parallelism: as soon as one operand enters a deadlock state the 
others are discarded. 



www.manaraa.com

222 

• The slash denotes breaking; operands will be discarded as soon as an operand more to 
the right starts to execute. 

With the operators you can make many variations of the previous program, such as: 

main = Hello, (Goodbye I Hello) 

This script will print "Hello" twice, or "Hello" and "Goodbye" in either sequence. 
When you specify such a non-deterministic program you do not know what will happen. 
The Scriptic implementation is then free to choose; its choice does not need to be 
random. It is better to let alternatives in choices start with input actions so that input will 
drive the program, or with guards so that you get a kind of if-statements. 

operator description 
I exclusive choice 
I breaking: left terminates when right starts 

"and-then": normal sequence 
+ or-parallelism: terminate on any success 
& and-parallelism: terminate on any deadlock 

each-parallelism: each operand should succeed 

Table 1: primary script operators 

PARAMETERS 

Like C functions, scripts can have parameters. The parallel constructs in Scriptic 
suggest a more powerful parameter mechanism. Therefore Scriptic offers three kinds of 
parameter:s: 

• Input parameters, which are the same as in C functions (including passing references 
to variables). Example: 

PrintChar ('a') 

• Output parameters: these behave like input parameters but upon success of the script 
the formal value is copied onto the actual variable. Output parameters are suffixed by 
a question mark, as in: 

Read(c?) 

• forcing parameters. Instead of a variable as an actual output parameter, you can 
specify a forcing value, which is suffixed by an exclamation mark. Thus 

Read( 'x'!) 

will only pass any success onwards if the formal parameter equals the value 'x'. 

The definition header of Read shows that its parameter can both be used as output and 
forcing: 

Read (char c?!) 



www.manaraa.com

223 

PROCESS COMMUNICATION 

Most parallel languages offer a means to let parallel processes communicate. In some 
of these, communication just involves data transfer. In Scriptic parallel processes 
communicate through shared scripts. There are two ways to specify this, one inspired by 
Process Algebra, and one inspired by CSP: 

1. With a pair of communicating scripts, one presumable representing a sender and the 
other a receiver. An example of a definition of two scripts that can communicate: 

Send,Receive = {printf("We have corrununication!")} 

When send and Receive have been activated in parallel (as in main = Send, Receive) 

then this may lead to printing the message (may, because the program may have 
alternatives, as in main = send, Receive I Read ( c? l ). Send and Receive may also 
communicate with other actions if you specify so, like 

Send,Receive1 = {printf("Another corrununication!")} 

Like normal scripts, communicating partners may have parameters. They may also 
have array indexes, e.g., 

S[10 i] (int j),R[)= {printf("S[%d) (%d),R[)",i,j)} 

2. As a channel. This is handy when communication mainly involves transferring data 
from the sender to the receiver. Sending and receiving over a channel involves arrows 
denoting the direction of the communication. You specify a channel for instance as: 

aChanne1<-- > (int i?!) = {printf ( "int passed!")} 

Such a communication may happen if two parallel processes have activated sending 
and receiving over this channel, as in 

P1 = ··-·-·· a Channel< · ( 1 ) 
P2 = ··-·-·· aChannel- > ( i? l 
P3 = ··-·-·· aChannel- > ( 1! l 
main= P1,P2,P3 

The kinds of communication discussed here take place within a program. Scriptic also 
supports communication with external entities, which may be programs running on 
other processors, or devices such as the keyboard. One can for instance declare a semi 
channel: a channel which is declared with only a single arrow: 

Key-> (char c?!) = L--·-··try to read a character.·-·-··} 

A call as Key-> ( c? l does not need a matching call like Key<- ( 'x' l; instead the body 
of the declaration of Key will contain code for getting a character from the keyboard 
buffer. In general, Scriptic's execution mechanism makes semi channels faster than 
normal scripts for communication with external devices. 



www.manaraa.com

224 

CODE FRAGMENTS 

Code fragments have several information attached to them, so that program execution 
can be directed. It is often not required to address these attributes explicitely, but some 
will be used more frequently in particular application areas (e.g., simulations): 

o priority - the same notion as in operating systems: only code fragments with the 
highest priority level are allowed to run 

o preference - comparable to priority, but it only determines the evaluation order of 
fragments. 

o duration - a simulated number of time units, mainly for use in simulations 

o eventtype - the type of event that the code fragment specifies. This mechanism 
cooperates with the operating system or windowing managers for input handling etc. 
For instance, you may define that eventtype l corresponds to keyboard input. Then 
before a code fragment with eventtype 1 is executed, the Scriptic events management 
module will check whether a key has been pressed. 

o success- a variable which normally is 1. If the code fragment sets success to Q the 
fragment fails: Alternative fragments may then be tried out, possibly with lower 
priorities. Often success will depend on the value of a boolean expression, as in: 

{success = booleanValue} and {someStatements; success = booleanValue} 

In a shorthand notation for setting success you may start the fragment with a question 
mark, as in: 

{? booleanValue} and{? someStatements, booleanValue} 
(the comma here is a C operator, chaining multiple expressions!) 

return returns from the code fragment- not from the script it occurs in. It is possible 
to chain code fragments with a question mark; the chaining point returns when 
success equals 0. So 

{cCode; if (!successlreturn; moreCode} isequalto {cCode}? {moreCode} 

ACTIVATION AND DEACTIVATION 

The attributes priority, preference and event type have default values 0. If these 
should be different then they need to be set before a code fragment is executed. This is 
possible in special activation code fragments, which are attached to expressions by means 
of a less sign. (For a summary of secundary script operators, see table 2.) The attributes 
are also valid for parts of expressions, and they are inherited downwards upon 
activation. So in 



www.manaraa.com

225 

{priority=3;eventtype=l) < ( {priority++ ) < A I {eventtype=O) <B) 

A will get priority 4 and eventtype 1, whereas B will get priority 3 and eventtype 0. 

A deactivation code fragment follows an expression and a greater sign. It is executed 
upon deactivation of the expression. There is some correspondence of the less and 
greater signs that redirect input and output in DOS and UNIX. You also have the notion 
of activation and deactivation in C: think of function calls. When a function call begins 
parameters are evaluated which may involve the execution of other pieces of code. On 
deactivation the function is removed from the call stack. 

CONDITIONS 

Scriptic has if and switch statements like inC, with a few minor differences so that 
they can be used in parallel and alternative contexts: there is no semicolon between the 
if-part and the else-part; in the switch statement "falling through" between different 
(non-empty) cases is prohibited. 

Guards or precondWons offer lower level control in Scriptic. A guard is a code 
fragment enclosed in braces and followed by a colon. When such a guard fails it blocks 
the code right to it, creating a deadlock situation which can only be bypassed by 
executing alternatives. For instance: 

{? ell: el I {? c2): e2 

offers a choice between el and e2; each alternative may or may not be blocked. 
Beware: the notion of blocking is absent in if statements in Scriptic and C (these have a 
notion of bypassing). Only in Pascal compilers there is a notion of blocking in CASE 
statements (they often gave the run-time error messages when no appropriate case tag 
was there). 

There is a way of saying with guards Scrip tic that you bypass e 1 if c 1 is not met: 
enclose a set of guarded alternatives in brackets to obtain a guarded selection. The 
following phrases are equivalent: 

if (cl) el 
[{?cl):el) 

A minus specifies an explicit "else" clause, so three Scriptic equivalent for if-else 
statements are: 

if (cl) el else e2 
[(? cl}:el I {?!cl):e2) 
[{?cl):ell :e2) 

An empty pair of brackets [ J denotes the neutral element it means really nothing. In 
sequential and parallel context it does not block. It is the hidden "else" clause in a 
guarded selection without explicite "else". As a kind of syntactic sugar, Scriptic offers 
also an if-else construct: if (cl > el else e2. Note that semicolons are absent. 



www.manaraa.com

226 

Postconditions are code fragments attached to script expressions with an exclamation 
mark. They are executed on success of their operands. When they fail they create a 
deadlock, as in: 

SomeScript ! (.._._ .. c code that leaves success nonzero .. _. ___ ) 

ITERATIONS 

Most programs contain iterations, and most programming languages offer special 
iteration constructs. Let's first see what basic things could be relevant to specify in the 
context of iterations, and how they are handled in languages as C: 

• The simple fact that a part of the program is an iteration. In C you see this by the 
keywords do,while, for. 

• The type of the iteration: is it sequential, alternative (i.e. does it denote a number of 
choices of the same type), parallel (does it denote a number of processes of the same 
type). In C all loop constructs are sequential, but that is not necessary in a language 
which treates sequence as just one basic construct, among others such as choice and 
parallelism. 

• The exit points, or the place(s) where the iteration can halt. For each exit point: 
where does it occur in the iteration, is it mandatory or optional, and on what con
dition is it selected. An exit from a C for-loop is possible at any position with the 
keyword break, although the for-construct strongly suggests a conditional exit at the 
entrance of the loop. Moreover, all exit points in C loops are mandatory. if an exit 
condition is reached and it yields true, then the iteration definitely terminates. 
Compiler generator languages such as Yacc support optional exit points, where loop 
continuation depends on the context instead of explicit conditions. 

• The structural differences between subsequent iteration passes. Often the first 
iteration pass is different from later passes: typically in many loops the first pass 
initializes control variables which are changed in subsequent passes. The C for
construct offers a convenient means to specify the differences between the first pass 
and subsequent passes. 

• The indexes of the iteration passes, which are in a sense like the indexes of array 
elements. Often variables are defined just to act as loop counters. 

Now, how does Scriptic handle these issues? To begin with, Scriptic offers while and 
for, comparable to C. The differences are that while and for may occur as an operand 
anywhere in an expression, and the iterations need not be sequential. The type of the 
iteration appears as an operator next to the while or for operand. Note that there is no 
need for a do-while construct. 

But to make more general iterations, Scripitic has a general iteration symbol: the pair 
of periods: ... Any expression with a primary operator (semicolon, comma, bar etc.) 
is an iteration when at least one of its operands contains the iteration symbol. But the 



www.manaraa.com

227 

pair of periods does more than that: it can also specify an exit point for the iteration. 
Normally this is a mandatory exit point, as in these reusable iterators: 

UNTIL (int t) if( t) 
WHILE (int t) = if(!t) .. 
EXIT 

Often you will need an optional exit point: enclose the pair of periods with brackets. 
For instance, 

Hellos= [ .. ]; Hello 

prints zero or more times "Hello world!". Omitting the brackets would result in an 
immediate exit point, so Hellos would do nothing. It makes sense to define an iteration 
script such as SOME = [ .. ].One or more times "Hello world 1" would then be 
Hello; SOME. There may be more exit points than one in the loop. Exit points may 
occur anywhere. For instance, consider the following typical iteration: 

Prompt (printf("'h' for Hello; 'x' to exit\n")} 
main = (Prompt; SOME; Key->('h' !) ; Hello); 

Key->('x' !) ; Goodbye 

This prompts the operating instruction; if the user answers by pressing 'h' the Hello 
message appears, followed by the operating instruction, and so pn. The loop ends when 
the user answers with 'x' instead of 'h'. Other keys are not accepted by this program. 

It now becomes clear how Scriptic simplifies programming tasks. Consider the way 
you had to achieve interactive, or event-driven, programs with conventional languages. 
Many of these, especially the ones with graphical user interfaces, contain a main event 
loop. This is a section that repeatedly tests what kind of event has happened, such as a 
user input action, and then reacts to this event. The reaction may set a variable for 
quitting the loop. You see this typical frame-work in the following C-version of the 
previous Scriptic example: 

void main() 
{ 

int done=O; 
do {prompt(); 

switch (getch()) 
case 'x': done=l; break; 
case 'h': hello(); break; 

} } 
while (!done); 
goodbye(); 

The pair of periods can also occur as an operator with high priority, instead of a kind 
of operand denoting exit. It then separates a number of script expressions as a pass 
selector, such as in 

FORi(int i?,int b,int el = {i=b} .• {i++}< if(i>e) .. 

This is quite a complicated script, but you can place it in a library and use it without 
thinking of the internals. The idea is that FORi changes upon activation a loop counter i, 
which is also an output parameter. This change depends on the pass in which FORi is 
called: the first time i is set to the begin value b, and in subsequent passes i is 



www.manaraa.com

228 

incremented. The loop terminates when i exceeds the end value e. The pair of periods 
occurs here both as an operator (pass selector) and as an operand (exit point)! 

The pass selector may also be used in a script MANY to make an expression an iteration 
without providing an exit point (as in eternal loops). The first pass the script should do 
nothing ( = [ J ), as well as in the second pass. The definition of MANY looks like SOME, but 
that is just a coincidence: MANY = [ J •• [ J 

In iterations the variable pass is often useful; pass denotes the pass number of the 
nearest sequence, choice, or parallel construct construct that the code fragment is 
defined in. The first pass value is 0, like array indexes in C. If the sequence, choice etc. 
is an iteration, the code fragments that are activated in subsequent passes get increasing 
pass values. For example, you may specify a script TIMES and a script for printing '0' up 
to '9' as: 

TIMES (int n) = if(pass>=n) .. 
Print0To9 =TIMES(lO); {printf ("the pass is: %d\n",pass)) 

You can make a similar expression that accepts keys '0' up to '9', as an example of an 
alternative iteration: 

aKeyin0To9 = TIMES(10) I Key·>('O'+(int)pass !) 

The foregoing contains the raw material to make your own iterators. This is among 
the hardest things in Scriptic. Beginners can use a library with the following scripts: 
SOME,MANY,EXIT,WHILE,UNTIL,FOR,TIMES. 

operator description 
precondition 
postcondition 

? code chaining 
< activation 
> deactivation 

pass selection 

Table 2: Secundary script operators 

EXAMPLE 1: THE GAME OF LIFE 

For the first Scriptic example application we look at the interactive part of the game 
of Life by Conway. In this game a human player defines which cells of a playboard are 
alive or dead, so that an initial pattern of living cells appears on a computer screen. The 
pattern on the board starts to change according to a certain algorithm, as soon as the 
player commands so. A keyboard is used for command input; the script Key 
accomplishes this. 

How to program this in Scriptic? The main program will first perform a number of 
initializations. Then several processes should become active in parallel: for changing the 
state of the cells, moving the cursor, controlling the speed, getting help, a "clock that 
makes the real time pass at the right speed", and a process that tests whether execution 
has to terminate. This behavior is reflected in the script main: 



www.manaraa.com

229 

main Init;Changes+Moves+SpeedAdjs+Helps+Clock+Exit 
Init { ..•.•.. initialization statements ..•..... ) 

Changing the state of the cells can be done by the user (toggling a cell state where the 
cursor resides) or clearing the entire screen, or by the program, which generates new 
board patterns according to the Life algorithm in the function Generation. Starting and 
stopping generations by the program is controlled by the scripts Start and stop, which 
react on the enter key or the return key. Between subsequent generations a delay will 
occur according to the current speed: the script DELAY is a sequential loop of an action 
which as a duration equal to 1. It will end when the number of passes has reached the 
value TIME (Speed) (which happens to be a macro for 256 » Speed). It also has an 
optional exit point, so that the user can escape from it early by triggering stop. With 
the plus as parallel operator in changes we can easily accomplish that generations end as 
soon as the user toggles a cell or clears the screen. 

DELAY 

Changes 
Generations 
Clear 
Toggle 
Start 
Stop 

=SOME; {duration=l); 
while (pass<TIME(Speed)) 

= MANY; Clear+Toggle+Generations 
Start; (SOME;{Generation()};DELAY) ;Stop 
Key->( •c• !) ! {clearboard()} 
Key·> ( • • ! l ! {togglecell ( l} 
Key- > ( • \ r • ! ) I Key· > ( • \n • ! ) 
Key·> ( • \r • ! l I Key·> ( • \n • ! l 

The exclamation marks in Clear and Toggle could well have been semicolons, but 
they are more efficient (the actions clearboard ( l and togglecell < l will now occur in 
the same execution pass as the acceptance of the key). The three other main processes, 
Moves, SpeedAdj s. and Helps, are sequential iterations of simple tasks: accepting a key 
from the keyboard and then reacting to it. You find them in listing 1. 

The Clock process couples the "Scriptic time" with the "real time": each duration 
unit will correspond with SLEEP microseconds. Therefore the clock ticks actions with 
duration equal to 1; after each tick a "real time" delay occurs: 

Clock= MANY; {duration=l} !{delay(SLEEP)} 
Exit ·= Key·> ('!'!) ! {leave ("Exit program")} 

Exit is unlike the other processes not an eternal MANY loop, so that the program will 
display a message and terminate when the key 'x' has been pressed. 

EXAMPLE 2: A GRAPHICAL USER INTERFACE 

Up to now, programming user interfaces a Ia Macintosh has been considered hard: 
mostly you have to program a complicated main event loop which handles all kinds of 
user input (menu commands, dragging a window, key presses etc.). With Scriptic these 
tasks are easily handled by processes. As an example, consider the classic example 
program for Macintosh computers [1]: a simple text editor within a window, offering 
basic windowing functions and editing functions. 



www.manaraa.com

230 

Figure 1: The classic Macintosh example program 

In Scriptic you can specify handlers for several kinds of tasks: 

• window actions: dragging, growing, zooming, closing, updating, activating, deactiva
ting, clicking the mouse so that the window becomes active, clicking so that the text 
cursor is moved. 

• menu commands; there are three menus: Apple (with desk accessoiries), File and Edit. 
• passing key input to the text editor. 
• updating the cursor shape. 
• handling messages from the operating system. 
• letting the text cursor blink when idle. 
• termination. 

Scriptic enables a programming style that makes it easy to grow and maintain the 
program, especially as compared to a main event loop: 

mainscript WindowHandler + MenuHandler + KeyHandler 
+ CursorHandler+ OSHandler + IdleHandler 
+ Exit 

Exit (? DoneFlag} 

WindowHandler MANY; WindowAction 

WindowAction 

MenuHandler 

Drag I Zoomln 
Grow I ZoomOut 
ClickTECursor 

short Menu,Item; 

GoAway Activate 
Update DeActivate 
ClickWindow 

MANY; AcceptCrnd(Menu?,Item?) ! (AdjustMenus()}; 
HandleCrnd(Menu ,Item) ! (HiliteMenu(O)} 

HandleCrnd(short m,short i) = switch(m) ( 
case mApple: 
case mFile 
case mEdit : 

AppleCommand(i) 
FileCommand ( i) 
EditCommand (i)) 



www.manaraa.com

AppleCommand(short il 

FileCommand (short i) 

EditCommand (short il 

KeyHandler 

231 

short daRefNum; Str255 daNm; 
if(i==iAbout}l {(void) Alert(rAboutAlert, nill} 
else (Getitem(GetMHandle(mApplel ,i,daNml; 

switch(il 
case iNew 
case iClose: 
case iQuit : 

daRefNum = OpenDeskAcc(daNmll 

(DoNew()} 
(DoCloseWindow(FrontWindow() )} 
(DoneFlag=Terminate()} ) 

TEHandle te; WindowPtr w; 
if ( !SystemEdit (Ill l 

(te=((DocumentPeekl (w=FrontWindow()) l ·>docTE}: 
switch (i) ( 
case iUndo : (DoUndo (tel} 
case iCut (DoCut (tel} 
case iCopy : (DoCopy (tel} 
case iPaste : (DoPaste(te)} 
case iClear: (DoClear(te)}) 
! (AdjustScrollbars(w, 0); AdjustTE(wl} 

char c; MANY;Key ·> (c?); (TEKey (c)} 

The complete set of scripts is shown in listing 2. 

EXAMPLE 3: A QUEUE SIMULATION 

Scriptic is ideally suited for simulations such as discrete event systems and 
communication protocols. Consider the following example: For a number of days cus
tomers arrive at a shop during opening hours according to a Poisson distribution. Then 
they enter a First-In-First-Out queue for service; a fixed number of servers are avail
able. After service the customers leave the shop. 

Figure 2: A simple queueing system 

Apart from several scripts and C functions for reporting and iterations, a Scriptic 
program for this case is: 



www.manaraa.com

scripts 

ServeCust(int s) 
GetServed(int c) 

Customer(int c) 

Day (int i) 
/*9 to 5*/ 

Days (int n) 

232 

{duration=RNDNEGEXP(30); 
printf("%s-%s customer %3u is served by %2u\n", 

time2str(SimTime), 
time2str(SimTime+durationl ,c,s)} 

int t; {t=SimTime }< Enter(c); GetServed(c); 
{qtime+=SimTime-t}< Leave(c) 

(HOURS (9); POISSON (),Customer)) 
+ (HOURS(l7); TheShopCloses) ) 

& HOURS(24); TheDayEnds(i) 

TIMES(n); Day((int)pass) 

Info MANY; Key->('?'!); {reports()} 
Exit Key-> (' ! '!) ; {printf ( "\nExit \n")} 
main InitShopSim; WORKERS(10,ServeCustl+Days(4)+Info+Exit 

The script s e rveCus t will communicate with Gets e rved; this will take a negative 
exponentially distributed amount of time. RNDNEGEXP and service are defined in the 
program as a random function and a tracing function. POISSON and WORKERS are defined 
elsewhere as reuasable scripts: POIssoN "launches" processes with random time inter
vals; it applies the special bracket pair < * ......... * > that marks an expression to be 
launched. woRKERs generates a number of workers; each workers is willing to perform its 
task for an unlimited number of times. 

Enter, Leave. TheshopCloses. DayEnds will print messages; Infos prints 
information each time the '?' key is pressed. The plus in main is an or-parallel operator: 
woRKERs and Info s never want to stop. The program terminates normally after 4 
simulated days. Abrupt tennination takes place on pressing '! '. 

Another plus is present in Day: its first operands is a Poisson generator that starts at 9 
a.m .. The other operand is ready at 5 p.m., so that the Poisson generator will then be 
terminated. At 12 p.m. the day will end, due to the and-parallel process HOURS ( 24 l ; 
TheDayEnds ( i). 

SCRIPTIC-C++ 

Scriptic has recently been combined with the C++ language. That is: scripts will 
become available as object features, next to variables and functions, thus bringing objects 
to life. The first results indicate that the expressiveness of both Scriptic and C++ is 
largely increased, without an extra performance penalty. In particular, Scriptic-C++ is 
elegant in simulations. 

In the shop simulation example, customers may be modeled as C++ objects, with a 
Live script that tells what they will do. The customer class also has a static script 
Poisson for launching customers (static items belong to the class as a whole rather than 
to a single object): 



www.manaraa.com

233 

scripts 

ServeCust(int s), 
Getserved(int c) {duration=RNDNEGEXP(20); Service(s,c,duration)} 

class Customer 
int i; 
static int n; II #customers generated 

Customer(void) {i=n++;} II constructor 

scripts 
EnterShop = {printf("%s enters: %d \n",time2str(SimTime), i)} 
LeaveShop = {printf("%s leaves: %d \n",time2str(SimTime), i)} 

Live= EnterShop; Getserved(i); LeaveShop; {delete this} 

static scripts 
Poisson(int t) = 

} ; 

scripts 

for(;;); {duration=RNDNEGEXP(t)}; 
<*{new Customer} ->Live*> 

Generator = Customer::Poisson(3) 
+ {duration=8*hours}; 
CloseShop ( ) 

II etc. 

Having a script Poisson in the class Custome~ has the disadvantage of not being 
generic: it can only launch Live scripts of new customers. Because of its staticness and 
C++ inheritance rules, Poisson is not available in subclasses. As an alternatve, it would 
be possible to apply the earlier POISSON script that accepted as a parameter the script to 
be launched. Then, we again have to specify in the second parameter that a new cus
tomer process is to be launched, which now also involves allocating a new customer 
object. 

We can use a so-called script block, another new feature, comparable to anonymous 
functions in Lisp and to code blocks in Smalltalk: enclose a script expression between 
rectangular brackets, let it optionally proceed by a parameter list, and separate these 
parts with a semicolon, as in [: {new customer}- >Live) . We can specifiy this block 
as a parameter to POissoN: 

Generator= POISSON(3, [: {new Customer} ->Live)) 
+ {duration=8*hours}; 
CloseShop ( ) 

THE IMPLEMENTATION 

Scriptic is currently available on PC-MS/DOS, Macintosh and Sun computers [5]. The 
programmer's package comes with a preprocessor (=-llOk), a run-time system (=-40k) 
and an events management module (I ... 15k, depending on the operating system or 
windowing system). The latter two must be linked with each Scriptic application. 



www.manaraa.com

234 

Execution speed: in the Life example Scriptic overhead is hardly visible. When 
generating new patterns the life algorithm and the screen output functions are by far the 
most time consuming. When running the Macintosh example on a Macintosh-plus the 
user turns out to be the slowest process involved; he does not notice any slower 
responses by the program due to Scriptic. In the queue example, simulating 1000 
customers served by 10 servers takes 4 seconds on a Sun Sparcstation 1. 

The preprocessor translates Scriptic-C into C, generating two functions for each 
script. This approach has enabled: 

• importing and exporting scripts between modules 
• passing script names as parameters 
• script blocks 
• scripts in C++ classes 

Scriptic has been designed mainly with programmer efficiency in mind. Parallelism 
in Scriptic means parallel programming, not parallel processing. The language may 
already be used on distributed systems, but each processor should then have a private 
Scriptic program running, and the programmer should take care of communication 
between the processors; the communication features of Scriptic are valid within the 
domain of a single processor. 

At the moment of writing we are investigating whether Scriptic can give more 
support for multi-processor architectures. Some of the language features, such as the 
allowance of variables that appear globally, may be an obstacle for a parallel 
implementation. Probably we may deal with these issues by making use of an existing 
parallel extension of C that runs on multi processor architectures, with Scriptic as a 
more programmer-friendly shell. 

NOTES 

[1] Apple 1985. Inside Macintosh, Volume I, Addison-Wesley, Reading, 
Massachusetts 

[2] Baeten, J.C.M., Weijland, W.P., Process Algebra, Cambridge University Press, 
1990 

[3] Bergstra J.A.,Klop J.W. 1984. "Process algebra for synchronous communication." 
Information & Control60 {l/3): 77-121. 

[4] Bergstra J.A.,Klop J.W. 1986. "Algebra of communicating processes." In 
Proceedings CWI Symposium on Mathematics&Computer Science (de Bakker 
J.W., Hazewinkel M., Lenstra J.K., eds) North-Holland, 61-94. 

[5] Delftware Technology BV, Scriptic Programmer's Manual, Den Haag, March 
1991. 

[6] C.A.R. Hoare, Communicating Sequential Processes, Prentice Ha111985 

[7] Milner,R., A Calculus of Communicating Systems, Lecture Notes in Computer 
Science, Springer, 1980 



www.manaraa.com

235 

LISTING 1: THE GAME OF LIFE 

#include "unixem.h" // Scriptic Events Management module 
II exports GetChar and iteration scripts 

#include "lifei.h" // functions for screen output and life algorithm 
#define SLEEP 25 // #microseconds corresponding with duration==l 
#define delay(t) usleep(t*lOOO) 
#define TIME(s) (256>>s) 

short Speed=9; 
char *Msg, *helptext[] = { 

Scriptic(r) Demonstration: Conway's Game of Life", 

Copyright (c) 1990, Delftware Technology", 
The Netherlands", 

Usage:", 
! exit h 
? info (this 
> faster 

message) c 
space 
enter 

home 11 , 

clear", 
toggle cell status", 
start/stop generation", < slower 

' I II' 
cursor movements: <4~ + ·-)11, 

scripts 

WAIT 
DELAY 

Clear 
Toggle 
Move 

SpeedAdj 

Start 

Stop 

Exit 
Help 

I II' 
v" } ; 

SOME; {priority++; preference--}< {} 
SOME; {duration=l}; UNTIL (pass>=TIME(Speed)) 

Key-> ( 'c' ! ) 
Key-> ( ! ) 
Key- > ( 'h ' ! ) 
Key- > ( homeKey! ) 
Key-> ( upKey! ) 
Key- > ( downKey! ) 
Key-> (rightKey!) 
Key-> ( leftKey!) 
Key- > ( ' > ' ! ) 
Key-> ( ' < ' ! ) 
Key - > ( ' \ r ' ! ) 
Key- > ( ' \n ' ! ) 
Key- > ( ' \ r ' ! ) 
Key-> ( '\n' ! ) 

! {clearboard 
! (togglecell 
! (cursorhome 
! (cursorhome 
! (cursorup 
! (cursordown 
! (cursor-right 
! (cursorleft 
! (if (Speed< 9 ) 
! (if (Speed> OJ 

() } 
() } 
( ) } 
() } 
( ) } 
( ) } 
( ) } 
( ) } 
status(++Speed,Msg)} 
status(--Speed,Msg)} 

Key->( '!' !) !{leave("Exit program")} 
Key- > ( ' ? ' ! ) 

! {help (helptext) ; status (Speed, Msg="Press •? • to continue")}; 
WAIT; Key- > ( ' ? ' ! ) 

Init 

Generations 
Changes 
Moves 
SpeedAdjs 
Helps 
Clock 

main 

! {redraw(); status(Speed,Msg="Press '?' for help")} 
{init(); status(Speed,Msg="Press '?' for help")} 

Start; (SOME; {Generation()}; DELAY); Stop 
MANY; Clear+Toggle+Generations 
MANY; Move 
MANY; SpeedAdj 
MANY; Help 
MANY; (duration=l; delay(SLEEP)} 

Init; Changes + Moves + SpeedAdjs + Helps + Clock + Exit 



www.manaraa.com

236 

LISTING 2: A GRAPHICAL USER INTERFACE 

scripts 

mainscript 

Exit 

CursorHandler 
IdleHandler 

KeyHandler 

OSHandler 
OSEvent 

WindowHandler 
WindowAction 

Drag 
Grow 
GoA way 

Zoomin 

ZoomOut 

Update 
Ac'tivate 
DeActivate 
ClickWindow 
ClickTECursor 

MenuHandler 

WindowHandler + MenuHandler + KeyHandler 
+ CursorHandler + OSHandler + IdleHandler + Exit 

{? DoneFlag} 

{priority++} < {? AdjustCursor(event.where,cursorRgn) ,0} 
{priority·-} < {? Doidle () ,0} 

char c; MANY; Key(c?) ! {DoKeyDown (window, c)} 

MANY; OSEvent 
ClickFromSystem 
SuspendEvent 

ResumeEvent 

! {SystemClick (&event, window)} 
! {DoDeActivate (FrontWindow())} 
! {DeActivate (FrontWindow())} 

MANY; WindowAction 
Drag I Zoomin I GoAway I Activate I ClickWindow 
Grow I zoomOut I Update I DeActivate I ClickTECursor 
MouseDown(inDrag !) 
MouseDown(inGrow !) 
MouseDown ( inGoAway ! ) 

MouseDown(inZoomin !) 

MouseDown(inZoomOut!) 

! [ DragWindow (window,event.where,scrn)) 
![DoGrowWindow(window,event.where)) 
! [?TrackGoAway(window,event.where) I 
! [DoCloseWindow(window}) 
![?TrackBox(window,event.where,inZoomin}) 
!{ DoZoomWindow(window,inZoomin )) 
! {?TrackBox(window,event.where,inZoomOut) l 
!{ DoZoomWindow(window,inZoomOut)) 

Upda teEven t ! { DoUpdate (window} J 
ActivateEvent ! { DeActivate (window} J 

DeActivateEvent ! {DoDeActivate (window} J 
MouseinPassiveWindow ! {SelectWindow (window) J 

MouseinActi veWindow ! { DoContentClick (window, &event) J 

short Menu, Item; MANY; AcceptCmd (Menu?, Item?) ! {AdjustMenus ()}; 
HandleCmd(Menu ,Item ) ! {HiliteMenu(O)} 

AcceptCmd (short m?, short i?) 
char c; long MI; //Menu Item 

( CmdKey ( c?) ! {Adj ustMenus () ;MI=MenuKey (c) l 
I MouseDown ( inMenuBar! ) ! { Adj us tMenus () ; MI=MenuSelect (event. where} ) ) 
![m=HiWord(Menuitem) ;i=LoWord(MI)) 

HandleCmd (short m,short i) = switch(m) case mApple: AppleCommand(il 
case mFile : FileCommand(il 

AppleCommand (short il 

FileCommand(short i) 

EditCommand (short il 

shor-t daRefNum; 
if (i==iAbout}) 
else 

case mEdit : EditCommand(ill 

Str-255 daNm; 
{(void} Alert(rAboutAlert, nil}} 
{Getitem(GetMHandle(mApple} ,i,daNm); 
daRefNum = OpenDeskAcc(daNm}} 

switch ( i) case iNew {DoNew()) 
case iClose: { DoCloseWindow (FrontWindow ()) J 
case iQui t : { DoneFlag=Terminate () J ) 

TEHandle te; WindowPtr- w; 
if(!SystemEdit(Ill) 

{te= ((Document Peek) (w=FrontWindow ()}}- >docTE} : 
switch(i) (case iUndo {DoUndo (te)} 

case iCut {DoCut (tel} 
case iCopy {DoCopy (tel} 
case iPaste: {DoPaste(te)} 
case iClear: {DoClear(te)}) 

{AdjustScrollbar-s(w, 0); AdjustTE(w)} 



www.manaraa.com

237 

LISTING 3: A QUEUE SIMULATION 

#include <math.h> 
#include <stdio.h> 
#include "scrandom.h" /*various random functions and macros*/ 
#include "unixem.h" 

static int TotCust; // total number of generated customers 
static double qtime; // total queueing times, including service times*/ 

static void reports() 
{print£ (''*********************************************************\n''); 
printf ( "# customers t4u\n", Totcust); 
printf ("total waiting time t7 .llf minutes\n", qtime) ; 
printf (" mean waiting time t2.2lf minutes\n", TotCust?qtime/TotCust:O.O); 
printf (" simulated time ts days:hours:m~nutes\n", time2str(SimTime)); 
print£ ('1 *****************************~**************************\n'');} 

scripts 

Info 
Exit 

InitShopSim 
TheShopCloses 
TheDayEnds(int i) 

Enter(int c) 
Leave(int c) 

ServeCust(int s) 
GetServed(int c) 

Customer(int c) 

Day (int il 
/*9 to 5*/ 

Days (int nJ 

main 

MANY; Key·> ( '?'!); {reports()} 
Key·> ('I'!) ! {printf ("\nExit Program\n")} 

= (TotCust=O; qtime=O.I 
(printf ( "ts closes\n", time2str (SimTime)); reports() I 
(printf ("ts Day ends\n", time2str (SimTime)); reports() I 

= (printf("ts enters: t3u\n",time2str(SimTime),c) ;TotCust++) 
= (printf("ts leaves: t3u\n",time2str(SimTime) ,c)) 

(duration=RNDNEGEXP(30); 
printf("ts·ts customer t3u is served by t2u\n", 

time2str(SimTime),time2str(SimTime+duration),c,s)) 

int t; {t=SimTime }< Enter(c); GetServed(c); 
{qtime+=SimTime·t}< Leave(c) 

= (HOURS (9); POISSON (3,Customer)l 
+ (HOURS(l7); TheShopClosesl ) 

& HOURS(24); TheDayEnds(i) 

TIMES(n); Day( (int)pass) 

InitShopSim; 
WORKERS(lO,ServeCustl + Days(4) + Info + Exit 



www.manaraa.com

Structural Operational Semantics 
for Kernel Andorra Prolog * 

Seif Haridi1 and Catuscia Palamidessi1•2 

1Swedish Institute of Computer Science, 
Box 1263, S- 164 28 KISTA, Sweden 

2Centre for Mathematics and Computer Science, 
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 

email: katuscia@cwi.nl 
and 

Department of Computer Science, Utrecht University 
P.O. Box 80089 3508 TB Utrecht, The Netherlands 

Abstract 

Kernel Andorra. Prolog is a. framework for nondeterministic concurrent constraint logic pro
gramming languages. Many languages, such as Prolog, GHC, Parlog, and Atomic Herbrand, 
can be seen as instances of this framework, by adding specific constraint systems and constraint 
operations, and optionally by imposing further restrictions on the language and the control of 
the computation model. 

We systematically revisit the description in Haridi and Janson [HJ90), adding the formal 
machinery which is necessary in order to completely formalize the control of the computation 
model. To this we a.dd a. formal description of the transformational semantics of Kernel Andorra 
Prolog. The semantics of Kernel Andorra. Prolog is a. set of or-trees which also captures infinite 
computations. 

1 Introduction 

Kernel Andorra Prolog is language framework that is specifically designed to combine the program
ming paradigms of Prolog and committed choice languages (HJ91], allowing fully general combina
tions. The proposed family of languages are guarded definite clause languages, with deep guards, and 
three guard operators (wait, cut, and commit). In general, the machinery of deep guards is necessary 
in nondeterministic languages, for selecting a single solution, or collecting all solutions for a. given 
goal. In particular the generalization to deep guards is essential to achieve the goal of simultane
ously subsuming Prolog and exploiting independent and dependent parallelism. Deep guards can 

•The visit at SICS of Catuscia Palamidessi, during which this work was carried out, has been supported by the 
project Andorra 



www.manaraa.com

239 

also be used to encapsulate nondeterministic transformational parts of a program while maintaining 
a reactive indeterministic computation at an outer level. 

The computation model of Kernel Andorra Prolog (KAP) is a generalization of the Andorra Model 
for pure definite clauses [War87, HB88]. The Andorra Model exploits implicit and-parallelism in the 
execution of definite clauses. The generalized model features a carefully controlled nondeterminism, 
which is available uniformly in a computation. 

The framework is parameterized with the constraint system used, and the chosen set of constraint 
operations with their respective activation conditions. Also, in some specific cases, sequential ordering 
between goals is necessary to achieve the desired synchronisation effects. 

The exposition depends partly on an intuitive understanding of KAP as given in [HJ90]. However 
we have tried to make the paper as self containted as possible within the size limit. 

2 The Basic Andorra Model 

The Andorra model is defined for pure Horn clauses. It gives priority to deterministic computation 
over nondeterministic computation, as nondeterministic steps are likely to multiply Work. 

The Andorra model divides a computation into deterministic and nondeterministic phases. First, all 
atomic goals for which it is known that at most one clause would succeed are reduced using a single 
clause during the deterministic phase. (These goals can be reduced in and-parallel.) Then, when no 
such goal is left, some goal is chosen for which all clauses are tried; this is called the nondeterministic 
phase. The computation then proceeds with a deterministic phase on each or-branch. 

The key concept here is the notion of determinacy. An atomic goal is said to be deterministic when 
there is at most one candidate clause that would succeed for the goal. As soon as it is known that 
an atomic goal has become deterministic, the goal can either be reduced by a single clause, or fail, 
if it was known that no clause would apply. It is not considered to be an error if the mechanism for 
detecting the determinacy of goals fails to detect that a goal is deterministic. In general, nothing 
less than complete execution will establish this property. 

The Andorra model has a number of interesting consequences. 

Firstly, the Andorra model allows deterministic goals to be run in and-parallel, extracting implicit 
and-parallelism from the program. 

Secondly, the notion of determinacy in the Andorra model gives a reasonably strong form of syn
chronization. As long as a goal is able to produce data deterministically, no consumer of this data is 
allowed to run ahead (if it does not know what to consume). This allows specification of concurrent 
processes. 

Thirdly, the Andorra model reduces the search space by executing the deterministic goals first. Goals 
can fail early, and the constraints produced by a reduction can reduce the number of alternatives 
for other goals. This has been proved to be very relevant for the coding of constraint satisfaction 
problems [Kor89, Sar89b, BG89, HBBB, Yan89]. 

The Andorra model in items: 

• An atomic goal fails if it is known that no clause would succeed for the goal. 

• An atomic goal can be reduced using a single clause when it is known that all other clauses 
would necessarily fail for the goal. 

• When no goal is known to be deterministic, all clauses in its definition are tried for some goal. 



www.manaraa.com

240 

3 The Extended Computation Model 

The extended computation model takes a.dvanta.ge of the principles underlying the Andorra. model 
to control nondeterminism in a. "deep" concurrent language. Atomic goals ma.y start in and-parallel, 
performing local computations, by an operation ca.lled local forking. Local. computations are recursive 
Andorra. computations tha.t are logica.lly independent. A local computation ma.y receive information 
from its environment, but cannot communicate its results to the uncle goals until a. promotion 
operation is performed. In KAP each clause is divided into a guard and a. body. Local computations 
are performed by the goals of the guards of the candidate clauses. Promotion takes place when one 
or more guard executions terminate (depending on the guard operator). Promotion ha.s three main 
forms. Determinate promotion is performed when a. local computation reduces to a. single branch. 
This generalizes the Andorra. determinacy test. Nondeterminate promotion is performed when a. local 
computation reduces to several branches; this introduces nondeterminism by creating an or-tree and 
distributing the uncle goals into each branch of the local computation. indeterminate promotion is 
performed when the guard operator is a pruning operator, selecting only one successful branch of 
the loca.l computation. 

Now, the language and the configurations are defined. Then, the transition rules that start guard 
execution, perform commit, etc, are described. 

3.1 Kernel Andorra Prolog (KAP): the language 

Let Var be an infinite set of variables, with typical elements :z:, y, z, ... , Let Con be a set of n
adic data. constructors, with typical elements a,b,c ... (constant symbols) and f,g,h, ... (function 
symbols). Terms (Term), t, u, ... , atoms (Atom), A, B, ... and substitutions (Subst) are defined as 
usual. Elementary a.toms H, K, ... , are atoms of the form p(x), where pis a predicate and x is a tuple 
of distinct variables. A clause is an object of the form 

H :- choice%(Tt 1 ... , Tn) 

such tha.t the T;'s are simple guarded goals (see below). The variables in H are called parameters. 
The symbol% stands for a. guard operator. There are three possible guard operators, namely'!', 'I' 
or ':'. A KAP program is a. set of clauses. Ea.ch clause represents the definition of one predicate. We 
assume that ea.ch predicate occurring in the program is defined by exactly one clause of the program. 

(program) 
(clause) 
(head) 
(simple choice box) 
(simple guarded goal) 
(simple guard) 
(body) 
{atomic goal) 
(guard operator) 

(set of clauses) 
(head) :- (simple choice box) 
(elementary atom) 
choice(guard operator)((sequence of simple guarded goals)) 
[(simple guard)J(body) 
3(set of variables).and((sequence of atomic goals);true) 
(sequence of atomic goals) 
(elementary atom) I (constraint operation) 
':'I '!'I 'I' 

For technical reasons, we assume that in a simple choice box 

the sets of variables Zt, •.. , Zn are pairwise disjoint. Moreover 1 we assume tha.t Zt, ... 1 Zn contain 
a.lllocal variables of a. clause, namely those variables occurring in the choice box and not in the head. 
A program is considered to be closed under a.ll possible variable renaming. 



www.manaraa.com

241 

The language is parametrized with a constraint theory. The set of formulas of this theory, with 
typical elements t'J, u, 1/J, ••• , will be denoted by Constraints. The existential closure of t9 is denoted 
by 3(t'J). We say that t'J is consistent iff I= 3(t'J), where the symbol I= stands for logical validity with 
respect to the given theory. We assume that the theory is decidable, therefore t9 is inconsistent iff 
I= -,t'J. We say that t'J entails tT iff I= t'J :::> tT. 

Unification, and the like, are performed by primitive constraint operations. The notation op( .,P) 
denotes a primitive operation op applied to the constraint .,P. A constraint operation may suspend 
until its activation condition is satisfied. Some primitive operations are described later (see section 
6~1). 

4 The transition system for Kernel Andorra Prolog 

We define the operational semantics of KAP via a transition system. This system is essentially based 
on the rewriting system defined in (HJ90] for describing the computational model of Andorra Prolog. 

The set of configurations is defined by the following grammar 

(goal) 
(or box) 
(and box) 

(local goal) 
(choice box) 
(guarded goal) 

(or box) I (and box) 
or( (goal), (goal)) 
3{set of variables). 
and( (sequence of local goals);(constraint)) 

(atomic goal) I (choice box) 
choice(guard operator)((sequence of guarded goals)) 
((goal)](body) 

We use Goal, LocalGoal, •.• etc, to denote the sets generated by (goal), (local goal), ... etc. The 
symbols A, B, C stand for local goals, P, Q, R stand for goals, and S, T stand for guarded goals. 
Moreover, GeneralGoal, with typical element g, will denote the set Goal U LocalGoal. 

The set of sequences of existentially quantified constraints Seq, with typical element s, is the smallest 
set such that 

• A e Seq (the empty sequence) 

• Vt9 e Constraints Vs e Seq VX!:::;; Var 3X.t'J<>s e Seq 

The symbol <> stands for sequence concatenation. 

The logical meaning e. of a sequences of existentially quantified constraints is defined as follows: 

• e.).= true 

• e3x.,o. = 3X.(t'J" e.) 

Sometimes we will need the conjuction of constraints with all variables free; for this we use e. defined 
as follows: 

• 0>. =true 

• 93x.,o. = t'J" e. 



www.manaraa.com

242 

The notion of consistency and entailment is extended to sequences in the following way. A sequence 
8 is consistent iff I= 3(e.), and it is inconsistent iff I= -.e •. 8 entails 3X.u (or, u does not restrict 
the environment outside X) iff I= e.::> 3X.u (or, equivalently, iff I= e.::> e.o3x ... ). 

The transition system is a pair ( Conf,-+ ), where Conf = GeneralGoal U {fail, deadlock}, and -+ 
is a class of transition relations on Conf 

{£-+:,": l E {o,u}, mE {F,G},8 E Seq} 

o, u stand for ordered and unordered respectively, and refer to the context of the configuration. A 
transition c l-+:;' d will be represented as £1- c -+::' d. When the context information is irrelevant 
to a particular transition rule, we omit the symbol£1-. 

F, G stand for guess free and not guess free respectively. The subscript 8 indicates the environment 
that the configuration is assumed to have when the transition takes place. Namely, c -+::' d means 
that it is possible to make a transition from c to d in the mode m when the environment of c is 8. 

In the following, we assume the program W to be fixed. In an and-box 3X.and(A;t?), X represents 
the set of immediate local variables of the box. This information is necessary to deal with execution 
and suspension of the constraint operations. 

A tuple of goals is represented by a bar, so, for instance S, T stand for tuples of guarded goals, etc. 
The empty and-box 3X.and(;t?) is simply represented by 3X.t?. 

We introduce the notion of variables local to a general goal, var(g). 

• var(op(,P)) = var(,P) 

• var(or(P,Q)) = var(P) U var(Q) 

• var(3X. and(Ah ... , An;!?))= XU var(At) U ... U var(An) U var(t?) 

• var(choice%(Sh ... ,Sn)) = var(S1 ) U ... U var(Sn) 

• var([P]B) = var(P) 

Computation Rules 

Local Forking 

An elementary atom A can be transformed into the choice-box associated with the definition of 
the predicate of A. The parameters are replaced by the arguments of A. This is expressed by the 
following rule 

H A= p(yh ... , Yn) and p(.x1, •.• , Xn) :- B belongs to W, where var(B) n {y1, ... , Yn} = 0, then 

where a= {xt/Yh ... ,xn/Yn} and Ba is the application 'Of the substitution a to B. 

The structural rules of the transition system will guarantee that variables introduced by the local 
forking are different from the variables of the global configuration. 



www.manaraa.com

243 

Primitive Constraint Rules 

Constraint operations are the only ones that can modify the environment. There are three transition 
rules corresponding to successful execution, failure and suspension. 

Some constraint operations, corresponding to the actions of existing languages like Prolog, GHC, 
Parlog, and Atomic Herbrand, are described in section 6.1. 

3X.and(ii, op(ljl), B; u) -+; 3X.and(ii, B; u 1\ !JI) if activ(op,X,Ijl,u,s) 
I= 3(e.o3X.<TA.P) 

i.e. if the activation condition of op( !J1) holds (with respect to X, u and s) and 3X.u 1\ !JI is consistent 
with its environment. The activation condition will depend both on the specific constraint operation 
and s. 

Determinate Promotion 

IT after the completion of the guard execution only one guarded goal is left within a choice box, then 
it can be extracted, according to the following rule 

3X.and(A,choice%([3Y.!f!].B), A';u) -+f 3X U Y.and(ii, B, ii';(u 1\ !f!)) 

if l=3(u/\!f!) 

Quiet Indeterministic Promotion 

A guard execution is quiet if it results in an (empty) and-box, whose constraint does not restrict the 
environment outside the local variables of the box. 

Cut 

After a successful guard execution of one branch, the cut operator prunes all the branches to the 
right. 

if I= e. ·:J 3Y.u. 

Commit 

After a successful guard execution of one branch, the commit operator prunes all the other branches. 

choice! (s, [3Y.u].B, T) -+f choice! ([3Y.u)B) if I= e. :J 3Y.u. 

Or Reduction 

The or boxes within a choice box are eliminated according to the following rule 

choice%(S, [or(P, Q))B, T) -+; choice%(S, [P)B, [Q]B, T) 

Now we will describe the transitions of guessing rules, marked by the G :flag. The use of these rules 
will later be restricted by the control principles of Kernel Andorra Prolog. 



www.manaraa.com

244 

Nondeterministic Promotion 

A goal is in an ordered context if the closest surrounding pruning choice is a cut choice, otherwise it 
is in an unordered context. 

Ordered Context 

In an ordered context, after the successful execution of the guard, the leftmost branch of a nonde
terministic choice within an and-box can be promoted if the computed constraint is consistent with 
the one of the and-box. 

o 1- 3X.and(A,choice:([3Y.!/I]B, T),A';cr) -+~or( 3(X U Y).and(A,B,A';(cr A 1/1)), 
3X.and(A, choice:(T), A';cr)) 

if I= 3(u A 1/1). 

Unordered Context 

In an unordered context, after the successful execution of the guard, any branch of a nondeterministic 
choice within an and-box can be promoted if the computed constraint is consistent with the one of 
the and box. 

u 1- 3X.and(A,choice:(S, [3Y.!/I]B, T), A';cr) -+~or( 3(X U Y).and(A, B, A';(cr A 1/1)), 
3X.and( A, choice: ( S, T), k;cr)) 

if l=3(crA!/I). 

Noisy Indeterministic Promotion 

Cut 

When the guard execution of the leftmost branch left in a choice-box is completed successfully and 
the computed constraint is consistent with the constraint of the closest sourrounding and-box, then 
the cut operator prunes all the other branches (to' the right) and the computed constraint is made 
public. 

3X.and(A,choice!([3Y.!/I]B, 7'), A';cr) -~ 3(X u Y).and(.A, B,A';(cr "1/1)) 

if l=3(uA!/I). 

Commit 

When the guard execution of one branch in a choice-box is completed successfully and the computed 
constraint is consistent with the constraint of the closest sourrounding and-box, then the commit 
operator prunes all the other branches and the computed constraint is made public. 

3X.and(.A,choicel(s, [3Y.!/I].B, 7'), A';cr) -~ 3X u Y.and(A,B,A';(cr" 1/1)) 

if I= 3(crA!/I). 

Structural Rules 

The following rules allow us to derive the transitions of the configurations depending on the transitions 
that can be made by the components of the configurations. The rule for and boxes will be restrained 
by the condition that the new local variables introduced in a transition of a subgoal must be disjoint 



www.manaraa.com

245 

with the variables of the other subgoals. This will ensure that all the local variables of different and 
components are always disjoint, thus evoiding clashes of variables. 

Or boxes 

Any transition made by a goal inside an or-box is propagated to the parent box. 

l f- Q -+;' Q' 
l f-. or(P, Q) -+;' or(P, Q') 
lf- or(Q,P) -+;' or(Q',P) 

Note that, since Q' is a metavariable on Goals, Q' :f. fail, deadlock. 

Choice boxes 

Any transition made by a goal inside a choice box is propagated to the parent box. An ordered 
transition can take place if the closest surrounding pruning choice box is a cut choice box. An 
unordered transition can take place if the closest surrounding pruning choice box is a commit choice 
box. 

To formalize this notion, we introduce the following function OU : { o, u} X { :, !, I} -+ { o, u} (ordered
unordered) that filters the context informations out of the guard operator. 

• OU(l,:) = l 
• OU(l,!) = o 

• OU(l, I)= u 

l' f- choice%(S, [Q]B, T) -+:' choice%(S, [Q']B, T) 
l= OU(l',%) 

And boxes 

Any transition made by a goal inside an and box, with the assumption that the external environment 
is s, generates a transition for the parent box, with a weaker assumption s', such that s is the result 
of appending the sequence s' and the constraint (existentially quantified with respect to the local 
variables) of the and box. Intuitively, this model the fact that the environment of the goal consists 
of the environment and the constraint of the parent and box. 

l f- B -+;' B' 
l f- 3X.and(A,B,C;.,P) -+:J 3X.and(A,B',C;.,P) 

( var(B') \ var(B))n 
var(3X.and(A,B,C;.,P)) = 0 
s = s'<>3X . .,P 

Next we specify the transition rules for failure and suspension. Having explicitely these rules in the 
operational model of the language allows to gain in efficiency (the detection of failure allows to prune 
the failing choice branches). 

Failure Rules 

The following rules describe the transitions that bring to failure. 



www.manaraa.com

246 

Constraint operations 

Any primitive operation op will fail whenever the constraint is not consistent with the environment 

op(.,P) -+~x .... fail if F= -.e..,3X.crt"" 

And boxes 

An and box fails when the constraint is inconsistent with its global environment. Notice that this is 
the only rule (apart from the rules on primitives) that depends upon the constraints of the environ
ment in the transition relation. 

3X.and(A;q) -+!'fail if F= -.e.o3X.cr 

Choice boxes 

A choice box fails when there are no alternatives left. 

choice%() -+!' fail 

Structural Rules for Failure 

The following rules describe the propagation of failing transitions from inner goals to the external 
configurations. 

Choice boxes 

Choice boxes simply eliminate failing branches. 

Q -+!'fail 
choice%(8, [Q)B,T) -+f choice%(S,T) 

And boxes 

An and box fails whenever one of the local goals fails. 
internal transition is weakened in the external transition 

B -+f fail 
3X.and(A, B, C;.,P) -+f, fail 

Suspension Rules 

Again, the environment condition of the 

s = s1o3X . .,P 

Here we describe the rules that bring a configuration to be suspended. We only describe global 
suspension, namely the deadlock of the whole goal. 

Constraint operations 

A constraint operation may suspend when the activation condition of the operation is not satisfied 
and the constraint is consistent with the environment (otherwise it would fail). 

op(.,P) -+fo3x..,. deadlock if -.activ( op, X, t/J, 0'1 s ), 
F 39ao3X.cri\,P 



www.manaraa.com

247 

Structural Rules for Deadlock 

The following rules describe the propagation of deadlock from the inner configurations to the outer 
ones. 

Choice boxes 

Commit and Wait 

H the the guard operator is I or :, then a choice box deadlocks whenever all the branches get 
deadlocked. 

Cut 

P1 -+!" deadlock, ... , Pn -+!" deadlock 
choice%([P1]Bb ... , (Pn]Bn) -+f deadlock 

% E {1,:} 

H the the guard operator is !, then a choice box deadlocks whenever the first branch gets deadlocked. 

P --+!"deadlock 
choice! ((P]B, ... , S) --+f deadlock 

And boxes 

An and box deadlocks whenever all the internal local goals deadlock. Observe that the deadlock of 
one local goal does not cause the deadlock of the whole and box since it can be resumed after the 
execution of some other local goals. This can be modeled by the following rule. 

B1 -+!" deadlock, ... , Bn -+f deadlock 
3X.and(Bb ... , BnitP) --+f, deadlock 

s = s'o3X . .,P 

We don't have failure and suspension rules for the or boxes. Internally or boxes are collapsed into 
choice boxes. For external or boxes, we want to preserve the shape of the tree. This issue will be 
exposed in details in the section on operational semantics. 

5 Control of the computation model 

A sequence of applications of the transition rules described in the previous section constitute an 
unrestricted derivation or computation of the extended Andorra computation. KAP computations 
are restricted. The control of KAP has been described informally and motivated in (HJ90]. We will 
just give a brief review to aid the understanding of the following semantic description. KAP always 
prefer deterministic steps over nondeterministic and noisy indeterministic steps. The F-marked rules: 
local forking, deterministic promotion, quiet pruning, constraint rules, etc. are called guess-free rules. 
Nondeterministic promotion and noisy pruning are called guessing rules. 

Central to the control of the model is the notion of stability of and-boxes. Stable boxes are boxes 
that cannot be affected by computations in its surrounding environment regardless of the context 
in which it is running. An and-box is called stable if no guess-free rules are applicable to or within 
tlie box, and no constraint or constraint operation occurring in the box imposes new constraints on 
variables that are external to the box. 

A context is a general goal "with a hole". 

Definition 5.1 The set Context, with typical element C(], is the smallest set such that 



www.manaraa.com

248 

1. [) E Context 

2. if C[) E Context then 

• or(P, C[ )) , or( C[ ) , P) E Context 

• 3X. and( A, C[ ), ..8;11) E Context 

• choice%(S, [C[ ))..8, T} E Context 

Whenever the expression C[g) is legal it will denote the general goal obtained by "filling the hole" 
of C[) with g. Note that g is a general goal. 

The next definition formalizes the notion of total constraint of a global goal, which gives the set of 
all the constraint sequences in all the subgoals. 

Definition 5.2 The function tc : GlobalGoal-+ 'P(Seq) (the set of all sets of sequences) is defined 
as follows 

• A E Atom:::::} tc(A) ={A} 

• op(u) E Primitives:::::} tc(op(u)) = {u} 

• S; = [P;)B;:::::} tc(choice%(St, ... , Sn)} = tc(Pt) U ... U tc(Pn) 

• tc(or(P,Q)) = tc(P) U tc(Q) 

• tc(3X. and(A1, ... ,An;u)) = 3X.u<>(tc(At} U ... U tc(An}) 

where the operation <> is extended on sets. 

We now introduce the notion of stability of and-boxes (with respect to an environment). 

stable(A,s} if ,lie E Conf [A-+; c) and Vs' E tc(A} [I= 0, :::> 0,.) 

The next definition formalizes the notion of environment: the environment of a configuration is the 
environment of the closest surrounding and-box plus its constraint. We define the environment as a 
function env from contexts to sequences of constraints in such a way that env( C[)) is the environment 
of the "hole" of C[ ), i.e. the constraint seen by a legal goal g in C[g). 

Definition 5.3 (environment of a context) The function env : Context -+ Seq is defined as 
follows:. 

• env([)) =A 

• env(or(P,C[))) = env(or(C[),P)) = env(C[)) 

• env(3X.and(A.,C[],.B;u)) = 3X.u<>env(C[)) 

• env(choice%(S,[C[))B,T))= env(C[)). 

The following definition extends the function OU so to filter the informations of ordered and un
ordered out of generic contexts. 



www.manaraa.com

249 

Definition 5.4 

• OUext(f, ()) = f 
• OUext(l, or(P, C())) = OU.xt(l, or( C( ], P)) = OUext(l, C(]) 

• OUext(l, 3X.and(.A, C( ], B;u)) = OUext(l, C()) 

• OUext(l, choice%(§, (C( ]].B, T)) = OUext(OU(l, %), C(]) 

The restricted Andorra Computation model is defined by the following transition system (based on 
the previous one). The transition relations are labeled by A and describe admissible applications: 

• An application of a guess-free rule is always admissible 

ll- g -tf g' 
ll- g -t1 g' 

where g' E Global Goal U {fail, deadlock} 

• An application of a. guessing rule is admissible iff 

1. it is applied to (or to a. subgoal of) a. stable and-box, and 

2. there are no admissible applications of guessing rules to proper subgoals of the rewritten 
box, i.e. it is innermost. Innermost application of G-transition of a. goal g is defined as 
follows: 

innermost(g, l s) iff VC(] of (] Vg' (g = C(g1 =>,lie (OUext(l, C(]) 1- g' -+:Oeno(C[]) c)] 

stable(C(g],s'), 
ll- g -t: g' innermost(g,l, s) 

l' 1- C(g]-+1. C(g'] l = OUext(l',C(]) 
s = s'oenv( C(]) 

• (Compositional Rule) An admissible transition of a. stable box can be propagated to outer 
configuara.tions. 

ll- g -t: g' 
l' 1- C(g] -t1. C[g'] 

l = OUext(l',C(]) 
s = s'oenv(C(]) 

Further restrictions of KAP computations are possible, but we regard such restriction as part of the 
semantics of the particular user languages based on KAP. For discussions of possible user languages 
see (HJ90]. 

6 Operational Semantics 
We give now the definition of the operational semantics of AP in set-theoretic terms. Intuitively, 
the operational semantics of a. program is defined by the semantics of the and-boxes that can be run 
under that program, and the semantics of an and-box consists of the set of all the possible collections 
of answers that can be obtained by running it. In general, all the answers that are delivered under 
certain particular indeterministic and nondeterministic choices are collected in an or box. The or 
box has a tree like structure, with the intermediate nodes labeled by or and the leaves labeled by 
and-boxes. The nonempty and-boxes correspond to computations not terminated yet, and we can 
define the semantics as the limit of the or trees obtained along a. certain computation (transition) 
chain. This limit can be, in general, an infinite tree, as the computation can deliver an infinite set 
of answers. This allows us to preserve all the information about the computation in the semantic 
structure, and it leaves space for further abstractions. 



www.manaraa.com

250 

Indeed, different implementations may lead to different notions of observables. For instance, we 
may imagine a situation similar to Prolog, in which the answers are presented in the order they are 
collected by the usual depth-first strategy. A loop along one branch will cause the unobservability 
of the answers possibly generated at the right of that branch. To model this, we can abstract 
from our semantics the sequence of answers obtained by collecting left-to-right the leaves of the 
tree corresponding to a successfully terminated computation. The sequence ends when we get in 
correspondence of a nonterminating and-box. 

Another possibility is to collect in parallel all the answers generated, without any restriction on the 
order in which they appear. To model this we can abstract from our semantics the set of the leaves 
corresponding to a successfully terminated computation. 

Definition 6.1 The set T (the set of or trees) is the minimal set that satisfies the following condi
tions: 

• .lET 

• fail, deadlock E T 

• if{} E Constraints and X s;; Var then 3X.{) E T 

• ift, t' E T then or(t, t') E T 

The set T is ordered as follows 

Definition 6.2 The relation :5 is the minimal ordering relation on T that satisfies the following 
conditions 

• Vt E T . .l:5 t 

• Vt, t', u, u' E T.(t :5 u At' :5 u') :J or(t, t') :5 or(u, u') 

Let (P, :5) be an poset (partially ordered set). A directed set in Pis a subset Do£ P such that 

Va, bE D 3c E D [a :5 c A b :5 c]. 

An idealS is a directed set which is downward closed, i.e. such that 

Va E S [b :5 a=> bE S]. 

The set of ideals of P, ordered by set inclusion, we will denote by (Id(P),s;;). It is well known 
that it is a. Complete Partial Order (i.e. it has a. minimum, and each non-empty set of elements 
admits a. least upper bound) and it contains a. sub-CPO isomorphic to (P, ::;). (Id(P), s;;) is called 
completion by ideals of (P, ::;). The elements of the subset isomorphic to (P, :5) will be denoted by 
the corresponding elements of P. 

Definition 6.3 (The domain of interpretation) The complete partial order (T"', :5) (the domain 
of finite and infinite or trees) is the completion by ideals of the poset (T, ::;). The least upper bound 
of a directed subset 1) E T"' will be denoted by U'D. 0 



www.manaraa.com

251 

Definition 6.4 (Operational Semantics) The operational semantics of a program is a function 
O:{o,u} x Goal-+ 'P('T"'), where Goal is the set of all the goals and 'P('T"') is the set of all the 
subsets of 'T"'. 0 is defined as follows. 

Ot(P) = {U;O'(P;): i E {0, 1, 2, ... }, P::: Po, l 1- P; -+1 P;+l} 

Note that the environment of the whole configuration is always empty. The argument l indicates the 
dependence of the operational semantics upon the global computation beeing considered ordered or 
unordered. O':Goal-+ 'T"' is defined as follows: 

• O'(or(Q,R)) = or(O'(Q),O'(R)). 

{ 
fail 

• 0'(3X.and(A;~)) = ~~~:lock 
if 3X.and(A;~) -+r fail 
if 3X.and(A;~) -+r deadlock 
if A=>. 
otherwise 

Note that, if Po -+1 ... P; -+f ... , then (since P; ranges over goals, hence it cannot be fail or 
deadlock), {O'(P;)};>o is a chain. Therefore (since a chain is a particular case of directed set), the 
definition of 0 is corr~ct. 

H the constraint system is decidable, then the rules for failure and suspension cover all the cases 
in which the computation rules are not applicable, excepting the or-boxes. Namely, a configuration 
is final only if it is of one of the following forms: fail, deadlock, an empty and-box, or an or-box 
containing only final configurations. This means that the semantics of a configuration is always a set 
maximal objects (possible infinite) in 'T"' (i.e., the leaves are not labeled by j_), 

6.1 Primitive Operations 

The primitive operations are the only ones that can modify the environment. The four primitives we 
describe differ in the level of the environment they are allowed to impose constraint on. In particular, 
ask cannot impose any constraint (its constraint must be completely entailed by the environment), 
whilst tell., can always do it. Between these two extreme cases, there are tell, and tell,. The first 
can impose contraints on the local variables of the parent and box, whilst the second can impose 
contraints on the local variables of the "granparent" and box. 

• activ(ask,X,.,P,u,s) ::: F Eleo3X.cr :J '1/1 

• activ(tell0 , X, .,P, u, s) ::: I= S,o3x..,. :J 3X.u 1\ '1/J 

• activ(tell., X, .,P, u, >.) = true 

• activ(tell.,X, .,P, u, so3Y.~) = I= e.o3Y.,o3X.cr :J 3Y u X.(~ 1\"" 1\ u) 

• activ(tell.,,X,.,P,u,s) = true 

7 Related Work 

Vijay Saraswat defined a language CP [Sar87] that provides among other things deep guards, an 
operator called "don't know commit", related to our "wait" operator, and the concept of blocks, 
which are similar to and-boxes. One of the main differences between CP and our work is our control 
of when to promote nondeterminism. This is also true of Saraswat's thesis [Sar89a]. Also, we 
emphasize fully interleaved execution in a language with deep guards. However, Kernel Andorra 
Prolog is definitely a concurrent constraint language. 



www.manaraa.com

252 

8 Discussion 

We presented a formal transformational semantics for Kernel Andorra Prolog. The semantics is 
transformational since it desribes the final results of a KAP computation (as a set of abstract trees), 
and there is no notion of interaction with the environment. A number of issues will be addressed 
in the near future. Firstly, since KAP is intended as a framework for implementing some user 
oriented languages, by using the proper constraint operations, we like to prove the correctness of the 
implementation w.r.t a priori given semantics of the user language. 

Another issue is proving the properties of the sublanguages given in [HJ90]. This is partly done in 
[Fra90]. 

The semantics given treats and-boxes seen at the outermost level as black boxes until the box either 
succeeds, fails or suspends. This notion is not sufficient, for some of the sublanguages of KAP. In 
particular the Reactive Andorra Prolog which encapsulates nondeterminism in pruning guards, needs 
a more refined notion where actions in an and-box can affect its environment, i.e. some sort of a 
reactive semantics, and observational equivalence based on it. 

Finally we remind the reader, that other more important issues, like efficient implementation, of both 
sequential and parallel machines, and programming methodology and techniques have the highest 
priority and much effort is devoted to them. 

Acknowledgements 

The authors wish to thank Sverker Janson, Vijay Saraswat, Torkel Franzen, D.H.D. Warren and Bill 
Kornfeld for many valuable comments and suggestions. This work is part ofthe PEPMA ESPRIT 
Project (P2471), and is supported by the Swedish Board of Technical Development, Televerket, and 
Ericsson. 

References 

[BG89] R. Bahgat and S. Gregory. Pandora: Non-deterministic Parallel Logic Programming. In 
Giorgio Levi and Maurizio Martelli, editors, Proc. of the Sixth International Conference on 
Logic Programming, Series in Logic Programming, pages 471-486, Lisboa, 1989. The MIT 
Press. 

[Fra90] T. Franzen. Formal aspects of Kernel Andorra Prolog. Technical Report R90008, SICS, 
Sweden, 1990. 

[HB88] S. Haridi and P. Brand. Andorra Prolog:, an integration of Prolog and commited choice 
languages. In Proc. of the International Conference on Fifth Generation Computer Systems, 
pages 745-754, Tokyo, 1988. Institute for New Generation Computer Technology (!COT). 

[HJ90J S. Haridi and S. Janson. Kernel Andorra Prolog and its computation model. In Proc. of 
the Seventh International Conference on Logic Programming, 1990. 

[HJ91] S. Haridi and S. Janson. Programming paradigms of the Andorra Kernel Language. Tech
nical report, SICS, Sweden, 1991. 

[Kor89] W. Kornfeld. Constraint programming in Andorra Prolog. Presented at the Swedish
Japanese-Italian workshop, 1989. 



www.manaraa.com

253 

[Sar87] V.A. Saraswat. The concurrent logic programming language CP: definition and operational 

semantics. In Conference Record of the Fourteenth Annual ACM Symposium on Principles 

of Programming Languages, pages 49-63. ACM, New York, 1987. 

[Sar89a] V.A. Saraswat. Concurrent Constraint Programming Languages. PhD thesis, Carnegie

Mellon University, january 1989. Published by The MIT Press, U.S.A., 1990. 

[Sar89b] V.A. Saraswat. Programming in Andorra Prolog. Technical report, Xerox PARC, 1989. 

[War87] D. H. D. Warren. The Andorra principle. Presented at the Gigalips workshop, Stockholm, 

1987. 

[Yan89] R. Yang. Solving simple substitution ciphers in Andorra-!. In Giorgio Levi and Maurizio 

Martelli, editors, Proc. of the Sixth International Conference on Logic Programming, Lis boa, 

1989. The MIT Press. 



www.manaraa.com

Customization of First-Class Tuple-Spaces in a 
Higher-Order Language 

Suresh J agannathan 
NEC Research Institute 

Princeton, N J 08540 
suresh~research.nec.com 

Abstract 

A distributed data structure is an object which permits many pro
ducers to augment or modify its contents, and many consumers simulta
neously to access its component elements. Synchronization is implicit in 
data structure access: a process that requests an element which has not 
yet been generated blocks until a producer creates it. 

In this paper, we describe a parallel programming language (called TS) 
whose fundamental communication device is a significant generalization of 
the tuple-space distributed data structure found in the Linda coordination 
language[6]. Our sequential base language is a dialect of Scheme[19]. 

Beyond the fact that TS is derived by incorporating a tuple-space coordi
nation language into a higher-order computation language (i.e., Scheme), 
T S differs from other tuple-space languages in two important ways: 

• Tuple-spaces are first-class objects. They may be dynamically cre
ated, bound to names, passed as arguments to (or returned as results 
from) functions, and built into other data structures or tuples. 

• The behavior of tuple-spaces may be customized. A tuple-space are 
manipulated via a policy closure that specify its operational charac
teristics. The representation of policy closures take significant ad
vantage of Scheme's support for higher-order functions; there is no 
fundamental extension to Scheme needed in order to support them. 

We argue that first-class customiza.ble tuple-spaces provide an expressive 
and flexible medium for building parallel programs in higher-order lan
guages. 



www.manaraa.com

255 

1 Introduction 

Distributed data structures are widely recognized to be an important device in 
structuring explicitly parallel programs. A distributed data structure is valu
able because it abstracts low-level details about process synchronization and 
communication to high-level algorithmic design issues involving data structure 
access and generation. Generally speaking, the semantics of such structures per
mit many producers to augment or modify its contents, and many consumers 
simultaneously to access its component elements. Synchronization is implicit 
in data structure access: a process that requests an element which has not 
yet been generated blocks until a producer creates it. Some notable examples 
of distributed data structures are the blackboard object in Shared Prolog[2], 
stream abstractions in Flat Concurrent Prolog[20], Concurrent Smalltalk's dis
tributed objects[13] and its closely related variant Concurrent Aggregates[7], 
the !-structure in Id[4] and C.Linda's flat tuple-space[6]. 

In this paper, we describe a parallel programming language (called TS) whose 
fundamental communication device is a significant generalization of the tuple
space distributed data structure found in the Linda coordination language. Our 
sequential base language is a dialect of Scheme[19]. 

By way of introduction, a T S tuple-space defines a shared associative memory 
whose elements are ordered sets of values or processes known as tuples. Fields 
in passive tuples, i.e., tuples containing only values, can be retrieved using a 
simple pattern matching procedure. In the default case, failure to produce a 
substitution causes the process that initiated the match operation to block. 
A blocked process may resume only after a matching tuple is deposited into 
the specified tuple-space. An active tuple, i.e., a tuple containing concurrently 
executing processes, turns into a passive one when each process completes and 
returns a value. Active tuples are not involved in the matching procedure. [5] 
discusses how distributed data structures found in other programming models 
may be implemented using tuple-spaces. [15] discusses compile-time analysis 
techniques for first-class tuple-spaces in higher-order languages. 

Beyond the fact that T S is derived by incorporating a tuple-space coordination 
language into a higher-order computation language (Scheme), T S differs from 
other tuple-space languages in two important ways: 

1. Tuple-spaces are first-class objects. They may be dynamically created, 
bound to names, passed as arguments to (or returned as results from) 
functions, and built into other data structures or tuples. 

2. The behavior of tuple-spaces may be customized. Tuple-spaces are ac
cessed via a set of policy procedures that define its various attributes. 



www.manaraa.com

256 

These attributes include (a) access to the tuple-space that is to be ma
nipulated, (b) the matching protocol that governs tuple retrieval, (c) the 
blocking policy that specifies the conditions under which processes ac
cessing this tuple-space block, and (d) the failure policy that specifies 
conditions under which a tuple-space operation fails. 

There are two classes of tuple-space operations - those that store into a tuple
space, and those that read from it. In either case, tuple-spaces are manipulated 
via a set of policy definitions encapsulated within a closure that is a mandatory 
argument to the operation. Thus, an expression of the form, (put P tuple) , 
evaluates P to get a policy closure and uses the definitions found in this closure 
to determine if and where tuple is to be deposited. 

Policy definitions are defined in terms of ordinary Scheme procedures. Their 
utility derives from the fact that they can be used to transform a tuple-space 
into a distributed data structure analogue of a sequential data abstraction - the 
representation of a tuple-space structure can be manipulated and its behavior 
may be tailored to conform to (or take advantage of) particular operational re
quirements. Tuple-spaces are now properly regarded as objects whose behavior 
is determined by the definition of its policy procedures. 

The paper is organized as follows. The next section gives motivation for the 
design of the language; Section 3 gives an overview of the language, and describes 
the specification of tuple-space operations. Section 4 describes a number of 
examples whose formulation is significantly simplified by the presence of first
class customizable tuple-spaces. 

2 Motivation 

The motivation for the design of T S is two-fold. First, we are interested in 
building highly-modular parallel systems for symbolic computation. First-class 
tuple-spaces offer themselves as an expressive modularity device in this regard. 

Second, we wish to apply abstraction, customization and parameterization tech
niques commonly used in the specification and implementation of sequential data 
structures to their distributed data structure counterparts. Our contention is 
that these techniques can reduce complexity, and enhance expressivity. We 
elaborate on these two points below. 

2.1 Modularity 

There has been much recent interest on incorporating explicit concurrency into 
expression-based programming languages. Mul-T[17] and MultiLisp[12] are Ian-



www.manaraa.com

257 

guages that augment Scheme with a future construct; Concurrent Prolog[21] 
and Parlog[8] are logic programming languages that are based on an asyn
chronous process interpretation of clause evaluation. Concurrent Smalltalk[13] 
and Actors[!] are representative examples of programming languages that ex
tend object-based programming with parallel facilities. 

T S is distinguished from these other efforts in several important respects. By 
way of comparison, synchronization in concurrent logic programming and other 
parallel Lisp dialects takes place through low-level primitives (e.g., futures and 
semaphores in Mul-T) and shared variables (e.g., read-only variables in Concur
rent Prolog). Process communication in TS, on the other hand, is decoupled 
from process instantiation. This attribute makes it possible for processes to ini
tiate requests for the value of objects even if the object itself has not yet been 
created, and to collectively contribute to the construction of shared objects. 
These capabilities are absent in many other distributed data structure-based 
systems (e.g., parallel Lisps[17] or object-based concurrent systems[13]), and 
have no trivial formulation in a concurrent logic framework[21]. 

Giving first-class status to tuple-space objects also encourages greater modu
larity and simplifies implementation[lO, 15]. By permitting tuple-spaces to be 
denoted, we allow the programmer to partition the communication medium as 
he sees fit. Conventional namespace management techniques available in the 
base language can be easily applied over tuple-spaces as well. To encapsulate a 
set of related shared data objects, we deposit them within a single tuple-space; 
this tuple-space can be made accessible only to those processes that require 
access to these objects. A set of related processes can also reside within their 
own tuple-space; data values which they share can be deposited and retrieved 
within this structure. Other processes need not be aware of these objects, and 
ad hoc naming conventions need not be applied to ensure that data objects are 
not mistakenly retrieved by processes which do not need them. 

2.2 Customizability 

The semantics of other tuple-space languages restrict the ways in which tuple
spaces can be manipulated. In general, the only operations permitted on a 
tuple-space are those which deposit, read, remove, or test the presence/ absence 
of tuples. Customizing matching protocols, determining where tuples should be 
deposited based on conditions known only at runtime, specifying the constraints 
(outside of a match failure) under which processes should block, or .specifying 
constraints under which tuple-space operations may fail but not block, are ca
pabilities not available in these languages. 

One immediate consequence of preventing user specification and customization 



www.manaraa.com

258 

of the operational behavior of tuple-spaces is reduced flexibility: while it is easy 
to implement data structures whose semantics can be naturally expressed us
ing just get (remove tuple), rd (read tuple), put (deposit tuple) and spawn 
(fork process) operations1, it becomes problematic to implement structures that 
don't fit neatly into this framework or which require additional constraints not 
expressible in terms of these operations. Conceptually, a tuple-space is a data 
abstraction whose representation is manipulated via these operators; the in
ability of programmers to customize their behavior limits the ease with which 
different kinds of distributed data structures can be specified. 

For example, given a C-Linda version of a distributed object 0, one can trivially 
deposit a method or instance variable x by writing: 

put("O","x",z) 

( "0" is a label that tags all operations associated with 0, and put deposits 
its tuple argument into a global tuple-space.). To send a message M to 0 one 
writes: 

rd("O","M",?v) 

"?v" introduces an unbound variable or formal; the variable is assigned the value 
of the third field in the tuple to which this tuple template is matched. If v is 
bound to a method represented as a procedure, one can subsequently apply this 
procedure to arguments. Tuple-spaces in this simple framework are distributed 
analogues of a conventional record containing procedure and scalar-valued fields. 

Suppose, however, we wish to have these distributed objects adhere to an inher
itance protocol[ll]: 0 is to automatically dispatch messages to another object 
(its parent) if it does not define a field whose value is requested by the message. 
In other words, a tuple-space is now to be regarded as the representation of a 
class instance; and inheritance is realized by directing tuple-space operations 
·to particular tuple-spaces. Since 0 defines a distributed version of a sequential 
object, we must also ensure that no get operations are permitted on its compo
nents; all instance variable and method bindings are intended to be immutable, 
although these bindings may be bound to mutable locations. 

Satisfying these constraints is non-trivial within the standard Linda framework. 
To delegate operations in the manner suggested requires performing an explicit 
test to determine if a tuple containing the requested operation exists within 
the specified tuple-space; if it does not, the same test must be performed on 
its "parent"; such tests proceed along a tuple-space hierarchy until a matching 
tuple is found. If 0 has n ancestors, messages sent to 0 must explicitly include 

lThe names given to these operations in T S differ from those used in e.g., O-Linda because 
the semantics of these operators differ from their counterparts in the Linda framework in 
several significant ways. , 



www.manaraa.com

259 

n conditional tests for each of these ancestors; operations on O's siblings and 
children must be structured similarly. The validity of get operations must also 
be explicitly monitored. Changes in the inheritance structure require global 
changes to the access operations on affected objects. Modularity is compromised 
and complexity increased. 

T S provides an alternative solution to this problem. The conditions under 
which a tuple-space operation is to block or fail may be defined explicitly in 
terms of a policy procedure. Similarly, the particular semantics of matching 
or the tuple-space repository in which tuples are to be deposited or removed 
may all be specified in terms of ordinary Scheme procedures that operate over 
tuple-spaces. 

Since tuple-space operations manipulate policy closures directly, processes that 
manipulate tuple-spaces need not be aware of their implementation, and no ex
plicit bookkeeping information need be maintained to enforce correctness of its 
specification. The conceptual and implementation overhead of encapsulating 
tuple-space operations within user-defined procedures and applying these pro
cedures as needed is absent; all tuple-space operations have a uniform syntax 
and self-consistent behavior. 

We emphasize that policy definitions are not orthogonal to the semantics or 
implementation of tuple-spaces in any significant sense. Any specification of 
a tuple-space abstraction must contend with issues dealing with tuple access, 
matching, failure, and blocking. The semantics of tuple-spaces discussed in this 
paper makes these issues manifest to the T S programmer. 

3 The Language 

TS is a set!- and call/cc-free dialect of Scheme[19] with first-class tuple-spaces. 
We concentrate in this section on the coordination subset of T S; this subset 
defines operations for creating and manipulating tuple-spaces. The interaction 
of tuple-spaces on other Scheme constructs is considered in Section 4.1. 

3.1 Creating Tuple-Spaces 

The coordination language upon which T S is based treats tuple-spaces as de
notable objects with a distinguished type. To create a tuple-space, we evaluate 
(make-ts). The value returned is a reference to a newly created tuple-space 
object. More precisely, this object returns a representation structure of a tuple
space as determined by suitable compile-time analysis[15]. In the abstract, a 



www.manaraa.com

260 

tuple-space, like any other Scheme structure, is accessed via pointer, not value; 
like any other Scheme object, a tuple-space may be garbage-collected if there 
remain no extant references to it. 

Operations on a tuple-space T access it indirectly via a policy closure. This clo
sure determines T's operational attributes; in particular, the policy closure en
capsulates operations that specify the constraints under which operations block 
or fail, the protocol used to retrieve tuples are retrieved, and the mechanism by 
which tuples are to be retrieved. 

A policy closure is a procedure of one argument. This argument determines the 
policy definition to be evaluated. Thus, a policy closure takes the form: 

(lambda (op) 
(cond ( (eq? op policy definition) 

(lambda (args) body) 

(else op)))) 

Tuple-space operations in T S make use of four such definitions: 

1. The access policy specifies the tuple-space to be operated upon. Tuple
space operations use this policy to determine the tuple-space of interest. 
Since tuple-spaces are first-class, the same access policy can yield different 
tuple-spaces on different calls. 

2. The matching policy specifies the set of tuples a tuple-template can match 
against. Match operations are initiated only by processes wishing to read 
or remove a tuple from a tuple-space. 

3. The blocking policy specifies the conditions under which a process may 
not have access to this tuple-space. 

4. The failure policy specifies the conditions under which a tuple-space oper
ation returns :fail. Failure does not imply blocking; the failure policy is 
used to realize non-blocking exceptional conditions on tuple-space access. 

Each of these policy definitions have a default implementation defined by the 
system; these definitions are bound to the names: :access, :match, :block 
and :fail respectively. These default definitions are presumed global. 

If T's policy closure is structured thus: 



www.manaraa.com

261 

(lambda (op) 
(cond ((eq? op :match) 

(lambda (args) match policy)) 
(else op))) 

and is bound to T-policy, then evaluating: ( (T-policy :match) argu
ments) applies (lambda (args) match policy) to arguments. In this example, 
T's policy closure does not define definitions for :access, :fail or :block; 
thus, the expression (T-policy :fail) returns the default failure policy. 

Policy definitions all take three arguments: 

1. PC - the policy closure of the current tuple-space. 
2. tuple - the tuple argument being manipulated. We describe the policy 

operations allowable over tuples below. 
3. kind -a symbol drawn from the set, 

{ read, store, remove, fork } 
that indicates the type of operation being performed. Thus, put operations 
invoke a policy closure with kind store ; spawn operations invoke a policy 
closure with kind fork; get operations have kind remove; rd operations 
have kind read. 

3.1.1 Concrete Representations 

Compile-time analysis ofT S programs is used to determine efficient represen
tations for tuples and tuple-space objects; this representation is derived by ex
amining the structure and type of tuple components[15]. For example, a tuple
space T closed under a policy closure PT that contains tuples of length two 
and whose rd and in operations are all of the form: ( op PT ( i, ?v) ) for 
some integer-yielding expression i can be implemented in terms of a concurrent 
vector data structure. A tuple denotes an < index, value > pair in this vector; 
attempts to read an "empty" vector elements results in the process blocking; 
and processes that wish to update a vector element must gain exclusive access 
to it first. T S programmers can determine the representation type associated 
with any tuple-space using operators described below. Insofar as the representa
tion structures generated by the implementation are visible to the program, T S 
bears resemblance to "reflective" languages[22, 25]. The underlying behavior 
of tuple-space operations, and the structures they manipulate can be examined 
and customized by the programmer. 

Let Rtr be a representation of a tuple-space T, and let R-t be a representation of 
a tuple within T. (The representation type of a tuple tis derived by evaluating 
: rep.t t ). All concrete representations of tuples provide a set of operations for 



www.manaraa.com

262 

accessing various components; we introduce some of these operators during the 
course of the paper. 

The representation object of a tuple-space must provide the following opera
tions; given a tuple-space T, its representation is accessed by evaluating (:rep 
T): 

• ( :type Rtr) returns RT 's type; policy definitions dispatch on this type to 
determine the index and selection operations they should perform. 

• (:size Rtr) returns the number of elements in Rtr. 
• ( :empty? Rtr) returns true iff Rtr contains no tuples. 
• (:write RT Rt) stores Rt into RT. 
• ( :with-lock Rtr kind body) grabs a suitable read or write lock on Rtr 

(depending upon the value of kind) and evaluates body; the lock is released 
after body completes. Policy definitions manipulate read and write locks to 
ensure atomicity and serialization constraints. 

In general, users needing only standard Linda functionality need not be con
cerned about manipulating tuple-space representations; the default policy defi
nitions for tuple-spaces implement the necessary constraints. (See figure 1.) 

The policies obeyed by a tuple-space created by evaluating (default-ts) are 
the same as, e.g., O-Linda's global tuple-space. The behavior of the default 
:match policy is determined from the representation type of the argument tuple
space. The value returned is a list; the elements in this list are extracted from the 
fields of a resident tuple such that the ith element in this element is to be bound 
to the ith formal in the argument tuple. If there are several candidate tuples 
that satisfy the match requirements, one is chosen non-deterministically. The 
representation of a tuple-space is responsible for ensuring proper serialization; 
thus, two get operations that occur simultaneously on the same tuple-space 
must not result in the same tuple being matched for both operations. 

The constraint imposed by the default block policy is dictated by the success of 
:match. If a rd or get operation is performed on a. tuple-space such that the 
:match policy is unable to produce a matching tuple, :block returns #block. 
In all other instances, the policy procedure succeeds. The default :access 
policy returns a global tuple-space object. The :fail policy always succeeds 
in the default implementation- tuple-space operations either succeed or result 
in a process becoming blocked; there is no ''failure without blocking" semantics 
in this implementation. 

When default-ts is applied, it creates a new tuple-space using make-ts; the 
access policy associated with the policy closure returned yields this tuple-space. 



www.manaraa.com

263 

(define (:match PC tuple kind) 
(let ((TS_rep (:rep ((PC :access) PC tuple kind))) 

(tuple-rep (: rep_t tuple))) 
(case (:type TS_rep) 

((semaphore) (readlsem TS_rep kind)) 
((queue) (head TS_rep kind)) 

:))) 

(define (:block PC tuple kind) 
(if (memq kind '(read remove)) 

(let ((matches ((PC :match) PC tuple kind))) 
(if (null matches) #block matches)) 

#succeed)) 

(define (:fail PC tuple kind) 
#succeed) 

(define (:access PC tuple kind) 
(global-TS)) 

(define (default-ts) 
(let ((newTS (make-TS))) 

(lambda (op) 
(cond ((eq? op :access) 

(lambda (PC tuple kind) newTS)) 
(else op))))) 

Figure 1: One possible implementation of default policy definitions that con
form to Linda-style semantics. 



www.manaraa.com

264 

3.2 Depositing Tuples 

A tuple is deposited into a tuple-space using one of two operators. Let PC be 
an expression that yields a policy closure; then, the expression: 

(put PC (elt e2, ... , en)) 

is evaluated as follows: 

1. Evaluate PC to yield a policy closure P. 
2. Evaluate each of the ei in the current evaluation environment to get a value 

'Vi· Let the. tuple constructed by replacing each ei by 'Vi be called t. Our 
notion of "value" is consistent with Scheme's[19] - constants and symbols 
are values as are references to closures, lists, tuple-spaces, and vectors. 

3. Evaluate P's blocking policy definition: 

((P :block) P t 'store) 
4. If the result of this application is #block, block the current process. Oth

erwise, evaluate P's failure policy: 

((P :fail) P t 'store)) 
If the result of this application is #fail, return #fail. Otherwise, eval
uate 

(let ((RT ((:rep ((P :access) P t 'store))))) 
(:vith-lock RT 'store (:vrite RT (:rep_t Rt))) 

and resume all processes blocked on this tuple. ( : rep_t returns the tuple 
representation of its argument.) 

Spawn is the non-strict counterpart of put . If PC is a policy closure, the 
expression 

(spawn PC Ce1 e2 ••• en)) 

concurrently instantiates n processes; the ith process in this ensemble is respon
sible for computing the value of ei. Since processes cannot communicate via 
shared variables they may freely access common binding environments. When 
all processes complete, a passive tuple containing the values they have gener
ated is deposited into the appropriate tuple-space by evaluating a put operation 
using the newly constructed passive tuple as the tuple argument. 

3.3 Retrieving Tuples 

Put and spawn generate tuples into tuple-space. Rd and get read tuples and 
binding-values from tuple-space. A rd expression takes the form: 

(rd PC (elt e2, • .. , en) body) 



www.manaraa.com

265 

Unlike tuple-generator expressions, each of the e; may be either an ordinary T S 
expression or a formal. The evaluation of the above expression takes place as 
follows: 

1. Evaluate PC to yield a policy closure P. 
2. Evaluate each e; that is not a formal in the current evaluation environment 

to get a value v;. Let the tuple constructed by replacing each e; by v; be 
called t. 

3. Bind each formal to #undefined. 
4. Evaluate P's blocking policy definition: 

((P :block) P t 'read) 
5. If the result of this application is #block, block the current process; the 

representation type of any tuple-space must provide a queue to hold blocked 
processes. Otherwise, bind the object returned by the application to V and 
evaluate P's failure policy: 

((P :fail) P t 'read) 
If the result of this application is #fail, return #fail. Otherwise, bind 
the i1h element in V to the i1h formal in t, and return the value yielded by 
evaluating body in this augmented environment. 

The get operation is semantically identical to rd except that the tuple chosen 
for the match is removed from the given tuple-space. 

4 Examples 

We consider several simple examples to illustrate the utility of the language. The 
first is the implementation of a cell abstraction; the second is a specification of 
a dynamic load balancing system; the third is a sketch of an inheritance system 
using T S tuple-spaces as concurrent objects. 

While each structure is useful in different domains, they are related to one 
another insofar as they impose conditions on their use not readily expressible 
using ordinary tuple-space operations; we argue that first-class tuple-spaces and 
customization improves the clarity of their definition. 

4.1 Cells 

T S contains no assignment operations on variables. Given that the constituent 
elements of a tuple-space are shared T S objects, arbitrary assignment oper
ations on T S objects would permit "back door" inter-process communication 
through shared variables. Such a capability would violate the immutability 



www.manaraa.com

266 

constraint on tuples, and make it impossible to enforce mutual exclusion or 
atomicity constraints. 

Nonetheless, despite the absence of explicit set I operations, the fact that data 
objects can be added to and removed from a tuple-space makes it straightfor
ward to implement applications that require object mutation. Consider the 
implementation of a memory cell shown in figure 2. 

A cell will always contain at most one element. A write operation on a cell 
uses the failure policy to remove an old element before writing a new one. Two 
processes attempting to write into the cell at the same time are serialized by 
the definition of the failure policy and put . The policy closure returned by 
make-cell is closed over a newly created tuple-space, newTS ; the closure's 
access policy returns this tuple-space when applied. Compile-time analysis on 
the cell abstraction would reveal that the tuple-space holding the current state 
does not escape its lexical contour and only holds tuples of length one of string 
type. This tuple-space can be thus represented as an ordinary protected shared 
variable. 

All side-effecting operations in Scheme are reimplemented in T S to check that 
the object to be mutated is indeed a cell. For example, to create a mutable 
vector of n arguments, we write: 

(make-vector 10 (make-cell)) 

The operation: 

(vector-set! vector k v) 

is equivalent to: 

(let ((obj (vector-ref v k))) 
(if (cell? obj) 

(write-cell obj v) 
error)) 

Cells elevate T S to a middle ground between purely functional and completely 
constructive languages. Pure functional languages (e.g., Haskell[14]) eliminate 
any notion of global state; completely constructive languages (e.g., Ada[24]) use 
state variables pervasively. Both language designs have significant implications 
in the context of concurrency. Functional languages prevent users from express
ing non-deterministic or explicitly parallel programs; statement-based parallel 
languages often require bulky modularity devices (e.g., monitors or rendezvous 
points) to ensure atomicity constraints. TS, on the other hand, purports to 
serve as a bridge between these two proposals. The functional core ofT S makes 
it straightforward to program in a mostly side-effect free style; nonetheless, the 
modularity and serialization properties of tuple-space make it easy to build to 
local mutable objects when required. 



www.manaraa.com

(define (make-cell) 
(let* ((newTS (make-ts)) 

(state (default-ts))) 
(put state ("empty")) 
(cons 'cell 

(lambda (op) 

267 

(cond ((eq? op :fail) 
(lambda (PC tuple kind) 

(let ((ts (:rep ((PC :access) 
PC tuple kind)))) 

(get state (?condition) 
(cond ((and (equal? condition "empty") 

(memq kind '(store fork)))) 
(put state ("full")) 
#succeed) 

((memq kind '(read remove)) 
#succeed) 

(else #fail))))) 
((eq? op :access) 

(lambda (PC tuple kind) newTS)) 
(else op)))))) 

(define (read-cell cell) 
(rd (second cell) (?v) v)) 

(define (write-cell cell v) 
(let ((contents (second cell))) 

(if (fail? (put contents (v))) 
(get contents (?old-v) 

(write-cell cell v)))) 

(define (cell? cell) 
(equal? (first cell) 'cell)) 

Figure 2: A TS implementation of a memory cell. 



www.manaraa.com

268 

4.2 Dynamic Load Balancing 

Besides allowing the implementation of different kinds of distributed data struc
tures, customizable first-class tuple-space also permit the T S programmer to 
manipulate the process state of tuple-spaces. For example, consider a collection 
of tuple-spaces that represent virtual processors; each tuple-space contains a 
number of active processes and data elements. These processes communicate 
with one another via standard tuple-operations. Since processes are periodi
cally run within a virtual processor, it is useful to allow process load on any 
given processor to be monitored and balanced dynamically, based on runtime 
conditions. 

We present in figure 3 the structure of an abstraction that views virtual pro
cessors. The processors coordinate their activities by monitoring their load 
(i.e., the number of extant processes they contain), and by handing incoming 
processes to less loaded processors when they become saturated. 

In the implementation described here, dynamic...1oad returns a list of policy 
closures; the ith closure corresponds to the ith virtual processor in the processor 
ensemble. Each policy closure is closed over its index this ensemble. To permit 
dynamic load balancing, we specify an access policy that examines the current 
load of its virtual processor. If the policy is invoked by a spawn operation 
(which is the only device for instantiating new processes), and the current load 
on this processor has already reached its maximum, we apply the policy closure 
of its neighbor with the current arguments. In the case where the load has 
not reached its maximum, we simply increase the load factor by the number 
of processes being instantiated, and return the current tuple-space. When the 
processes instantiated by a spawn operation complete, the resulting passive 
tuple is recorded in the specified tuple-space via a put operation. Since such 
an operation signals the completion of a related set of processes, the load value of 
the virtual processor in which the passive tuple is to be deposited is decremented 
appropriately. (Of course, this implementation assumes that processes do not 
generate spurious put operations on these virtual processors.) In all other 
cases, the current tuple-space is returned with no other processing initiated. 

Dynamic load balancing in the absence of policy procedures is possible by ab
stracting access policy decisions into user defined procedures that mediate all 
tuple-space operations into the processor set. Rather than writing expressions 
of the form: 

(spawn (nth proc..set i) tuple) 

we now need to invoke a dedicated procedure to determine the suitable tuple
space. Abstraction is compromised - spawn operations over ordinary tuple
spaces are distinguished from operations on the virtual processor ensemble; 



www.manaraa.com

269 

(define (dynamicJLoad n) 
(let ((load-vector (make-vector n (make-cell)))) 

(vector-fill! load-vector default-load) 
(let iterate ((i 0) 

(proc..set ' ())) 
(cond ((= i n) proc..set) 

(else (iterate (+ i 1) 
(cons proc..set 

(load-policy (make-ts) proc..set 
load-vector i)))))))) 

(define (load-policy newTS proc..set load-vector i) 
(lambda (op) 

(cond ((eq? op :access) 
(lambda (PC tuple kind) 

(cond ((and (equal? kind 'fork) 
(> (vref load-vector i) 

•max-load•)) 
(let ((next-PC (nth proc..set 

(modulo (1+ i) n)))) 
((next-PC :access) 
next-PC tuple kind))) 

((equal? kind 'fork) 
(increase! load-vector i 

(:tuple-length (:rep_t tuple))) 
newTS) 

((equal? kind 'put) 
(decrease! load-vector i 

(:tuple-length (:rep_t tuple))) 
newTS) 

(else newTS)))) 
(else op))))))))) 

Figure 3: A dynamic load balancing abstraction using a customized access 
policy definition. 



www.manaraa.com

270 

different implementations of a load balancing policy entail different procedure 
interfaces. Policy closures present a transparent and seamless interface to tuple
spaces despite the fact that the behavior of tuple-space operations may greatly 
vary across distinct tuple-space objects. 

4.3 Inheritance 

The technique used to build a dynamic load balancing system using customized 
policy procedures can be applied in a very different domain with only slight 
modification. Consider the implementation of a Smalltalk-style[ll] inheritance
based system. The basic entities in such system are objects that retain local 
state, and which communicate via message-passing. Moreover, objects are free 
to dispatch messages they receive to their parents in the object hierarchy if 
they determine that they cannot interpret them. A concurrent message-passing 
system permits objects to process many messages simultaneously; message sends 
are asynchronous, and objects may respond to many messages concurrently. 
The approach described here is simple, omitting many important details and 
disregarding any syntactic sugaring, but it captures the essence of inheritance
based programming relying only on policy definitions and first-class tuple-spaces 
to do so. 

The ability to customize the behavior of tuple-spaces in T S allows a simple 
formulation of inheritance within a parallel system. The basic idea is to imple
ment objects as tuple-spaces, and message passing as tuple reads. Methods and 
instance variables are stored as tuples. If a tuple-read operation is performed 
on a tuple-space T that contains no matching tuple, the operation is redirected 
using the T 's access policy definition. to T parent in the object hierarchy. In 
other words, a tuple-template for whom no match exists in one tuple-space is 
implicitly sent to another tuple-space to be resolved. Implicit redirection of 
messages is the operational intuition underlying inheritance. Customization of 
tuple-spaces gives T S this capability. 

Object methods are implemented as abstractions whose first argument plays the 
role of Smalltalk's selt pseudo-variable- selt yields the object containing 
the instance variables to be used by a method. Thus, a method definition takes 
the form: 

(lambda (self . args) 
definition) 

Objects are represented as policy closures. To invoke method M in object 0 
with self argument selt and arguments args, we write: 



www.manaraa.com

(define (make-object parent) 
(let ((newTS (make-ts)) 

(objectList (make-cell)) 
(initialSet '())) 

(lambda (op) 

271 

(cond ((eq? op :access) 
(lambda (PC tuple kind) 

(let* ((tuple..rep ( :rep_t tuple)) 
(component (:tuple_index tuple..rep 1))) 

(cond ((equal? kind 'store) 
(write-cell objectList 

(cons component initialSet)) 
newTS) 

((equal? kind 'read) 
(if (memq component (read-cell objectList)) 

newTS 
((parent :access) parent tuple kind))) 

(else newTS))))) 
((eq? op :fail) 
(lambda (PC tuple kind) 

(if (memq kind '(remove spawn)) 
#fail 
#succeed))))))) 

(define (send obj name) 
(rd obj (name ?definition) 

definition)) 

Figure 4: Implementation of a simple object in T S, and a send operation 
that returns the definition of its argument, name as defined in object obj 's 
hierarchy. 

(rd 0 (' M ?v) 
(v self args)) 

Method definitions and instance variables are recorded within a tuple-space as 
two-tuples: < 1symbol, 1definition >. 
Thus, to augment object 0 with a new method definition M, we write: 

(put 0 ( 'M definition)) 

An object 0 is created by applying make-object. The policy closure which it 
returns defines customized access and failure policies. 0 is closed over a tuple
space T that contains methods and instance variables. These definitions are 



www.manaraa.com

272 

(define (make-point a b) 
(let ((obj (make-object (global-ts)))) 

(put obj ('x a)) 
(put obj ( 'y b)) 
(put obj 

('DistfromOrig (lambda (self) 
(sqrt (+ (sqr (send self 'x)) 

(sqr (send self 'y))))))) 
(put obj 

('ClosertoOrig (lambda (self p) 

obj)) 

(< ((send self 'DistfromOrig) self) 
((send p 'DistfromOrig) self))))) 

Figure 5: A point generator. 

recorded using put operations. When a put operation on 0 is evaluated, the 
method or instance variable name is recorded in a list ( obj ectList ); this list is 
referenced whenever a process attempts to send a message to this object. When 
the definition of a method or instance variable is required (via a rd operation), 
the access policy tests whether the symbolic reference to this method is defined 
within obj ectList; if it is, the tuple-space is returned and the default matching 
protocol is guaranteed to find a tuple containing a definition for the requested 
operation. If no such component exists in the current tuple-space, the access 
policy evaluates the object's parent; the tuple-space yielded by evaluation of the 
parent is the tuple-space on which the message is to be sent (i.e., the tuple-space 
on which the rd operation is to be performed). 

The failure policy prevents object components from being removed or initiating 
processes within objects. Mutable components must be realized by binding the 
component name to a cell and performing the necessary changes on the cell. 

To illustrate how we might use customized tuple-spaces to build inheritance 
systems, we consider an example discussed in [9, 16]. A circle is a sub-class 
of a point. Point defines instance variables x and y to specify its location. It 
also defines two methods: DistfromOrig computes the distance of a point from 
its origin and ClosertoOrig is a predicate which given another point object as 
its argument returns true if its point is closer to the origin than its argument, 
and false otherwise. We use self to denote the object whose tuple contents 
define the environment within which an expression should be evaluated. The 
code for a point generator is given in figure 5. 

A circle is defined in terms of points. Because circles have a radius, they have 
a different meaning of distance from the origin. The notion of distance from 



www.manaraa.com

273 

(define (make-circle a b r) 
(let ((super (make-point a b)) 

(obj (make-object super))) 
(put obj ('radius r)) 
(put obj 

('DistfromOrig (lambda (self) 

obj)) 

(max (- ((send super 'DistfromOrig) self) 
(send self 'radius)) 0)))) 

Figure 6: A circle generator. 

origin for circles is given in terms of the definition of DistfromOrig found in 
point objects: if l is the distance from the origin to the circle's center and r 
is the circle's radius, then l - r gives the distance from the origin of the circle 
object. If this difference is negative, the distance is assumed to be 0. Thus, the 
meaning of DistfromOrig in a circle instance should refer to its meaning as 
specified by the circle (not the point) generator. The code for the circle 
generator is given in figure 6. 

To create a circle Gat coordinates (3,4) with radius 10, we evaluate: 

(define C (make-circle 3 4 10)) 

To determine C's distance from the origin, we evaluate: 

((send C 'DistfromOrig) C) 

Because message sends are implemented via tuple space, many processes may 
simultaneously send messages to the same object; conversely, many processes 
may simultaneously respond to received messages. This property distinguishes 
T S from several other concurrent object systems[3, 26] that serialize hierarchical 
abstractions. In these systems, objects can process only one message at a time; 
in contrast, objects in T S exhibit totally asynchronous behavior since they are 
implemented in terms of general tuple-space objects. 

Furthermore, new method definitions and instance variables can be added to 
an object dynamically without requiring reevaluation of the inheritance tree -
since object components are tuples, and there is no restriction in an object's 
specification that limits the addition of new tuples, processes are free to augment 
an object's component set even after the instance is defined. The ability to add 
new components to instances of objects is tantamount to a delegation-based 
system[18, 23]. Different instances of the same class can have different behavior 
based on how new instances are added and old instances are changed. 



www.manaraa.com

274 

Single inheritance is realized as a simple application of tuple-space customiza
tion. Generalizing this method to handle multiple inheritance is straightforward, 
involving only slight modification to the matching policy to specify a total or
dering over an object's superclasses. 

5 Conclusions 

T S is an attempt to increase the flexibility and expressivity of distributed data 
structures. First-class tuple-spaces contribute to modularity and abstraction. 
Permitting the programmer to customize the operational behavior of tuple
spaces makes it possible to build distributed data structures whose contents 
are devoid of bookkeeping clutter. Although the policy definitions given here 
subsume a wide range of programming paradigms, an interesting avenue of 
research is to develop linguistic mechanisms that permit users to generate other 
kinds of policy definitions dynamically that can be suitably interpreted by tuple
space operations. 

First-class tuple-spaces and customization have implications on implementation 
as well. Because tuple-spaces are denotable objects with a concrete specification 
in the base language, we can apply standard optimization techniques (e.g., flow
and lifetime analysis) to optimize their representation[15]. We anticipate that 
such analysis can be used to significantly reduce any implementation penalty 
incurred because of customization. 

In summary, we view the design ofT S as one step towards the realization of a 
highly flexible, efficient parallel programming system for symbolic computation. 
Work is currently underway on a parallel implementation. 

References 

[1] Gul Agha. Actors: A Model of Concurrent Computation in Distributed 
Systems. MIT Press, Cambridge, Mass., 1986. 

[2] V. Ambriola, P Ciancarini, and M. Danelutto. Design and Distributed 
Implementation of the Parallel Logic Language Shared Prolog. In Sec
ond ACM Symposium on Principles and Practice of Parallel Programming, 
pages 40-49, March 1990. 

[3] Pierre America. Inheritance and Subtyping in a Parallel Object-Oriented 
System. In Proceedings of the ECOOP Conf., pages 234-242, 1987. 



www.manaraa.com

275 

[4] Arvind, Rishiyur Nikhil, and Keshav Pingali. !-Structures: Data Struc
tures for Parallel Computing. Transactions on Programming Languages 
and Systems, 11(4):598-632, October 1989. 

[5] Nick Carriero and David Gelernter. How to Write Parallel Programs: A 
Guide to the Perplexed. ACM Computing Surveys, 21(3), September 1989. 

[6] Nick Carriero and David Gelernter. Linda in Context. Communications of 
the ACM, 32(4):444- 458, April1989. 

[7] Andrew Chien and W.J. Dally. Concurrent Aggreates (CA). In Sec
ond ACM Symposium on Principles and Practice of Parallel Programming, 
pages 187-197, March 1990. 

[8] K. Clark and S. Gregory. Parlog: Parallel Programming in Logic. ACM 
Transactions on Programming Languages and Systems, 8:1-49, 1986. 

[9] William Cook and J ens Pals berg. A Denotational Semantics of Inheritance 
and its Correctness. In OOPSLA '89 Conference Proceedings, pages 433-
444, 1989. Published as SIGPLAN Notices 24(10), October, 1989. 

[10] David Gelernter. Multiple Tuple Spaces in Linda. In Proceedings of PARLE 
'89, volume 2, pages 20-27, 1989. 

[11] Adele Goldberg and David Robson. Smalltalk-80: The Language and its 
Implementation. Addison-Wesley Press, Reading, Mass., 1983. 

[12) Robert Halstead. Multilisp: A Language for Concurrent Symbolic Compu
tation. Transactions on Programming Languages and Systems, 7(4):501-
538, October 1985. 

[13] Waldemar Horwat, Andrew Chien, and William Dally. Experience with 
CST: Programming and Implementation. In ACM SIGPLAN '89 Confer
ence on Programming Language Design and Implementation, pages 101-
109, June 1989. 

[14] Paul Hudak and Philip Wadler, editors. Report on the Functional Program
ming Language Haskell. Technical Report YALEU/DCS/RR-666, Yale 
University, Dept. of Computer Science, December 1989. 

[15] Suresh Jagannathan. Optimizing Analysis for First-Class Tuple-Spaces. 
In Third Workshop on Parallel Languages and Compilers, August 1990. 
Forthcoming from MIT Press. 

[16] Samuel Kamin. Inheritance in Smalltalk-80: A Denotational Definition. 
In 15th ACM Symposium on Principles of Programming Languages, pages 
80-87, 1988. 



www.manaraa.com

276 

[17) David Kranz, Robert Halstead, and Eric Mohr. Mul-T: A High Performance 
Parallel Lisp. In Proceedings of the ACM Symposium on Programming 
Language Design and Implementation, pages 81-91, June 1989. 

[18) Henry Lieberman. Using Prototypical Objects to Implement Shared Behav
ior in Object Oriented Systems. In OOPSLA '86 Conference Proceedings, 
pages 214-223, 1986. 

(19) Jonathan Rees and editors William Clinger. The Revised3 Report on the 
Algorithmic Language Scheme. ACM Sigplan Notices, 21(12), 1986. 

[20] Ehud Shapiro. Concurrent Prolog: A Progress Report. IEEE Computer, 
19(8):44-60, August 1986. 

[21) Ehud Shapiro, editor. Concurrent Prolog : Collected Papers. MIT Press, 
1987. Volumes 1 and 2. 

[22) Brian Smith and J. des Rivieres. The Implementation of Procedurally 
Reflective Languages. In Proceedings of the 1984 Conference on Lisp and 
Functional Programming, pages 331-347, 1984. 

[23) David Ungar and Randall Smith. Self: The Power of Simplicity. In OOP
SLA '87 Conference Proceedings, pages 227-241, 1987. 

[24) United States Dept. of Defense. Reference Manual for the ADA Program
ming Language, 1982. 

[25) Mitchell Wand and Daniel Friedman. The Mystery of the Tower Revealed: 
A Non-Reflective Description of the Reflective Tower. In Proceedings of 
the 1986 Conference on Lisp and Functional Programming, pages 298-307, 
1986. 

[26) A. Yonezawa, E Shibayama, T Takada, andY. Honda. Object-Oriented 
Concurrent Programming - Modelling and Programming in an Object
Oriented Concurrent Language, ABCL/1. In Object-Oriented Concurrent 
Programming, pages 55-89. MIT Press, 1987. 



www.manaraa.com

A Formal Specification of the Process Thellis 

Michael Factor* 
IBM Israel, Science and Technology LTD 

Abstract 

The process trellis is a. software architecture for building parallel real-time mon
itors: heterogeneous, large, real-time, continuously executing programs. These 
programs receive massive quantities of data in domains that a.re often ill-defined; 
they filter this data., presenting the user with an analysis rather than a. simple 
summary. The process trellis combines heterogeneous processes that communicate 
among themselves and witl1 the external world using a uniform framework. 

We begin by motivating and describing the goals of the process trellis. After 
briefly reviewing the informal description of the trellis architecture, we extend our 
·work by presenting a formal definition of the trellis architecture. We then show how 
several beneficial properties of the architecture follow from this definition. We briefly 
describe our experience with the process trellis in building a prototype monitor for 
a l1ospital intensive care unit. 

1 Introduction 
The process trellis is a software architecture for building parallel 1·eal-time monito1·s: het
erogeneous, large, real-time, continuously executing programs. These programs receive 
massive quantities of data in domains that are often ill-defined; they "intelligently" filter 
this data, presenting the user with an analysis rather than a simple summary. The pro
cess trellis combines heterogeneous processes that communicate among themselves and 
with the external world using a uniform framework. We have previously presented an 
informal description of the trellis architecture [9, 8], demonstrating its usefulness in the 
construction of a new-generation monitor for a hospital intensive care unit, the Intelligent 
Cardiovascular Monitor (ICM) [11, 6, 15]. 

We begin by motivating and describing the goals of the process trellis. After briefly 
reviewing an informal description of the trellis architecture, we extend our work with 
a formal definition of the process trellis. Several beneficial properties follow from this 

*This work was performed in large part at Yale University, Department of Computer Science, with 
support from National Library of Medicine grant TI5-LM-07056 and from National Science Foundation 
grant CCR-8657615. 



www.manaraa.com

278 

definition. Using the formal definition, we present a very simple run-time execution 
scheme. This scheme, which makes it easy to understand a trellis program's run-time 
behavior, imposes a synchronous behavior on a trellis program, even though the trellis is 
a collection of independent, asynchronous processes. We also show that, even without this 
scheme, control-flow and data-flow dependencies impose a (loose) global synchronization 
on trellis programs. In addition, we show that, given three reasonable assumptions, any 
process trellis program will become quiescent after receiving new inputs from the "real 
world." We then briefly describe our experience with the process trellis in building an 
intensive 'care unit monitor. 

2 Goals 

Domains as diverse as medical monitoring, financial analysis and climatological data gath
ering are characterized by massive quantities of complex data. In all of these doma.ins, 
the quantity and quality of the available data has tended to grow continuously in recent 
years. This huge quantity of data can easily lead to information overload, where there is 
more data available than a human can reasonably analyze and use. Fixating on a sub
set of the data and ignoring the remainder, is a natural human response to information 
overload. Real-time monitors use the power of a computer to minimize information over
load and fixation, presenting users with an integrated, high-level analysis of the domain. 
Unfortunately, such applications have several characteristics which make them difficult to 
construct. 

They are complex and heterogeneous. A real-time monitor will contain a diverse 
collection of modules since it must take in low-level data from multiple external 
sources, integrate this data and generate a high-level analysis of the domain as a 
whole. · 

They are large. These programs are not needed in trivial domains. It follows that a 
real-time monitor will be large. 

They must run in real time. A monitor must analyze data from the external world 
as quickly as the data becomes available. 

They will often need to take advantage of parallelism. To run a real-time moni
tor economically in real time, a uniprocessor will often be insufficient. 

They must execute continuously. Rather than mapping from a set of inputs to a 
set of outputs, as in a "conventional program", a real-time monitor generates a 
continuous, time-varying, stream of outputs based upon its time-varying inputs. 

The goal of the process trellis is to simplify the creation and maintenance of a real-time 
monitor by organizing and structuring t'he program. The trellis should meet the following 
specific goals: 

Modularity: Modifying a module should have predictable effects. 



www.manaraa.com

279 

Flexibility: This modularity cannot, however, come at the price of imposed homogeneit.y; 
the architecture must support a diverse collection of modules. In addition, there 
must be a flexible mechanism for the external world to interact with the program, 
since monitors execute continuously. 

Understandability: A software architecture for large prog!ams must aid in understand
ing a program's static structure as well as its dynamic behavior. 

Predictability: Before real-time guarantees can be possible, one must be able to bound 
the module invocations engendered by any combination of new inputs. 

3 The Process Trellis 

The process trellis organizes a collection of heterogeneous decision processes into an acyclic 
hierarchical network. In this hierarchy, one process dominates another ·if the lower-level 
process calculates information that the higher-level process requires. Every process has 
a set of inferiors, a set of superiors and a state. The value of a process's state, which 
can be a complex object, depends upon the states of the process's inferiors and upon the 
state's own prior value, making processes history sensitive; as long as a process obeys 
the trellis's protocol, it can incorporate any kind of logic to calculate its state. When 
a process executes, it generates a new state if it has sufficient new information; each 
process defines "sufficient new information" for itself in an arbitrary, domain-dependent 
manner. Whenever any non-empty subset of its inferiors has new states, a process is 
enabled and can execute. Unlike Petri-net or conventional data-flow models, processes do 
not require inputs from all of their inferiors to be enabled; thus, processes execute with 
partial information. When a process generates a new state, its superiors are enabled and 
attempt to generate new states in turn. 

Besides passively waiting for a new state from an inferior, a process can actively query 
any of its inferiors. A query contains no data nor is it part of a remote procedure call; 
it simply causes the lower-level process to attempt to generate a new state. A queried 
process executes and attempts to generate a new state; if it cannot generate a new state 
-it lacks sufficient information- it may in turn query its inferiors. The trellis, however, 
provides no guarantee that a queried process will ever generate a new state. 

Sometimes higher-level knowledge is necessary to set the parameters of a lower-level 
process. The context is a (possibly empty) subset of a process's superiors whose states are 
seen by the inferior whenever the inferior executes. The context is intended to influence 
how a process computes; by contrast, its inferiors influence what and when the process 
computes. A context process generating a new state does not cause its inferiors to execute; 
this rule is necessary to avoid feedback loops with cyclic execution. 

The process trellis allows two-way communication of both control and data between 
a process and its neighbors, but it carefully constrains this two-way communication. It 
distinguishes between the downward flow of control (queries) and the downward flow of 
data (context). Table 1 summarizes the inter-process communication protocol. 

Besides providing for uniform inter-process communication, the trellis provides a uni
form mechanism for external-world interactions. Probes are an application-independent 



www.manaraa.com

280 

An Inferior Generates A New State ==> Control Flows Up 

A Superior Executes A Query ==> Control Flows Down 

An Inferior Generates A New State ==> Information Flows Up 

A Context Generates A New State ==> Information Flows Down 

Figure 1: The Trellis Protocol 

mechanism for dynamically interacting with any process in a running trellis program. Sig
nificantly, the user, not the program, controls when and with which part of the program 
this interaction occurs. 

Two symmetric "probes" are part of the model. A write probe sets the value of any 
portion of any process's state. A read probe reads any process's state. These probes are 
either acti·ve or passive. When a process receives an ac.tive write probe, it immediately 
executes as if an inferior had generated a new state. It can fully integrate the new da.ta 
into its state and may generate a new state which its neighbors will see. When a process 
receives a passive write probe, the probe does not cause it to execute. In either case, the 
next time this process executes, for whatever reason, its state reflects this write probe. 
When a process receives an active read probe, if it does not have a currently defined state, 
it execut,es as if it were queried. When a process receives a passive read probe, whether or 
not it has a currently defined state, it does not execute. In either case, when the process 
next has a state, the read probe will return this state. 

Every trellis process should always be as up-to-date as possible, given the trellis pro
tocol. There is a natural, readily parallelized, iterative execution scheme, that insures this 
behavior: repeatedly sweep over the all of the trellis processes in a fixed order, executing 
any that have received a new state from an inferior, an active probe, or a query. Section 6 
elaborates on this execution scheme. 

4 Formal Definition 
Using the informal, high-level description as motivation, this section formally defines 
the process trellis. A process trellis program is a set of processes 'P = {P11 ... Pn}i let 
P, Q E 'P be arbitrary trellis processes. A programmer must supply the following for each 
process, P: 

• ]p - Process P's inferiors. ]p C 'P. The inferior relationship forms a directed 
acyclic graph, ('P, £), where e = {( Q, P) I P, Q E 'P 1\ Q E !p}. Let 1 p be process 
P's superiors; lp = {Q I P E Jq} 



www.manaraa.com

281 

• Cp - Process P's contexts. The context is a subset of a process's superio1·s, i.e., 
Cp ~lp. 

• fp- Process P's state calculation function. We explain this below. 

• 0'~- Process P's initial private state. It is a potentially complex object of arbitrary 
type. 

• s~ - Process P's initial public state. It is a potentially complex object of arbitrary 
type. 

We distinguish between a. process's private state and its public state. The private state 
is accessed only by that process; it can change without the process generating a new public 
state, i.e., the private state changing does not affect the process's superiors. By contrast, 
the public state, which was the state we described in the prior informal description, is 
accessed by the process's superiors as well as those processes that have this process for 
a context. This distinction allows a process to execute and change the data structure 
representing its {private) state without generating a new (public) state; thus, processes 
can be completely history sensitive, remembering prior invocations even if they do not 
generate a new public state. In addition, it encourages information hiding; a. process need 
not make its entire state visible to its neighbors. 

We describe the behavior of a.n isolated trellis process using recurrence equations. The 
interactions between processes, and thus the behavior of a trellis program as a whole, are 
implicit in these equations. In section 7 we describe the conditions under which these 
equations have a. solution. Our initial definition ignores probes, focusing on the trellis as 
a closed system; section 4.2 extends this definition to include probes. {Throughout this 
section we present the formal definition first, then define the variables, and finally present 
a prose explanation of the equations.) 

4.1 A Closed System 

The behavior of a. trellis process ignoring probes is given by: 

u~ x s~ x cfp - e~ -+ 

fp(u~\ {s~1 I Q E lp}, {s~ I -y(P, Q,i,j)} )D 
0'~1 X e X { } {1) 

e~ - {3Q. P E cfci1 /\ P E lQ) V 

{3Q. s~1 ¥: e/\ Q E lp) (2) 

where e is a unique null value defined such that {e} = { }, the notation b -+ cDa is 
conditional execution, and 

-y(P, Q, i,j) = (Q E Cp) 1\ (j < i) 1\ (s~ ¥:e) 1\ (:;'k. j < k < i 1\ s~ ¥:e) 

The following interpretation applies to the symbols we have not yet described: 



www.manaraa.com

282 

• i- iteration count (recurrence index); i E 1 ... oo. 

• s~ - process P's public state, a fixed-size, potentially complex object of arbitrary 
type. 

• u~ - process P's private state, an arbitrary type, fixed-size, potentially complex 
object. 

• d~ -the set of inferiors process P queried during iteration i. d~ ~ [p, 4 = { }. 
• e~ - a Boolean that is true iff process P is enabled for iteration i. 

• 'Y - a macro to simplify equation 1; used to determine the set of context states 
passed to P's state calculation function. 

A process is said to generate a new (public) state during the i 'th itemtion if its i'th 
public state is non-null, i.e., s~ =f; f. Conversely if s~ = f, process P did not generate a 
new state during iteration i. The initial public state of each process, slj,, which is supplied 
by the programmer, must be non-null. This guarantees that there is at least one defined 
public state (a non-f state) for each process; we motivate the need for this below. The 
fact that a process's i'th public state is f implies nothing about the value of its i'th private 
state. 

Equation 1 shows the i'th execution of process P. On its i;th execution, process P 
calculates its i'th private state (u~), i'th public state (s~) and i'th set of queried inferiors 
( d~ ); this is the left side of the equation. If the process is enabled for the i'th iteration, i.e., 
e~ is true, its i'th private state, public state, and set of queried inferiors are determined 
by invoking process P's state calculation function fp. 

If process P is not enabled for the i'th iteration, i.e., e~ is false, the trellis protocol 
specifies ~he process's behavior. Its private state does not change (i.e., u~ = u~1 ), it does 
not generate a new public state (i.e., its i'th public state is f), and it does not execute 
any queries (i.e., d~ = { } ). The last line of equation 1, the alternate branch of the 
conditional, shows this behavior. 

fp is a three-argument, black-box function which returns a three tuple. The first 
argument is process P's prior private state (u~1 ). The second argument to fp is the set 
of public states of process P's inferiors: 

Since this set only includes the states of those processes that generated new states during 
the prior iteration (if a process Q did not generate a new state during iteration i - 1, 
s~1 = c:: and {f} = {}),its cardinality ranges from zero to jlpj, the size of the set [p. 
The final argument to fp is the set containing the most recently generated public state 
of each of process P's contexts. Replacing 'Y with its definition, this third argument is:# 

Since this set contains the newest public state of each context process, its cardinality is 
always jCpj. If we had not required the initial public state of each process to be non-null, 



www.manaraa.com

283 

i.e., s~ '# c;, we could not guarantee the existence of a defined public state for each process 
Q in P's context.1 fp is not permitted to side-effect any of its arguments; however, other 
side-effects are permissible. 

fp returns a three-element tuple; although fp's type-signature is fixed, fp can de
termine its return values using arbitrary logic. The first element of the returned cross 
product is process P's i'th private state. The i'th private state may differ from the i -1 'st, 
even if P did.not generate a new public state on its i'th execution, i.e., even if s~ = c;, The 
second element is process P's i'th public state. This element is c; if P had "insufficient 
information to generate a new state" during its i'th execution; as mentioned above, this 
element is also c; if P was not enabled for the i'th iteration. The final element is the 
subset of its inferiors that P is querying. A query causes an inferior process to be enabled 
for the next iteration; the trellis protocol includes no presumption that a queried process 
will ever generate-a new state, i.e., the process trellis protocol does not view a query as 
a remote procedure call. In addition, since a state is always available for each context 
process - the context is the most recently generated public state, not the state from 
the prior iteration- the trellis protocol cannot deadlock with a queried ihferior waiting 
for a new context state from the querying process. By contrast the internal logic .of the 
state transformation functions, the black boxes, can incur a "local deadlock," in which 
individual processes fail to generate new public states, i.e., the state calculation function 
returns c; for the process's new public state. However this local deadlock is uninteresting 
from the trellis's perspective because a) assuming that the fp's do not diverge, the trellis 
as a whole is deadlock free (all variables ultimately depend only upon values computed 
during prior iterations) and b) the trellis cannot distinguish between "local deadlock" and 
failure to generate a new public state for any other lack of sufficient information. 

A process is enabled for the i'th iteration in one of two ways, as equation 2 shows. P 
is enabled if it has been queried by (at least) one of its superiors: 

or if it has received new information from an inferior generating a new state on the prior 
iteration: 

3Q . s}j-1 '# fA Q E lp. 

4.2 An Open System 
We have defined the process trellis program as a closed system. But the external world 
must be able to enter data into, and retrieve results from, a real-time monitor. Probes 
are the mechanism for this interaction. A read-probe returns a process's public state, and 
a write probe sets any portion of any process's private state. This informal description 
ignores timing. A process's state evolves over time, with its i'th state (potentially) differ
ing from its i + 1 'st state; which version of the state should a probe acc~s? We address· 
this issue by assuming that a probe for process P occurs instantaneously during some 
iteration i. Since probes occur instantaneously, we avoid the complications that would 

1 A slightly more complicated constraint that took into account which processes were used as contexts 
would suffice to make this guarantee. 



www.manaraa.com

284 

arise if a probe could begin during one iteration and complete during another. However, 
even with this simplifying assumption, adding probes to the formal definition requires 
several extensions. 

First, we add two recurrence variables for each process (the meaning of these variables 
will become clear only after the definition of probes); these variables are both two-element 
tuples. 

r~ _ F x F 

r~ _ ((r~1 ~ 1) A (s~1 =E)) -+ (T x F)D(F X F) 
w~ _ identity x F 

(3) 

(4) 

where a ~ n is the n'th element of the cross product a, identity is the identity function, 
and T and F are Booleans. These variables get a value in two ways: 1) the recurrence 
equations 3 and 4 define their initial value and 2) as equations 5 and 6 show, probes can 
asynchronously change the initial value. In equations 7 and 8, we use these variables to 
refine tbe behavior of a trellis process to account for interactions with the outside world. 

Interpret the variables in equations 3 and 4 as: 

• r~ -Process P's read probe recurrence variable is the cross product of two Boo leans. 
The first Boolean is true iff there is an unsatisfied read probe for process P. As 
equation 3 shows, P has an unsatisfied read probe during iteration i if it had an 
unsatisfied read probe during the prior iteration {i- 1) and it did not generate a 
new state during that iteration. The second Boolean is true iff an active read probe 
was executed for process P during iteration i; we show this in the definition of read 
probes below. The second Boolean is initially false. 

• w~ - Process P's write probe recurrence variable is a cross product: a function 
whose type is from the type of the process's private state to that same type and 
a Boolean. The first element, which is initially the identity function, tells how the 
write probe modifies the process's private state. Like r~, the second Boolean is true 
iff an active write probe was executed for process P during iteration i. 

A probe for process P is executed during the i'th iteration if, when the probe is 
executed, process P's i - 1 'st private state is defined but its i'th private state is not; 
this is well-defined since probes are executed instantaneously. We do not specify how to 
determine the iteration during which a probe is executed. 

Probes, which enter data or retrieve results from any process in a running trellis 
program, side-effect the recurrence variables. A write probe alters the variable w~, and a 
read probe alters r~, where i is the iteration during which the probe was executed. 

WriteProbep(g,b) _ w~ r (go (w~ L 1)) x ((w~! 2) V b) 
ReadProbep{b) _ r~ r T x ((r~! 2) V b) 

where g o h is function composition and a r b assigns b to a. 

(5) 

(6) 

A write probe for process P has two arguments: g, a function whose type is the 
type of the process's state to that same type, and b, a Boolean that tells whether the 



www.manaraa.com

285 

probe is active. These are the same types as the elements of w~. The function 9 tells 
how the private state of process P should be modified. The specification permits a write 
probe to make arbitrary modifications toP's private state based upon the state's current 
value. However, an implementation may restrict the complexity of this function due to 
the difficulty of allowing arbitrary, interactively-specified modifications. When a write 
probe is executed, g is composed with the first field of w~ (P's write probe recurrence 
variable): 

go(w~ll). 

Though this permits multiple write probes to be executed during the same iteration for 
the same process, a later probe can hide the effects of an earlier probe. After a. write 
probe is executed for process P during iteration i, the second element of w~ is true if this 
probe was an active probe or if an active write probe had already been executed during 
iteration i: 

(w~ l2) V b. 

A read probe for P has one argument, a Boolean indicating whether the probe is 
active. A read probe for process P executed during iteration i modifies the recurrence 
variable r~. The first element of the tuple r~ is set to true since there is an unsatisfied 
read probe for process P, namely, the probe being executed. The number of unsatisfied 
read probes is irrelevant. The second field is true either if this is an active probe or an 
active probe was already executed during iteration i; this is analogous to the definition 
for write probes. 

We now show how the addition of probes modifies the definition of the trellis as a. 
closed system: 

CT~ X s~ X cfp - e~ -+ 

fp(&~-I,{s~1 I Q E /p},{s~ I "Y(P,Q,i,j)})D 

u~1 X f X { } (7) 
e~ _ ((3Q. P E cfQ"1 1\ P E Jq) V (r~1 12)) V 

((3Q. s~1 'I' fA Q E /p) V (w~1 l2)), (8) 

where 

Equation 7 refines equation 1 to account for the modifying effects of a write probe. 
We have replaced occurrences of the process's private state (cr~1 ) on the right-hand side 
with u~1 : the i -l'st private state, updated to reflect the changes specified by any write 
probes executed during the i'th iteration. If no write probe was executed during the i'th 
iteration, the updated version of the process's private state is the same as the original 
version, i.e., u~-l = cr~1 ' since the first field of w~ is initially the identity function. Even 
if P is not enabled for the i'th iteration, P's private state is updated to reflect the effects 
of any write probes. 

Equation 8 modifies equation 2 to account for the enabling effects of active probes. A 
process is enabled for the i'th iteration if during the prior iteration it was queried, by a. 



www.manaraa.com

286 

P is enabled if it: 

1. received new data from: 
• an inferior. 
• an active write probe. 

2. received a query from: 
• a superior. 
• an active read probe. 

Figure 2: Process Enablement 

superior or by an active read probe: 

or if it received new information either from an inferior or an active write probe: 

Figure 2 summarizes the rules for process enablement. 
While we have presented the definition of a read probe, we have not shown how a probe 

returns the process's state, which, after all, is the point. Display~ is true iff process P's 
i'th public state should be returned to the user as the result of a read probe. 

Display~ = ((r~! 1) 1\ (s~ =/:e)). 

This returns the first new state generated by process P after the read probe is executed. 
If the process generates a new state during the same iteration during which the probe is 
executed, this state is returned. We do not specify the mechanism by which the state is 
actually displayed. 

The recurrence equations given in this section do not necessarily have a solution. 
Intuitively, there are two reasons for this: 1) the equations contain a black-box component, 
fp, and 2) the equations do not define a closed system, i.e., probes can asynchronously 
change the value of a recurrence variable. However, given certain reasonable assumptions 
which address these issues, these equations do have a solution. Section 7 describes these 
assumptions from an operational point of view. 

5 Global Behavior 
Our formal definition left implicit the global behavior of trellis programs, considering 
only individual processes in isolation. This makes it simple to think about individual 
processes, but difficult to reason about a program as a whole. However, we can view the 
formal definition of a trellis program as an operational description. Processes compute 



www.manaraa.com

287 

Fori= 1 ... oo 
For every process P 

If P is enabled then execute P. 

Figure 3: Iterative Execution Scheme 

successive values of their recurrence variables. For a process to compute the values of 
its i'th recurrence variables (e.g., compute its i'th private state), all of its inferiors and 
superiors must have computed their i - 1 'st variables. As follows from equation 8, deter
mining if a process is enabled for iteration i requires knowing the queries executed by all 
of its superiors for iteration i - 1 and knowing whether its inferiors generated new states 
during iteration i- 1.2 

A process's current iteration is the greatest iteration for which the value of the process's 
private state has been calculated. Assuming that the trellis graph is connected, the trellis 
protocol bounds the difference between any two processes' current iterations. 

Theorem 1 The difference between the current iteration of any two processes can be no 
greater than the length of the shortest path connecting the two processes in the undirected 
gr4ph ('P,£) where£= {(Q,P) I3P E 'P. Q E /p}. 

Proof: It follows from equation 8 that determining if a process is enabled for the i'th 
iteration requires that all of its neighbors (inferiors and ·superiors) have executed their 
i - 1 'st iterations. Given this observation, a simple induction on the length of the shortest 
path connecting two processes enables us to conclude the claim. I 

Thus, while the trellis processes are defined as asynchronous and independent entities, 
the behavior of a trellis program as a whole has only limited asynchronism. Control-flow 
and data-flow dependencies impose a (loose) global synchronization on trellis programs. 

6 The Iterative Execution Scheme 
The trellis structure inherently constrains how out-of-synchrony any two processes can be. 
However, we wish to make a stronger guarantee; we want all processes to always be as up
to-date as possible, i.e., we want to guarantee that the greatest difference between any two 
processes' current iteration is one. The iterative execution scheme, which we mentioned in 
our informal description of the process trellis, makes this guarantee; it repeatedly sweeps 
over all of the processes in a trellis, executing any that are enabled. This scheme (see 
figure 3) guarantees that no process executes more than once while another process, which 
has been enabled at least as long, does not execute at all. The iterative execution scheme 
constrains the order in which the recurrence variables are calculated. The i'th private 
state must be computed for all processes before the i + 1 'st is computed for any process. 

2We assume applicative-order evaluation. 



www.manaraa.com

288 

A parallel version of the iterative execution scheme replaces the inner loop with (what 
is effectively) a PARDO. Except for the communications that are part of the trellis pro
tocol, the processes are independent. All of the data a process needs during the i'th 
iteration is calculated during the i - 1 'st iteration. Thus, during each iteration all of the 
processes can execute in parallel. 

(LUSTRE [5] is a data-flow language for synchronous real-time systems. Ignoring 
interactions with the external world, the dynamic behavior of a LUSTRE program is 
similar to the iterative execution scheme. A LUSTRE program is a data-flow operator 
net with the additional assumption that operators respond instantly to their inputs. A 
clock is associated with each operator; all of the clocks are multiples of a base clock. An 
operator is only enabled when its clock has advanced. A LUSTRE program has cyclic 
behavior; on then 'th cycle, all operators whose clocks have advanced at time n calculate a 
new value. While the trellis implementation, which [9] describes, is based on this scheme, 
LUSTRE seems to use this observation only as a pedagogical tool in giving language 
semantics.) 

7 Stability 
Under certain reasonable assumptions, we can show that arbitrary trellis programs will 
become quiescent. We call this quiescence property stability; a running process trellis 
program is stable if no process is enabled or executing. Once a trellis program is stable, it 
remains stable until acted upon by an external agent executing a probe. A stable program 
generates no states and executes no queries. 

Any trellis program that meets the following three conditions possesses the stability 
property. 

1. No process generates a new state without receiving a new state from an inferior 
or new data from an active write probe. This corresponds to processes not being 
permitted to create information. Note that a new context state or a passive write 
probe is insufficient. 

2. No active probes are executed during the interval under coi1sideration. 

3. Every process terminates whenever it executes. 

The first assumption restricts processes to generating new states only when they have 
received new information. A process's public state may not always reflect the most recent 
values of all of its context states, but it can always reflect the newest values of all of the 
process's inferior states. This does not significantly restrict the behavior of trellis processes 
since the context is intended to influence how, but not what, a process computes, and 
since a context process generating a new state does not enable its inferiors. Since processes 
are black boxes, this assumption is impossible to guarantee at compile time. However, it 
is easy to verify compliance at run time. Second, since "stability" means that a program 
will become quiescent in a predictable time after receiving new inputs, it is reasonable for 
stability to depend on the absence of new inputs. Finally, while real-time monitors are 



www.manaraa.com

289 

themselves non-terminating, their components should terminate; no individual calculation 
may diverge. Thus, the this assumption is also reasonable, even though it is impossible 
to guarantee (for black-box code) at either compile or run time. 

Theorem 2 Assuming: 

1. No process generates a new public state without 1·eceiving new information: 

~. No active p1·obes are executed: 

VP,Viej ... 27-l+j. (r~!2=F)A(w~!2=F). 

3. fp terminates for all P . 

.f. No process calculates its i 'th public state befo1·e all p1'0cesses have calculated their 
i - 1 'st public state.3 

Given any initial configumtion of a t1·cllis at itemtion j - 1, there will be no enabled 
processes during iteration j + 21-£ + 1. 

Before proving the stability property, we present some definitions. Define .C(P), the 
level number of process P, as follows: 

.C(P) := (lp = { }) - 001 + max.C.(Q). 
QElp 

The level numbers give a topological sort. The height, 1-£, of a trellis program, 'P, is the 
maximum level number of any process in the program: 

1i = max.C.(P). 
'P 

Process P is up-enabled during iteration i if its generating a new state during iteration i 
would not violate assumption 1. Formally, P is up-enabled during iteration i if 

(9) 

In other words, a process is up-enabled if, during the prior iteration, either an inferior 
generated a new state (the first disjunct) or it received an active write probe (the second 
disjunct). In the absence of active probes a process can be up-enabled during an iteration 
only if (at least) one of its inferiors was up-enabled during the prior iteration. 

3This assumption is not necessary to show stability, per se; however, it simplifies the proof by allowing 
a global view of an iteration. 



www.manaraa.com

290 

Proof: The proof of theorem 2 has two parts. 
During iteration j + i (for positive intege1·s i} there a~·e no up-enabled processes with 

.C(P) < i. By induction on the iteration number: 
The base case, i = 1. Since processes with .C(P) < 1 have no inferiors, the first 

disjunct in equation 9 is false, and since by assumption no active probes are executed 
during iteration j, the second disjunct is also false. 

Inductive Hypothesis: Assume that during iteration j + i, no process P with .C(P) < i 
is up-enabled. By the inductive hypothesis, no inferiors of processes at level i or lower 
were up-enabled during iteration j + i. Therefore, during iteration j + i + 1 there are no 
up-enabled processes P with .C(P) < i + 1; in particular, during iteration j + 1i + 1 there 
will be no up-enabled processes. 

In the absence of active probes and new states from inferiors, the only way for a process 
to be enabled during iteration i is if a superior queried the process during iteration i- 1. 

During iteration j + 1i + i there are no enabled processes with .C(P) > 1i - i. By 
induction: 

The base case, i = 1. Since during iteration j + 1i there are no up-enabled process 
with .C(P) < 1i and since processes with .C(P) = 1i have no superiors, no process with 
.C(P) > 1i- 1 will be enabled during iteration j + 1i + 1. 

Inductive Hypothesis: Assume that during iteration j + 1i + i no process P with 
.C(P) > 1i- i will be enabled. By the inductive hypothesis, no superior of a process at 
level 'H.- i or greater will be enabled during iteration j + i. Since in the absence of probes 
and new states from inferiors the only way for a process to be enabled is to be queried 
by a superior and since no superior of a process with .C(P) > 1i - i is enabled during 
iteration j + 1i + i, no process with .C(P) > 1i- i- 1 will be enabled during iteration 
j + 1i+i + 1; in particular, during iteration j +21i+ 1 there will be no enabled processes.l 

The ability to show stability is derived from the decoupling of control flow from infor
mation flow. This decoupling enables the trellis to possess the stability property, while 
still permitting bidirectional communication. Without this decoupling, it would be impos
sible to show -quiescence (stability) for a generic trellis program. While we need to make 
some assumptions about the behavior of individual trellis processes to show stability, it 
is not necessary to understand the internal details of a particular trellis program to show 
quiescence. 

Saying that a process trellis possesses the stability property is the operational equiv
alent of saying that the recurrence equations describing a trellis program have a unique 
solution. The stability assumptions are the conditions necessary for the recurrence equa
tions given in section 4 to have a solution. The stability property says that after a trellis 
is externally modified by probes, it will, within a known number of iterations, reach a. 
global state in which no processes are enabled, and thus no processes generate new states 
or execute queries. Taking a non-operational view of this statement, if assumptions 1, 2, 
and 3 hold, then starting from any values of the recurrence variables at iteration j- 1, a 
"fixed point" 4 will be reached by iteration j + 21i + 1 in which VP: 

4 For the trellis, the standard definition of "fixed point" is inappropriate since the recurrence variables 
can be externally modified by probes, thus moving a trellis program away from a fixed point. Instead, 



www.manaraa.com

291 

1. sj, = t:, i.e., no process generates a new public state. 

2. di = { }, i.e., no process is queried. 

3. ej, = F, i.e., no process is enabled. 

This fixed point will hold for all iterations k, l ~ k ~ j + 2'H. + 1, where l is the first 
iteration ~ j + 2'H. + 1 during which an active probe is executed. 

8 Experience 
To aid in writing process trellis programs, we have designed and implemented the process 
trellis shell. To use this shell, which is for the most part faithful to the specification, 
a programmer supplies for each process its state calculation function, its inferiors, its 
contexts, its initial state and several other attributes. The shell includes a run-time 
kernel that implements a parallel version of the iterative execution scheme; this kernel 
handles all of the parallelism and all of the inter-process communication. 

We have used this shell, to implement the Intelligent Cardiovascular Monitor (ICM), 
a prototype ICU (intensive care unit) monitor [11, 6, 15, 10]. The ICM seeks to provide 
early, systematic detection of evolving trends, taking advantage of asynchronous inputs 
when available but using primarily on-line data.5 Currently, the ICM contains over one 
hundred processes. The prototype ICM runs off-line,.but at real-time rates, at a frequency 
up to one hundred times a second. 

9 Related Work 

PSDL [14, 13] is a description language for rapidly prototyping large, real-time systems. 
PSDL combines "operators" using a modified, idiosyncratic data-flow firing rule. These 
operators are either hierarchically composed of other operators, or they are arbitrary code 
implemented in some base language. Thus, PSDL permits heterogeneous modules. Since 
PSDL programs can contain cycles, one cannot bound the operator firings that will result 
when new data enters the program. Nor does PSDL provide a uniform mechanism for the 
external world to interact with any operator; although it does provide mechanisms that 
can model input from the external world. 

The process trellis has been compared to object-based and object-oriented systems 
(e.g., Actors [12, 1]) and to concurrent object-based systems (e.g., [3, 4]). Since object 
connections are all internal to the objects- an object explicitly communicates with other 
objects from within its code - one cannot easily determine the complete effects of one 
object on the rest of the system. In addition,· although one can implement a uniform 
external interface for objects by creating methods for this interface at the most general 

we view a trellis as being at a "fixed point" when no recurrence variables can change except due to an 
external event, namely the execution of a probe. 

5The ICM is joint work with Drs. Dean Sittig, Aaron Cohn, Stanley Rosenbaum and Perry Miller of 
the Yale School of Medicine, Department of Anesthesiology. 



www.manaraa.com

292 

object in the hierarchy and having these methods be inherited by all other objects, no 
uniform interface with the external world is inherent in objects. Ada [2, 7] is probably 
the best known language for real-time programming. While Ada is a. real-time language 
- or more properly, a language for embedded systems which by their nature have real
time constraints - it has been long realized that Ada's facilities for dealing with time 
(e.g., the delay statement, static priority assignments, etc.) are inadequate for real-time 
applications [16]. 

10 Conclusions 

We have presented a formal definition of the process trellis software architecture and have 
shown how several benefits follow from this structure. The iterative execution scheme is 
a simple description of a trellis program's global, run-time behavior; it cleanly guru·an
tees that all processes are always as up-to-date as possible. Even without the iterative 
execution scheme and despite the fact that trellis processes are defined as independent 
asynchronous entities, the definition of the trellis limits the asynchronism of the program 
as a whole, making the program easier to understand. In addition, though permitting 
bidirectional information and control flow, the trellis structure is such that, under a. rea
sonable set of assumptions, a trellis program will predictably become quiescent after new 
data enters. 

We conclude by reviewing how the process trellis addresses the goals presented in 
section 2. Process trellis programs are clearly modular; they are collections of indepen
dent processes. They are also flexible insofar as processes are heterogeneous; the state 
calculation function, fp, can use any logic as long as it conforms to the appropriate type 
signature. 

Since a process is enabled whenever any inferior generates a new state, processes exe
cute with partial information. Trellis processes are history sensitive, an essential feature 
for a continuously executing program. In addition, probes provide a simple, uniform mech
anism for dynamic, non-pre-planned interactions between the trellis and its environment 
- an especially important attribute for a continuously executing progran1. 

Though defined as a collection of asynchronous processes, trellis programs as a whole 
have (loosely) synchronous behavior. This greatly enhances global understandability. 
Even without the iterative execution scheme, which is very clean and simple to understand, 
the definition of the structure prevents some processes from running all of the time while 
other processes don't run at all. 

Finally, trellis programs ru·e explicitly parallel. The iterative execution scheme is 
naturally parallelized; [9] shows that this can be very efficient .. 

References 

[1] G. A. Agha. ACTORS: A model of Concurrent Comp'ILtation in Distributed Systems. 
The MIT Press, Cambridge, MA, 1986. 



www.manaraa.com

293 

[2] J. G. P. Barnes. An overview of Ada. Software Practice and Expe1-ience, 10:851-887, 
1980. 

[3] J. K. Bennet. The design and implementation of distributed Small talk. In Proceedings 
1987 ACM Conference on Object Oriented Pmgramming, pages 318-330, Dec. 1987. 

[4] A. Black, N. Hutchinson, E. Jul, H. Levy, and L. Carter. Distribution and abstract 
types in Emerald·. IEEE Transactions on Software Engineering, SE-13(1):65-76, Jan. 
1987. 

[5] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. LUSTRE: A declarative lan
guage for programming synchronous systems. In 14th Annual ACM Symposium on 
Principles of Programming Languages {POPL}, pages 178-188. ACM Sigplan, Jan. 
1987. Munich, West Germany. 

[6] A. I. Cohn, S. Rosenbaum, M. Factor, and P. L. Miller. DYNASCENE: An ap
proach to computer-based intelligent cardiovascular monitoring using sequential clin
ical 'Scenes'. Methods of Information in Medicine, 29:122-131, Apr. 1990. Revised 
version of paper in SCAMC-89. 

[7] Department of Defense, Washington, DC. Military Standard Ada Pmgramming Lan
guage, MIL-STD-1815 edition, Apr. 1982. 

[8] M. Factor. The Process Trellis Software Architecture for Pamllel, Real-Time Moni
tors. PhD thesis, Yale University, Department of Computer Science, Dec. 1990. New 
Haven, CT. 

[9] M. Factor. The process trellis software architecture for real-time monitors. In Sec
ond ACM SIGPLAN Symposium on Principles & Pmctice of Parallel Pmgramming 
(PPoPP}, pages 147-155. ACM, SIGPLAN, Mar. 1990. Seattle, WA. (SIGPLAN 
Notices, 25(3) ). 

[10] M. Factor, D. H. Gelernter, C. Kolb, P. L. Miller, and D. F. Sittig. Real-time 
performance, parallelism and program visualization in medical monitoring. Research 
Report YALEU/DCS/RR-808, Yale University, Department of Computer Science, 
June 1990. 

[11] M. Factor, D. F. Sittig, A. I. Cohn, D. H. Gelernter, P. L. Miller, and S. Rosenbauri1. 
A parallel software architecture for building intelligent medical monitors. Intc·r
national Journal of Clinical Monito1·ing and Computing, 7:117-128, 1990. Revised 
version of paper in SCAMC-89. 

[12] C. Hewitt. Viewing control structures as patterns of passing messages. A1·tijicial 
Intelligence, 8(3):323-364, June 1977. 

[13] Luqi and V. Berzins. Rapidly prototyping real-time systems. IEEE Softwa1·e, pages 
25-36, Sept. 1988. 



www.manaraa.com

294 

(14] Luqi, V. Berzins, and R. T. Yeh. A prototyping language for real-time software. 
IEEE Transactions on Software Enginee·ring, 14(10):1409-1423, Oct. 1988. 

(15] D. F. Sittig and M. Factor. Physiologic trend detection and artifact rejection: A par
allel implementation of a multi-state Kalman filtering algorithm. Computer Methods 
in Programs in Biomedicine, 31:1-10, 199(}. Revised version of paper in SCAllfC-89. 

(16) J. Stankovic; Misconceptions about real-time computing: A serious problem for 
next-generation systems. IEEE Computer, 21(10):10-19, Oct. 1988. 



www.manaraa.com

Strong Bisimilarity on Nets Revisited 
(Extended Abstract) 

C. Autant, Z. Belmesk and Ph. Schnoebelen • 

Laboratoire d'Informatique Fondamentale 
et d'Intelligence Artificielle, 

lnstitut Imag- CNRS, 
Grenoble- FRANCE 

Abstract 

In [Old89b), Olderog proposed a new notion of bisimulation between Petri nets. His proposal 
considers bisimulations between places of nets rather than between markings. Unfortunately, his 
definition leads to several problems that have not been noticed. It turns out that the situation is 
more complicated than in classical bisimulation theory over transition systems. 

We propose a new definition which solves the problems and which is much more general. We 
investigate the consequences of the new definition: many results of classical bisimulation theory 
can be recovered modulo some adaptation. This indicates that our definition is "correct" and 
productive. 

1 Introduction 

Bisimulation, introduced in (Par81], is a fundamental concept in the theory of concurrency (see (BK89] 
for a review). Informally, two systems are bisimilar if their possible behaviors have the same branching 
structure, i.e. any behavior of one system can be reproduced by the other system, in a way that 
preserves the places where the non-deterministic choices have been made. 

Classical bisimulation theory deals with transition systems (non-deterministic automata where transi
tions are labeled by actions.) It is possible to adapt the basic notion to systems with a richer structure, 
e.g. (Petri) nets. A simple way to do this is to view a net as a transition system, by considering the 
graph of its global states (Pom85, vGV87]. But this does not take the richer structure into account. 
Several recent proposals (e.g. (Pom85, vGV87, RT88, BDKP90, Dev90]) took (part of) the structure of 
nets into account and defined bisimulations between markings (the global states) that preserve (part 
of) the structure of transition sequences. 

Recently, Olderog proposed a new notion ofbisimulation between nets (Old89b, Old89a]. He considered 
bisimulations between places of nets rather than between markings. The relation is then lifted from 
places to markings. One advantage is that a relation between places is easier to visualize (it can easily 
be drawn on the graphical representation of a net) and to understand. 

•LIFIA-IMAG, 46 Av. Felix Viallet, 38031 GRENOBLE Cedex, FRANCE. E-mail:{cyril,zoubir,phs}@lifia.imag.fr 



www.manaraa.com

296 

This new semantic equivalence preserves more information. Bisimilar markings must be consistent at 
the lower structural level of the net: e.g. they must carry the same number of tokens. This yields a 
stronger and richer equivalence. It really is a new concept in the semantics of nets and fully deserves 
further exploration. 

Unfortunately, the definition in (Old89b] leads to several subtle problems that have not been noticed 
(as far as we know). The most striking one is that it does not give an equivalence relation ! In fact, the 
situation is more complicated than it appears at first sight and the whole subject is rather treacherous. 

In this paper, we propose a new definition that starts from Olderog's seminal idea of a bisimulation 
between places of nets. This new definition solves the problems of the previous one, and is more 
general. We compare its discriminating power with classical bisimulations on nets. 

In order to gain some confidence that it is a "correct definition", we consider a few properties, inspired 
from the classical case, that any bisimulation should satisfy. Specifically, these requirements for a 
bisimulation are:l 

1. a bisimulation must be an equivalence relation, 

2. there should exist largest bisimulations, 

3. there should exist canonical representatives of equivalence classes of bisimilar nets, 

4. nets having isomorphic unfoldings into acyclic nets should be bisimilar. 

As an example, (Old89b) proves that his definition of bisimulation identifies isomorphic nets and 
preserves concurrent computations. These are subsumed by point 4 in our list. Nevertheless, the 
definition in [Old89b] fails on all four points. 

In this paper, we prove that the first three properties of our list are indeed satisfied (possibly with 
some adaptation) by our definition. Section 5 explains why unfolding is not consistent with the idea of 
bisimulation between places. These results give a somewhat deeper understanding of the new notion 
and we show precisely where and when some restrictive hypothesis is required. Furthermore, useless 
restrictions can cripple a theory: for example we show (see Remark 2 in section 7 and developments 
in [ABS91]) that it is unwise to restrict oneself to safe nets. 

The paper is organized as follows: We recall the general theoretical background in section 2. Then 
section 3 presents Olderog's seminal idea and our proposal, before we discuss Olderog's original def
inition in section 4. Then section 5 gives several examples aiming at explaining our definition. We 
investigate largest bisimulations in section 6 and canonical representatives in section 7. Section 8 men
tions a few variants of our definition and explains why we discarded them. We conclude in section 9 
by assessing the potential applications of the theory, and by listing several research directions that 
should be investigated in future work. 

Some easy proofs have been omited and some long proofs have been sketched. As a rule, complete 
proofs appear in the full version of this paper [ABS91). 

1 We did not include congruence properties as this pa.per is not concerned with compositions of nets. 



www.manaraa.com

297 

2 Basic definitions on nets 

We give here the basic definitions and notations about nets we shall use in the following. (See also 
e.g. (Rci85].) 

2.1 Multisets 

Given any set X, a multiset Mover X is a mapping from X tow, the set of natural numbers. For 
x EX, M(x) is the multiplicity of x in M and we write x EM when M(x) > 0. When M(x)::; 1 for 
all x E X, M is a proper set. 

M is finite if M(x) = 0 for all x EX except maybe a finite number of them. From now on we only 
consider finite multisets and write M(X) the set of all finite multisets over X. The usual notation 
will be used to denote the elements of a finite multiset. For example, if M(a) = 3, M(b) = 2 and 
M(x) = 0 for x #=a, x #= b, we may write M = {a,a,a,b,b}. 

Set-theoretic notions are extended to finite multisets in the standard way: given M, M' E M(X), we 
define M + M' by (M + M')(x) = M(x) + M'(x). We write M ~ M' when M(x) ::; M'(x) for all 
x EX. When M' ~ M, we define M- M' by (M- M')(x) = M(x)- M'(x). Finally, we write 0 for 
the empty multiset. 

2.2 Labeled nets 

We assume a set Act = {a, b, . .. } of action names or labels. 

Definition 1 A labeled Petri net, or simply a net, is a tuple N = (P, T, pre,post, I, Minit) where 

• P is a set of places, with typical elements p,p',pb q, q', •.. , 

• T is a set of transitions, with typical elements t, t', tt. ... , 

• pre (resp. post) is a mapping from T to M(P). Given t E T, pre(t) and post(t) are the 
precondition and the postcondition oft, 

• l : T -> Act is a labeling of transitions with action names, 

• Minit E M(P) in an initial marking. 

Note that we allow P empty, Minit empty, and pre(t) or post(t) empty. Given a net N, we shall 
denote its components by PN, TN, preN, postN, IN and init(N). A net N is finite (resp. countable) 
if PNUTN is. 

In following sections, we use the standard graphical representation of nets, with circles for places and 
boxes for transitions. The pre (resp. post) relation is drawn through directed edges leading from 
places to transitions (resp. from transitions to places) with e.g. 3 edges from a same place p to a same 
t if p appears 3 times in pre(t). 



www.manaraa.com

298 

Given a net N = (P,T,pre,post,l,M;nit), a marking of N is any ME M(P). In a graphical repre
sentation a marking M is displayed by putting M(p) tokens in each place p. 

Given a marking M, we say that t E Tis firable in M, written M ..!., if pre(t) ~ M. If tis firable in 
M, firing it yields a new marking M' ~f M- pre(t) + post(t), written M..!. M'. 

We write M ~ M' when M..!. M' for some t s.t.l(t) =a, and M-+ M' when M..!. M' for some t. 
-+* denotes the reflexive and transitive closure of this last relation. 

Two nets N1, N2 are isomorphic, written N1 = N2, when they only differ by the names of their places 
and transitions. 

Two transitions t, t' E TN are equivalent in N, written t =N t', if they have same pre, post and 
labeling. Then M..!. M' iff M ~ M'. A simple net is a net where no two transitions are equivalent. 
By identifying equivalent transitions, it is possible to transform any net N into a. simple net, denoted 
simple(N). 

We say that N1 and N2 are simply isomorphic, written N1 ::6 N 2, when simple(N1 ) = simple(N2). 

Given N = (P,T,pre,post,l,M;nit), mark(N) ~f {ME M(P) I Minit-+*M} is the set of reachable 
markings of N. We define by 

places(N) dJf {pEP I p EM for some ME mark(N)} 
trans(N) ~f {t E T I M;nit->*M..!. for some M} 

the set of reachable places and of reachable transitions. 

A reachable net is a net where all places are reachable. It is possible to prune a net N into a reachable 
net: 

II N ll~r (places(N), trans(N),pre',post',l', Minit) 

where pre', post' and!' are pre, post and l restricted to trans(N). 

A safe net is a. net N where, for any t E TN, preN(t) and postN(t) are proper sets, and where all 
reachable markings are proper sets: in a. safe net, at any time, there can only be 0 or 1 token in any 
place. 

Finally, it is possible to see classical transition systems as nets. An S-graph is a net N where init(N), 
all preN(t) and all postN(t) are singletons [NT84]. S-graphs are safe. 

It is possible to give a polished theory by only considering reachable simple nets. We preferred to 
consider the general case and only introduce restrictions when they are required. This gives a better 
understanding of the situation. 



www.manaraa.com

299 

3 Place bisimulation 

Given N11 N2 two nets with N; = (P;, T;,pre;,post;, 1;, M;nit,;}, a. relation B s;; Pt X P2 may be lifted 
to yield a. relation B s;; M(P1) x M(P2 ) between markings, defined by 

M BM tr { there exists {(pt,qt), ... ,(pn,qn)} E M(B) (l) 
1 2 such that Mt = {ph ... , Pn} and M2 = { q11 .. ·, qn} 

Note that this ensures 07J0 and that :E; M; B L:; M[ when M;BM[ for any i. We also have 

Idp = Id.M(P) BoB'=BoB' 

B is extended to transitions with the following 

which also satisfies (2). 

We now define 

{ 
pret(tt)Bpre2(t2) 

t1Bt2 t£ II post1(tt)Bpost2(t2) 
"lt(tt) = l2(t2) 

(2) 

Definition 2 Given two labeled nets N1oN2 with N; = (P;,T;,pre;,post;,l;,M;nit,i}, a relation B s;; 
Pt X P2 is a (place} bisimulation between Nt and N2 iff 

2. for all Mt E M(Pt), M2 e M(P2) s.t. M1BM2 

• for all steps Mt ~ M{ in N1, there exists a M2 ~ M~ in N2 s.t. t1Bt2 and M{BM~, 

• and, reciprocally, for all steps M2 ~ M~ in N2, there exists a M1 ~ Mf in Nt s.t. t1Bt2 
andM{BM~. 

(Point 2 above is called the transfer property.) We write Nt ~B N2 when B is a place bisimula.tion 
between N1 and N2, and N 1 ~ N2 when N1 ~B N2 for some B. In a graphical representation, the 
pairs (p,q) of a. bisimulation are represented by dashed lines between places. 

With this notion of bisimulation, a marking M2 simulates another marking Mt if it has the same 
number of tokens in equivalent places and if any step of Mt can be reproduced in an equivalent way. 
Here, reproducing a. step Mt ..!. M{ in an equivalent way means moving tokens from places equivalent 
to pre(t) to places equivalent to post(t), reaching a marking equivalent toM{. 

Proposition 1 (a.) N ~ldpN N, 

(b) N ~8 N' implies N' ~8-1 N, 

(c) Nt ~B N2 and N2 ~B' Na imply N1 ~B'o8 Na, 

(d) N ~/dpN simple(N), 



www.manaraa.com

300 

(e) ~ is an equivalence relation on labeled nets which contains =•· 

(a.), (b), (c) a.re direct consequences of (2). With {d), they entail (e). 

We give now a. lemma. we sha.ll need in the following 

Lemma 1 Nt =• N2 iff Nt ~B N2 for some bijective B. 

Proof Use B to build an isomorphism. 

4 An analysis of Olderog's definition 

D 

In (Old89b], Olderog uses another wa.y of lifting B from pla.ces to markings. Instead of our (1), he 
only considers sa.fe nets (i.e. nets where a.ll markings a.re proper sets) and defines: 

M1BM2 $f B n (Mt x M2) is a. bijection 

First note that this is only meaningful for sa.fe nets, a.nd that when two safe nets a.re bisimila.r in 
Olderog's sense (written Nt ~o N2), they a.re bisimila.r in our sense. 

The problem with this definition is that it ensures only 

MB'oBM' => M(B'oB)M' 

and not the opposite implication. Compare this with {2). The consequence is that l'l;j0 , a.s defined 
in [Old89b], is not transitive and thus is not an equivalence relation on nets. Figure 1 contains an 
example of a. possible situation. 

Figure 1: Transitivity fails. 

Here Nt l'l;j0 N2 and N2 l'l;jo Na. We do not have N1 ~o N3 : indeed, assume N1 ~~ N3 for some B. 
Then, given any two places p f:. p' in {Pt.P2,p3}, we must have {p,p'}B{q~oq2}. Then B must relate 
different p;'s to a same q;, which forbids the bijective relation required in {p,p'}B{q~oq2}. 

Note that N1 and Na have isomorphic unfoldings, so that Olderog's definition is not compatible with 
unfoldings. 

Fina.lly, observe that with our definition N1 l'l;j N3 does hold. 



www.manaraa.com

301 

5 Examples and comments 

We consider a. few examples of pla.ce-bisimilar nets. This gives some understanding of which nets are 
equivalent according to our definition. In these examples, we concentrate on specific features of place 
bisimulation and will not illustrate the basic behavior of branching-time equivalences as opposed to 
linear-time equivalences (for which we refer to (vG90]). However, we compare place bisimulation with 
.!:Z,, the classical bisimulation (between global markings of safe nets) of (vGV87] to which we refer for 
a. definition. 

First consider Figure 2. Place bisimulation respects the number of tokens in markings, so that N1 ¢ N2 

-
Figure 2: ~ preserves the number of tokens. 

while N2 ~ N3. Note that Nt.!:Z.N2. Note that the number of places needs not be respected as several 
-tokens may appear in a same place. Of course, for safe nets, the number of places is preserved across 
bisimilar markings. 

The examples in Figure 3 show that not only the number of tokens is preserved, but also the way they' 
move. In Nt, one token moves, while two tokens move in N2. So that Nt ¢ N2 ~ N3. 

Figure 3: ~ preserves the way tokens move. 

Remark 1 N3 ¢ N4 in Figure 3 because if we consider two markings M3 and M4 of (resp.) N3 and 
N4 having the form {p,p}, then M3.!. M3 in N3 while in N4 no transition is allowed from M4• Of 
course, M3 and M4 are not reachable markings but Definition 2 requires that the transfer property 
holds for any Mt E M(Pt) and M2 E M(P2 ). This is a crucial point of our definition which cannot 
be modified without introducing inconsistencies. See section 8.1 for details. 

Figure 4 contains simple examples of place bisimulations. Observe how unwinding loops is possible. 



www.manaraa.com

302 

N' 
2 

N ' ·········:::::::::::::::············ 
1 ... --··· ---······ 

.. --···· --~~~---··········· 
..... 

~ .......... .. 

Figure 4: ~ allows sharing and unwindings of loops. 

These examples suggest that ~ is stronger than, but not completely unrelated to, !:t· Indeed, we have: 

Proposition 2 For any nets N1 and N2 : 

1. Nt ~ N2 implies Nt-N2. 
e. The reciprocal holds for S-graphs. 

The result holds for the different concurrent bisimulations !:tc and -porn that are considered 
in (vGV87). The proof is rather technical (at least for -porn)· As it requires that the definition 
of !:tpom be recalled, we did not include it here. It appears in [ABS91]. 

Figure 5 exhibits one peculiarity of place bisimulation. Nt and N2 are not place-bisimilar. Any 

-

Figure 5: N ¢II Nil. 

bisimulation should relate P2 to q2 and P3 to q3. But the marking {q2, q3} for N2 cannot reproduce 
the step allowed in the marking {p2,Pa} of Nt. This shows that Nand liN II need not be bisimilar. 



www.manaraa.com

303 

The reason is that P2 and q2 (or P3 and q3) are not equivalent places. P2 can be involved in a c step. 
Of course, in N1, this c step is never allowed, but this does not depends on P2 itself. The marking 
{p2} in N1 is deadlocked, while { q2} in N2 is terminated. 

We tried to develop a variant of our definition that would identify N and II N II· This appeared 
impossible. The obvious tentative is to require that a bisimulation only preserve moves from reachable 
markings, writing 

in Definition 2. This certainly ensures N ~11 N II but transitivity of~ is lost again ! See section 8.1 
for details. 

A place in a net can be reached by different behaviors. A bisimulation between places cannot take into 
account global information that depends on the particular history that allowed a place to be reached. 
With classical transition systems this situation does not happen, for a state uniquely determines its 
own possible futures. 

It appears that this distinction of terminated vs. deadlocked place is the reason why nets having 
isomorphic unfoldings (N1 =occ N2 in the notation of (vGV87)) needs not be place-bisimilar. We 
already showed (through examples) that unwinding loops is compatible with bisimulations of places 
and unfolding is just unwinding + pruning. Another indication is given by point 2 of Proposition 2: 
in S-graphs, a place does not have to synchronize with other places. 

Finally, consider Figure 6 which shows how statically unreachable places (places that cannot be con
nected by directed edges from one place of M;nil) can be abstracted from. 

a ·········~ .. ····· .. ·· 
b 

Figure 6: ~ and statically unreachable places. 

6 Largest bisimulations 

In classical bisimulation theory for transition systems (e.g. (BK89)), the union of arbitrary bisimula
tions is still a bisimulation. This ensures that if two automata are bisimila.r, there exists a largest 
bisimulation between them. 

The situation is more complicated with nets: assume N1 ~B1 N2 and N1 ~Bz N2. Then N1 ~B1uB2 N2 
needs not be true. Even worse, we need not have N1 ~B N2 for some bisimulation containing B1 and 



www.manaraa.com

304 

B2. Figure 7 shows an example. Here B = {(ph p4), (p2, p3), (P3, P2), (p4,pt), (ps, ps)} is a bisimulation 

Figure 7: Bisimulations need not have upper bounds. 

between Nand itself. Jdp is another bisimulation, but no bisimulation includes ldp U B. 

To investigate these problems, we mainly work with bisimulations between a net and itself. Given a 
net N, an autobisimulation of N is a bisimulation between N and itself. An equibisimulation of N is 
an autobisimulation which is also an equivalence relation on PN. See the previous example and notice 
that autobisimulations need not be equibisimulations. 

The key idea in this section is to consider reflexive autobisimulations, of which equibisimulations are 
a special case. Reflexivity a.llows to abstract from initial markings: 

Proposition 3 Two nets differing only in their initial marking have the same reflexive autobisimu
lations. 

Proof See (ABS91]. 0 

Proposition 4 If Bt and B2 are two reflexive autobisimulations of a net N, then the symmetric and 
transitive closure of B 1 U B2 is an equibisimulation of N. 

The proof needs a lemma: 

Lemma 2 When Bt and B2 are reflexive relations 

Proof The ";;;?" direction is obvious. We only prove the other inclusion. 

Write B for (BtU B2 U B11 uB;1)*. If M1BM2, we know that Mt is some {Ph· .. ,pn} and M2 some 
{qh ... , qn} with p;Bq; for i = 1, ... , n. Given the definition of B, p;Bq; means that there exists a k k . 1 . . . 
sequence u; = (p?,pL ..• ,p/) such that p; = p?, q; = p/ and, for j = l, ... ,k;, r,- Rfpf where Rf 
is one of B1 , B2 , B11 or B;1 • These sequences need not have the same length, but as B1 and B2 
are reflexive, it is always possible to insert duplications in a sequence such that a.ll u;'s have the same 



www.manaraa.com

305 

length. Similarly, it is possible with such insertions to ensure that, for any j, R{, ... , R~ are the same 
relation Ri (this may further lengthen the CJ;'s to some common length k). When this is done, the 
markings M 0 , ••• ,Mk defined by Mi = {pf, ... ,P!,} satisfy Mx = M 0

1 M2 = Mk and Mi-1 RJMi for 
j = l, ... ,k. This ensures M 1(Rko .. ·oR1)M2, and then Mx(B1 U1J2U Bx-1 U B2-1)• M2 as each Ri 
is one of Bx, B2, B11 or B;;1 • 0 

The same lemma holds for 1J considered between transitions. 

Proof (of Proposition 4) Assume lvftBM2 (with Bas defined in the previous proof.) The lemma 

tells us that M 1RM2 for some R of the form Rk o ... o R1 (which generally depends on M1 and M2 ). 

R is a bisimulation as it is a composition of B1's, B;;1 's, ..• which are bisimula.tions. Then any 
M1 !!. M{, can be simulated by some M2 ~ M~ s.t. M{RM~and txRt2, which entails M{BM~ and 
t 1Bt2 (as R s B). The same reasoning holds for steps M2 ~ M~. 

Finally B is an autobisimulation, and then an equibisimulation by construction. 0 

The result applies to arbitrary (not necessarily finite) families of reflexive autobisimulations. The 
example in Figure 7 shows that reflexivity is required. 

Proposition 5 Given a net N, the largest equibisimulation over N is 

B(N) d~fU{B IN ~B N and B reflexive} 

Proof Standard from the previous results. 0 

B(N) is the canonical equibisimulation of N. 

We saw that unions of bisimulations need not be bisimulations. We shall need to know that they exist 
in special cases: 

Lemma 3 If N1 ~Bi N2 for a directed family (B; );EJ of bisimulations, then N1 ~B N2 with B = 
U;eJBJ· 

Proof Assume N; = {P;, T;,pre;, post;, l;, Minit,i) fori= 1, 2. First, we clearly have Minit,lBMinit,2· 

Consider now M1BM2. This means that M1 is some {pl,···,Pn} and M2 some {qx, ... ,qn} with 
p;Bq; for i = 1, ... , n. Then, for any i, there exists some index j; E J s.t. p;B;;q;. The B;'s being a. 
directed family, there is some Bk containing all B;; 's, so that M1BkM2. If now M1 ~ M{, then we can 
find some M2 ~ M~ with t1Bkt2 and M{BkM~. This implies t1Bt2 and M{BM~, and a. symmetric 
argument concludes the proof. 0 

We need one more lemma about reachable places: 

Lemma 4 If N ~B N', then places(N) s dom(B) and places(N') s codom(B). 



www.manaraa.com

306 

Proof See (ABS91]. 0 

The useful corollary is 

Lemma 5 If N1 and N2 are bisimilar reachable nets, then Nt ~B N2 for some B such that B = 
BoB-1 oB. 

Proof Assume N1 ~B N2 and write P; for p/aces(N;). First note that, for any n, Bn ~C B o 
(B-1 o Bt is a bisimulation between N1 and N2 (Proposition 1). As Nt and N2 are reachable, 
dom(B) = P1 and codom(B) = P2 (Lemma 4). This entails ldp1 ~ B-1 o B, so that Bn ~ Bn+l· 

Thus we have an increasing family of bisimulations, with l.u.b. B., ~C Un=o,t, ... Bn. 

B., is the required bisimulation: it is Bo(B-1 o B)*, entailing B.,= B.,oB;;1oB.,. Note that B;;1 oB., 
is an equivalence relation on Pt. 0 

7 Quotient nets 

We investigate quotient nets and how they are related to bisimulations, looking for canonical repre
sentatives of equivalence classes of bisimilar nets. 

Consider an equibisimulation B of some net N. As B is an equivalence relation, it is possible to define 
a quotient net Nfa. 

H N = (P,T,pre,post,l,M;nit), then P/a is {(p]a I pEP} where (p]a denotes the equivalence class 

of p. This extends to markings by {Pto···•Pn}/a ~f {(p1]a, .•. ,(pn]a}, verifying M/a E M(P/a). 
Now, N/a is given by the following: 

N/a d~f (Pfa,T,pre/a,postfa,l,M;nit/B) 

where (pre/ a)(t) ~f (pre(t))f Band similarly for post. We write []a to denote the function that maps 
any place p to its equivalence class (p]a. 

We already saw several examples of such quotients. In Figure 1, N1 and N3 are quotients of N2• In 
Figure 2, Na is a quotient of N2, while N2 is (simply isomorphic to) a quotient of Na in Figure 3. 

Lemma 6 If B is an equibisimulation of N, then N ~lis Nfa. 

Proof See [ABS91]. 0 

In some sense N / B is smaller than N. This suggests the following definition: 

Definition 3 Nt :S N2 tr N1 =• N2/a for some equibisimulation B. 



www.manaraa.com

307 

Note that N1 =• N2 implies N1 ::; N2. 

A useful characterization is given by the following 

Lemma 7 N2::; N1 iff N1 :::::lB N2 for some surjective mapping B: P1--+ P2. 

Proof "¢:": If N1 :::::Ja N2, then B-1 o B is an autobisimula.tion of N1. If B is a surjective mapping, 
B-1 oBis an equivalence relation, so that we can quotient N1. We write N{ for Ntfa-•oB· We have 

Then, writing h for ( Ja-•oB o B-1, we have N2 :::::Jh N{. It is easy to check that h is a bijection, so that 
N{ =• N2 thanks to Lemma. 1. 

"=?": If N2 ::; Nl> then by definition N1/B =• N2 for some equibisimulation B. Then Lemma. 1 
implies that Ntf B :::::Ja• N2 for some bijective B', so that we have 

We only have to remark that B' o [ ]B is a. surjective mapping to conclude the proof. 0 

The composition of surjective mappings is a. surjective mapping, so that an immediate corollary is 

Proposition 6 ::; is a partial ordering on nets. 

We also have 

Lemma 8 If B1 and B2 are two equibisimulations on N, then Bt ~ B2 implies NIB, ::; N I B1 • 

Proof We have N I B1 :::::J[ Is, -• N :::::l[ Is, N I B2 by Lemma. 6. Then N I a1 :::::Ja N I a 2 with B = 
[ ]a2 o [ ]B1 -

1• Now, Bt ~ B2 implies that B is a. surjective mapping. O 

with the important corollary: 

Proposition 7 If N1 ::; N and N2::; N, there exists some net N' such that N' :::$ N1 and N'::; N2 • 

Proof N; :::$ N implies that N; =• NIB; for some B;. Writing B for (B1 U B2)*, we know from 
Proposition 4 that B is also an equibisimula.tion of N, and as B; ~ B, N' ~f NIB ::; NIB; =• 
~ 0 

With largest equibisimula.tions come "smallest" quotients: 

Definition 4 For any net N, the canonical quotient of N is N I "'l ~f N I B(N) 

These quotients are canonical representatives in the following sense: 



www.manaraa.com

308 

Proposition 8 For two reachable nets Nt and N2, Nt ~ N2 iff Nt/<>: =• N2/<>: 

which gives us canonical representatives of reachable nets, unique up to =•· 

Proof The "<=" direction is obvious. The other direction is done in two steps. 

Consider two bisimilar reachable nets N1 and N2 and write P; for places(N;). Lemma 5 allows us to 
assume N1 ~B N2 with B = B o B-1 o B and, writing B1 for B-1 o B and B2 for B o B-1 , each B; 
an equivalence relation on P;. The B;'s can be used to quotient the N;'s, yielding 

Nt/B1 ~[]s1 -l Nt ~B N2 ~[]82 N2/B2 

Remark that ( ]s2 o B o (]s1 - 1 is a surjective mapping from Pt/B1 to P2/Bz· As it is clearly a 
bisimulation from Nt/B1 to N2/s2 , Lemma 7 implies that Nt/B1 :::5 N2/s2 • A similar reasoning shows 
that N2/s2 :::5 Nt/Bp so that Ntfs1 and N2/s2 have a common quotient, thanks to Proposition 7. 
Finally Nt and N2 also have a common quotient. 

But if Nt ~ N2, then also N1/<>: ~ N2/<>: and, the quotient of a reachable net being reachable, the 
same reasoning applies, allowing to conclude that Nt/<>: and N2/<>: have a common quotient N. But, 
by construction, N;/<>: cannot be quotiented any further, therefore N must beNt/<>: itself (or some 
::,-variant). Finally Ntf.~ =• N2/<>:· 0 

There remains one natural question about quotients. (vGV87, Old89b] use safe nets while we allowed 
arbitrary Petri nets. The canonical quotient of a safe net needs not be safe. Is it possible to develop 
a notion of a safe quotient of a safe net ? This turns out to be impossible: 

Remark 2 If Nt :::5 N and N2 ~ N are three safe nets, there is in general no safe common quotient 
of Nt and N2. 

Figure 8 shows an example. In Figure 8, N can be "safely" quotiented by identifying Pt and P2, or P2 

Figure 8: Safe quotients need not exist 

and Pa· Note that these two quotients are not isomorphic. No common quotient is safe. 

8 Variants of place bisimulations 

We investigate other possible attempts at defining bisimulations between places. It appears that 
Definition 2 is the only viable one. 



www.manaraa.com

309 

8.1 Reachable markings 

We already mentioned that the main problem with our definition is that a net N needs not be bisimilar 
to the pruned II N II· One possible solution is to modify Definition 2 so that it only considers reachable 
markings. 

Definition 5 Given two nets N11 N2 with N; = {P;, T;,pre;,post;, 1;, M;nu,;), a relation B s;; Pt X P2 
is a bisimulation between N1 and N2 iff 

2. for all {reachable) Mt E mark(Nt), M2 E mark(N2) s.t. M1BM2 

• for all steps M1 ~ M{ in NlJ there exists a M2 ~ M~ in N2 s.t. t1Bt2 and M{BM2, 

• and, reciprocally, for all steps M2 ~ M~ in N2, there exists a Mt ~ M{ in Nt s.t. taJt2 
and M{BM~. 

Denote ~r the relation defined this way: we clearly have N ~r11 N II for all N. Unfortunately, 
Definition 5 does not yield a transitive relation. Figure 9 shows an example where Nt ~r N2 ~r N3 
while N1 ¢r N3. 

Figure 9: Transitivity lost again. 

8.2 Bisimilar transitions 

The next possible variant of Definition 2 is not aimed at solving the "N ¢11 N II" problem. 

One strong requirement of Definition 2 is that, when M17JM2 , a step M1 ~ M{ can only be imitated 
by a step M2 ~ M~ with ttBt2. As we already mentioned, this entails that the same number of tokens 
move from bisimilar places to bisimilar places. It is possible to relax this requirement and only ask 
for lt(lt) = l2(t2), giving: 



www.manaraa.com

310 

Definition 6 Given two nets N1,N2 wit!& N; = {P;,T;,pre;,post;,l;,M;nit,i), a relation B ~ P1 X P2 
is a bisimulation between N1 and N2 iff 

1. Minit,tBMinit,21 and 

2. for all Mt E M(P1), M2 E M(P2) s.t. M1BM2 

• for all steps M1 .!.!. M{ in N1, there e:r:ists a M2 ~ M~ in N2 s.t. l1(t1) = l2(t2) and 
M{BM~, 

• and, reciprocally, for all steps M2 ~ M~· in N2, there e:r:ists a M1 .!.!. M{ in N1 s.t. 
l1(t1) = l2(t2) and M{BM~. 

Remark 3 Observe that, in this definition, the requirement that M{BM~ is no longer superfluous. 

Denote t:::~ 1 the relation defined this wa.y. t:::~ 1 is a.n equivalence relation. It is slightly weaker tha.n our 

Proposition 9 [ABS9l]. For any nets N1 and N2 : 

1. N1 t:::~ N2 implies N1 t:::~ 1 N2. 
2. N1 t:::~ 1 N2 implies N1~N2. 

Cursory exploration indicates that t:::~1 deserves to be studied in its own right. We did not consider 
it in this paper because it is not compatible with pomset bisimula.tion. Figure 10 shows a. counter-

~ ... ---~---···:::::::::::::~:::::.:~···················· . ~ 

\ ~ 
b ... ...... 

·· .... -c .. *-
••• pom 

·············-········· 

Figure 10: t:::~1 and <-+pom• 

exa.mple2. Here N2 can perform the pomset "a followed by b" while N1 ca.n only perform "a a.nd bin 
parallel''. 

9 Conclusion 

The major contributions of this paper are twofold. We first uncovered subtle problems with previous 
definitions of bisimula.tion between places of Petri nets. Then we proposed a. corrected definition a.nd 
investigated it. 

2used in [vGV87] to show that -pom is stronger than !:!c· 



www.manaraa.com

311 

These investigations clearly show that the idea. of bisimula.tion between places is very interesting and 
original. We proved that there exists a. notion of "equivalent places" where equivalent places can be 
identified in a very real sense. 

Let us mention how we envision practical applications of the theory. As indicated in the introduction, 
we tried to make as few restrictions as possible in order to get a better understanding of which property 
depends on which requirement. As a consequence, the equivalence we studied is rather crude and would 
probably not be the best suited as e.g. a semantic equivalence for a. parallel language. However, it is 
possible to define derived notions, e.g. "two nets N1 and N2 are equivalent if II N11l;:::ll N21l". We can 
already state several properties of such an equivalence. 

We also believe that place bisimula.tion and the possibility of collapsing equivalent places (Lemma. 6) 
has real applications for languages implemented with some kind of finite interpreted Petri nets. This 
is because collapsing places allows to share code. There, it is important to reason at the level of places 
(which are static objects and correspond to code) and not at the level of markings (which are dynamic 
objects). Of course, this requires our theory to be adapted to interpreted nets, but we believe that 
this is feasible. 

Obviously, even at the theoretical level, this paper does not close the whole subject. Much work 
remains to be done. Let us list a few important problems we did not consider in this paper: 

• Variants and/or restrictions of our definition must be investigated more deeply. This is partly 
done in [ABS91]. There are several possible notions of exactly when two places are bisimilar. 

• The theory must be extended to nets with silent actions. We are working on this. 

• The comparison between bisimula.tion of places and bisimulations of markings should go beyond 
Proposition 2. There already exists many more bisimulations on markings [RT88, BDKP90, 
Dev90], etc. 

• Congruence properties should be investigated, as in [Old89a]. Unless silent actions are dealt 
with, this is probably more interesting for operators like e.g. refinements [Dev90] than for the 
CCS-like nets combinators investigated in [vGV87]. 

• A semantic equivalence on nets can be used to give a semantics to CCS-Iike languages [Gol88, 
DDM88, vGV87, Old87]. "Bisimulation on places" should be compared with other distributed 
semantics. 

Many other questions could be mentioned but it is more difficult to assess their interest. For example, 
the following may well be specific to place bisimulation: 

Proposition 10 [ABS91] It is decidable whether two finite nets N1 and N2 are place bisimilar. 

At the moment, we do not .know if =tis a decidable relation between finite non-necessarily safe nets. 

10 Aclmowlcdgcmcnts 

We thank Sophie Pinchinat for her useful comments and suggestions. 



www.manaraa.com

312 

References 

[ABS91] C. Autant, Z. Belmesk, and Ph. Schnoebelen. Strong Bisimilarity on Nets Revisited. Re
search Report, LIFIA-IMAG, Grenoble, 1991. 

[BDKP90] E. Best, R. Devillers, A. Kiehn, and L. Pomello. Concurrent bisimulations in Petri nets. 

(BK89] 

September 1990. To appear in Acta Informatica. 

J. A. Bergstra and J. W. Klop. Process theory based on bisimulation semantics. In Linear 
Time, Branching Time and Partial Order in Logics and Models for Concurrency, Noord
wijkerhout, LNCS 35,/, pages 50-122, Springer-Verlag, 1989. 

[DDM88] P. Degano, R. De Nicola, and U. Montanari. A distributed operational semantics for CCS 
based on condition/event systems. Acta Informatica, 26:59-91, 1988. 

[Dev90] R. Devillers. Maximality Preserving Bisimulation. Tech. Report LIT-214, Lab. Informa
tique Theorique, Universite Libre de Bruxelles, March 1990. 

[Gol88] U. Goltz. On representing CCS programs by finite Petri nets. In Proc. Math. Found. 
Computer Science, LNCS 32,/, pages 339-350, Springer-Verlag, 1988. 

[NT84] M. Nielsen and P. S. Thiagarajan. Degrees of non-determinism and concurrency: a Petri net 
view. In Proc . .fth Conf. on Foundations of Software Technology and Theoretical Computer 
Science, Bangalore, India, LNCS 181, pages 89-117, Springer-Verlag, December 1984. 

[Old87] E.-R. Olderog. Operational Petri net semantics for CCSP. In Advances in Petri Nets 1gs1, 
LNCS 266, pages 196-223, Springer-Verlag, 1987. 

[Old89a] E.-R. Olderog. Nets, terms and formulas: three views of concurrent processes and their 
relationship. Habilitationsschrift, Christian-Albrechts-Univ. Kiel, July 1989. 

[Old89b] E.-R. Olderog. Strong bisimilarity on nets: a new concept for comparing net semantics. In 
Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency, 
Noordwijkerhout, LNCS 35.{, pages 54~-573, Springer-Verlag, 1989. 

[Par81] D. Park. Concurrency and automata on infinite sequences. In Proc. 5th GI Conf. on Th. 
Comp. Sci., LNCS 10,/, pages 167-183, Springer-Verlag, March 1981. 

[Pom85] L. Pomello. Some equivalence notions for concurrent systems. An overview. In Advances 
in Petri Nets 1g95, LNCS 222, pages 381-400, Springer-Verlag, 1985. 

[Rei85] W. Reisig. Petri Nets. An Introduction. Volume 4 of EATCS Monographs on Theoretical 
Computer Science, Springer-Verlag, 1985. 

[RT88] A. Rabinovich and B. A. Trakhtenbrot. Behavior structures and nets. Fundamenta Infor
maticae, 11(4):357-404, 1988. 

[vG90] R. J. van Glabbeek. The Linear Time- Branching Time Spectrum. Research Report CS
R9029, CWI, July 1990. 

[vGV87] R. J. van Glabbeek and F. Vaandrager. Petri net models for algebraic theories of concur
rency. In Proc. PARLE 87, vol. II: Parallel Languages, Eindhoven, LNCS 25g, pages 224-
242, Springer-Verlag, June 1987. 



www.manaraa.com

Abstract 

A Configuration Approach 
to Parallel Programming 

Jeff Magee, Naranker Dulay 

Department of Computing, 
Imperial College of Science, Technology and Medicine, 

180 Queen's Gate, London SW7 2BZ, UK. 

This paper advocates a configuration approach to parallel programming for 
distributed memory multicomputers, in particular, arrays of transputers. The 
configuration approach prescribes the rigorous separation of the logical structure of a 
program from its component parts. In the context of parallel programs, components 
are processes which communicate by exchanging messages. The configuration 
defines the instances of these processes which exist in the program and the paths by 
which they are interconnected. 

The approach is demonstrated by a toolset (Tonic) which embodies the 
configuration paradigm. A separate configuration language is used to describe both 
the logical structure of the parallel program and the physical structure of the target 
multicomputer. Different logical to physical mappings can be obtained by applying 
different physical configurations to the same logical configuration. The toolset has 
been developed from the Conic system for distributed programming. The use of the 
toolset is illustrated through its application to the development of a parallel program 
to compute Mandelbrot sets. 

1 Introduction 

The work described in this paper arose from our interest in applying the principles 
embodied in Conic [KRA85, MAG89] to a programming environment for multicomputers 
[ATif88]. The shortcomings we perceived in existing programming environments for 
multicomputers based on transputer arrays provided additional motivation. The modifications 
necessary to Conic to enable its efficient use in the transputer environment led to naming the 
variant Tonic, for obvious reasons. 



www.manaraa.com

314 

Conic is a toolkit for constructing distributed systems. It provides two languages: the 

first, a declarative configuration language used to describe the structure of a logical node in 
terms of its constituent process types, process instances and process interconnections and the 

second, a programming language used to program individual process types. The programming 
language is Pascal augmented with message passing primitives. Distributed systems are 

constructed in Conic by dynamically assigning instances of logical nodes to physical nodes and 
interconnecting these instances. Conic embodies the configuration approach in rigorously 

separating the logical structure of a distributed program from the components which implement 
its computational function. The differences between Tonic and Conic arise from the 

characteristic differences between parallel and distributed programs. We see these as being: 

Objective · Distributed programs can be considered as consisting of a number of 
logically distinct entities which intercommunicate to achieve some overall goal - typically 

access to geographically distributed resources. Parallel programs are logically one entity 
where the constituents co-operate to achieve some computational goal - the overall objective 

of performing the computation in parallel being speedup. 

Failure - Failure of one component of a distributed program generally requires continued 
operation albeit in degraded mode whereas failure of one component of a parallel 

computation can generally be allowed to cause termination of the overall computation. In 
distributed environments, the longevity of execution, together with the probability of 

communication and node failure means that software development toolkits must provide 
programming abstractions to deal with such failures. This is not the case in multicomputers 

where we can assume reliable communication and low probability of node failure during the 
execution of programs which have as their primary objective speedup rather than continuous 

execution. 

Evolution · A large class of critical distributed programs execute perpetually and for 
economic or safety reasons require the facility to be modified and updated on-line. The 

Conic toolkit supports this requirement through its ability to dynamically configure running 
systems. On-line evolution is not a requirement for parallel programs which run for 

relatively short periods, completing when a result has been computed. 

Heterogeneity- Distributed programs are generally designed such that components of the 
program may run on computers with different processor types. Programming environments 

for distributed systems deal with this hardware heterogeneity by providing multiple code 
generators and message datatype conversion facilities. Distributed memory multicomputers, 

typified by transputer networks, provide hardware homogeneity, although they are usually 
hosted by a computer with a different processor type. However, programming 

environments for multicomputers should optimise for hardware homogeneity. 



www.manaraa.com

315 

In summary, Tonic is optimised to support the development of parallel programs for 

distributed memory multicomputers where the primary objective is speedup. Tonic does not 

support dynamic configuration and assumes reliable processors and reliable inter-processor 
communication. It inherits from Conic the configuration approach in providing a separate 

language to define logical structure and extends the Conic configuration facilities by also 
applying this language to describing the physical structure of the target multicomputer. This 

physical configuration description is used to drive the logical to physical mapping process. 

Currently, the most commonly used toolset for developing parallel programs for 
transputer based multicomputers is the Occam language [INM88a] and the Transputer 

Development System (TDS) [INM88b]. While these are efficient tools for developing 
embedded applications, they have drawbacks when used for developing application programs 

for the current generation of transputer based multicomputers such as the Meiko Computing 

Surface and the Supernode. The drawbacks are primarily concerned with the flexibility 

permitted in mapping an arbitrary network of communicating Occam processes to the hardware 
topology of interconnected transputers. The developer must take into account the limit of four 

liriks per transputer and laboriously place logical channels onto physical channels. Explicit 
multiplexor and demultiplexor processes must be provided where it is necessary to map more 

than one logical communication channel onto a physical link. Changing the number of 
processors on which an application runs requires recompilation. 

More recent toolsets such as CStools [MEI89] address the problem of making the 

logical structure independent from the underlying hardware structure through the use of 
configuration descriptions (termed "par files"), however, these descriptions do not permit 

runtime parameterisation of the number of processors or flexible logical to physical mapping 

unless the user resorts to the underlying library routines. The Hellos operating system [DSL90] 

allows a user to describe the hardware configuration (Resource Map) separately from the 
logical configuration (CDL). These descriptions use different notations and are limited to 

compile time parameterisation. Further, the application programmer has little control over the 
logical to physical mapping. Helios programmers are limited to Unix style I/0 for inter-process 

communication. 

In the following section, the Tonic facilities for developing parallel programs are 

illustrated through the development of a program to compute the Mandelbrot Set. The facilities 

provided for mapping this program to different hardware topologies are described in section 3. 

Section 4 overviews the implementation of Tonic and provides some performance data. Finally, 

section 5 evaluates the approach. 



www.manaraa.com

316 

2 Program Construction in Tonic (Logical Structure) 

The following overviews the programming features offered by Tonic for parallel 
programming through the example of a program to generate Mandelbrot sets. The program 
generates a 512 by 512 pixel image where the colour of each pixel is represented by an 8 bit 
quantity. This quantity is computed as the number of iterations ( up to a maximum of 255) of 

the calculation z= z*z+c before lzl>2 where z is a complex variable and c a complex 
constant. If the maximum is reached c is assumed to be in the Mandelbrot Set, otherwise the 

number of iterations indicates how "close" c is to the set. The simplistic approach to 
parallelising this is to divide the image into the same number of chunks as there are processors 

and hand each chunk to a processor for computation. Since some image areas, far outside the 
set, require much less computation than others this approach leads to poor load balancing and 
thus poor performance. A more sophisticated approach employs a work allocator or supervisor 
process to hand out smaller chunks to worker or slave processes [MAG91]. A slave process 

computes a chunk and hands it back to the supervisor for display and then gets another chunk 
to compute until none are left. In the following, chunks are the size of one horizontal line of 

pixels. The logical structure of the program is shown in Figure 1. 

mandgen 

supervisor 

computed line 
(mandmsg) ... 

new line to compute 
(integer) 

slave[i] 

Figure 1 - Logical structure of the Mandelbrot Generator Program 

The types of message exchanged between components of the program together with 

program wide constants are defined in a definitions unit (c.f. Modula-2 modules) as shown 
below. 

1 define mandbrot:Xmax,Ymax,mandmsg,mandp; 
2 const Xmax=512; Ymax=512; 
3 type mandp= 11mandmsg; 
4 mandmsg = record 
5 lineno:integer; 
6 linebuf:packedarray[1..Xmax] of char; 
7 end; 
8 end. 



www.manaraa.com

317 

The program unit shown below is the definition of the slave process type - in Tonic 

process types are task modules. Tasks1 communicate with the outside world by sending 
messages to exitports and receiving messages from entryports. A task has no direct knowledge 

of which other tasks it will be connected to. This configuration independence greatly facilitates 

reuse. In this case, the slave task sends a computed line of pixel colour values (type mandmsg) 

to its exitport result (line 4). The communication primitive used is a send-wait-fail (line 23) 

which sends a request message to the exitport and then suspends the task waiting for a reply or 

an abort In the program below, an abort (indicated by a non-zero value of rcode) indicates that 

the supervisor has no more lines to compute. The first message from a slave to the supervisor 
has a zero linenumber indicating that the message does not include a computed line - it is merely 

a request for the first line to compute. Subsequent messages overload a request for a new line 
with the results of computing the last line. 

1 
2 
3 
4 
5 
6 
7 
8 

task moduleslave(xO,yO,dO:real); 
use 

mandbrot:Xmax,Ymax,mandrnsg; 
exitport 

result:mandmsg reply integer; 
var 

M:mandmsg; x1,y1,delta:real; i,rcode:integer; 

9 function mandcalc(cx,cy:real):integer; 
1 0 var i:integer; zx,zy,xx,xy,yy,t:real; 
11 begin 
12 i:=O; zx:=cx; zy:=cy; 
13 repeat 
14 xy:=zx*zy; xx:=zx*zx; yy:=zy*zy; zy:=xy+XY+Cy; zx:=xx-yy+cx; 
15 l:=XX+yy; i:=i+ 1; 
16 until(t>4.0)or(i=256); 
17 mandcalc:=i; 
18 end; 
19 
20 begin 
21 M.lineno:=O; delta:=dO/Xmax; 
22 loop 
23 send Mto result wait M.lineno fail rcode; 
24 ifrcode<>O then exit; 
25 x1 :=xO; y1 :=y0-(M.Iineno-1)*delta; 
26 fori:=1 toXmaxdobegin 
27 M .linebuf[i]:=chr(mandcalc(x1,y1)); x1 :=x1 +delta; 
28 end; 
29 end; 
30 delay(maxint); {supends task indefinitely} 
31 end. 

The supervisor component shown in Figure 1 is implemented by two tasks as shown 

in Figure 2. 

1 The terms task and process are used interchangeably throughout the paper. 



www.manaraa.com

318 

Figure 2 - Supervisor Composite Component 

The supervisor composite component is described in the Tonic configuration language 

by the group module below. Note that the interface to a group module is defmed in an identical 

way to task module interfaces. Thus tasks can be replaced by groups and vice-versa at any 
point during program development without affecting the rest of the program. The configuration 

description consists of four parts: i) the use clause (line 2) specifies the message and component 
types used to construct the group, ii) the interface to the component in terms of entry and 

exitports (line 6), iii) the instance of component types from which the component is constructed 
(line 8) and iv) the interconnections between instances of these components (line 11). Since the 

master task is critical to the overall performance of the program, its associated pragma (line 10) 

indicates that this task instance should be run as a high priority transputer process with its 
workspace in on-chip memory if possible. 

1 groupmodulesupervisor; 
2 use 
3 mandbrot:mandmsg; 
4 display; 
5 master;· 
6 entryport 
7 result:mandmsg reply integer; 
8 create 
9 display; 
10 master <PRI=O, MEM=ONCHIP>; 
11 link 
12 display.out to master.out; 
13 result to master. result; 
14 end. 

The program for task module master is given below. This task allocates lines to be 

computed to slave tasks through replies to the entryport result (line 18) and stores computed 

lines in the array bufs. When there are no more lines to be allocated, the task sending to result 



www.manaraa.com

319 

is aborted (line 19). As noted previously, this stops the slave task requesting lines. Since lines 
will be computed in different times by slave processes, computed lines will not be received by 

master in line order. 

1 task module master; 
2 use 
3 mandbrot:Xmax,Ymax,mandmsg,mandp; 
4 entryport 
5 result:mandmsg reply integer; 
6 out:signaltype reply mandp; 
7 var 
8 written,allocated:integer; current:mandp; 
9 bufs:array[O .. Ymax] of mandp; 
10begin 
11 for wr~ten:=O to Ymax do bufs[written]:=nil; 
12 written:=O; allocated:=O; new(current); 
13 loop 
14 select 
15 receive current" from result 
1 6 = > allocated:=allocated+ 1; 
17 if allocated<= Ymax then 
18 replyallocatedtoresult 
19 elseabort(result); 
20 with current" do if lineno<>O then begin 
21 bufs[lineno-1]:=current; new(current); 
22 end; 
23 or 
24 when bufs[written]<>nil 
25 receive signal from out reply bufs[written]= > written:=written+ 1; 
26 end; 
27 end; 
28 end. 

The guard on the receive from the entryport out (line 25) ensures that the display task receives 
lines in the correct order. The semantics of the select statement are identical to the Conic select 

statement. It should be noted that the master task does not have or need information on the 

number of slave tasks that are connected to it. In the following, this will allow us to simply 

parametrise the overall program with the number of slave tasks. 

The remaining task display, listed below, exists to decouple I/0 latencies to the display 

from the response time of master to requests for lines. The send-wait (line 10) has no fail 
clause indicating that if this send-wait was aborted the task would terminate in an error state. 
Note that this is the only task in the program that terminates. The Tonic termination model 
simply states that when any one task terminates (correctly or erroneously) the entire program is 
terminated. In this Tonic differs considerably from its predecessor which allowed continued 
operation in the presence of failures. This decision is consistent with the different characteristics 

of parallel and distributed programs identified in the introduction. 



www.manaraa.com

320 

1 task module display; 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

use 
mandbrot:Xmax,Ymax,mandrnsg,mandp; 

exitport 
out:signaltype reply mandp; 

var 
current:mandp; i,j:integer; output:text; 

begin 
fori:=1 toYmaxdobegin 

send signal to out wait current; 
forj:=1 toXmaxdo 

write(output,currentl\ .linebufU)); 
13 end; 
14 end. 

The final step in developing the Mandelbrot program is to describe the overall 

configuration structure of slave and supervisor components together with an abstract 
description of how we wish these to be executed on the multicomputer. At this stage, we merely 
indicate a mapping of components to an abstract machine which consists of maxprocessor 
identical processors. We are not concerned with the physical details of how these processors are 
interconnected. In fact, we assume that they are fully interconnected or, as termed in the 
following - globally interconnected. The configuration description for the program 
mandgen is given below. 

1 group module mandgen(x:real=-2.0;y:real=2.0;d:real=4.0); (default parameter values} 
2 use 
3 execpar; 
4 supervisor; 
5 slave; 
6 create 
7 execpar; 
8 create 
9 supervisor; 
1 0 create fora II k:[1 .. maxprocessor] at (k) 
11 slave[k](x,y,d) <MEM=ONCHIP> ; 
12 link fora II k:[1 .. maxprocessor] 
13 slave[k].result to supervisor.result; 
14 end. 

The replicator for all is used to declare vectors of components (line 10) or links (line 12). The 
at clause (line 10) specifies the processor at which the component instance is to be located. Any 
integer expression may follow the keyword at to denote the processor. Components with no at 
clause are by default allocated to the processor to which their parent group is allocated (in this 
case 1). More precisely, the rules governing allocation to processor numbers are: 



www.manaraa.com

321 

(1) Processors are numbered from 1 to maxprocessor. 
(2) Any component instance can be allocated to a processor by at. 

(3) The default allocation is to the parent group (ie at not used) . 

(4) The top-level group is conceptually allocated to processor 1. 

These rules mean that an at clause can appear at any level of a configuration description. For 

example, the configuration description for the parallel executive component execpar (below), 

allocates an instance of the component exec800 to each processor. Execpar provides I/0 to the 

host, error reporting and inter-processor communication It should be noted that 
maxprocessor is not a compile-time constant - it is initialised at run-time as described in the 
next section. 

1 group module execpar(buffers:integer=4); 
2 use 
3 exec800; 
4 create fora II k:[1 .. maxprocessor] at(k) 
5 exec800[k](buffers); 
6 end. 

This section has demonstrated how parallel programs are constructed in Tonic. The 

mandgen program includes examples of request-reply communication and one-to-one and 

many-to-one communication (many slave exitports to one supervisor entryport). Tonic also 
includes unidirectional synchronous communication primitives, a mechanism for responding to 
requests in a different order to which they were received and a forwarding facility. Description 
of these is beyond the scope of the present paper. The next section describes how the 
Mandelbrot program can be executed on many different hardware configurations. 

3 Logical to Physical Mapping 

The previous section has described the logical structure of the Mandelbrot program 

mandgen. This logical structure is annotated with a mapping of components to an abstract 
machine consisting of maxprocessor identical globally interconnected processors. In this 
section, we outline how this abstract machine is realised on the actual hardware. In our case the 

target hardware is a Meiko Computing Surface consisting of a SPARC based host (running 
Unix) and 32 T800 transputers each with 4 Megabytes of memory (figure 3). Via a utility 

provided by Meiko (svcsd), a user can reserve a variable number of transputers and set up 

inter-transputer links before downloading an application program. Svcsd provides a 

bidirectional message passing interface from the host to link 0 of one of the reserved transputers 



www.manaraa.com

322 

Transputers 

EJ 
Figure 3 - Meiko Computing Surface 

The Tonic Configuration language is used to describe the desired physical topology of 
interconnected transputers. This physical configuration description is used to drive the logical to 
physical mapping process. Figure 4. depicts the configuration view of an individual T800 
transputer. 

linkout[O 
linkin[O] 

linkout[1] 

linkin(3] linkout(3] 

linkout[2] 

linkin[2] 

1 task modulet800; 
2 exitport 
3 linkout[0 .. 3]:byte; 
4 entryport 
5 linkin[0 .. 3]:byte; 
6 begin 
7 {never executed} 
8 end. 

Figure 4 - Configuration view of T800 transputer. 

The T800 transputer type is represented by a Tonic task module. The task has no code since it is 
never executed. It serves only to provide an interface specification to configuration 
descriptions. Using this definition, we can now describe physical topologies of transputers. 
The following group module describes a pipeline where link 1 of each transputer is connected 
to link 0 of its successor in the pipeline. The pragma (line 7) associates an integer processor 
identifier with each t800 instance. These processor identifiers are used during the mapping 

process. A component in the logical configuration will execute at the processor whose identity 
corresponds to that specified by the component's at clause. In the interest of conciseness, it is 
only necessary to define either linkout[m} to linkin[n} or linkout[n} to linkin[m] to specify 

a hardware connection between two transputers. 



www.manaraa.com

323 

1 groupmodulepipeline(length:integer); 
2 entryport 
3 linkin:byte; 
4 use 
5 t800; 
6 create fora II k:[1 . .1ength] 
7 t800[k) <PID=k>; 
8 link fora II k:[1..1ength-1) 
9 t800(k].linkout[1) tot800[k+1).1inkin[O]; 
10 link 
11 linkin tot800(1].1inkin[O); 
12 end. 

The following description of a ternary tree of transputers illustrates some of the more 
powerful features of the Tonic configuration language - namely guards and recursion. In this 
example we have omitted pragmas to explicitly associate identities to processors but relied on 
the default assignment of identities supplied by the underlying system. This definition of a 

ternary tree is of limited usefulness since it only generates configurations of 1 processor 
(depth=O), 4 processors (depth=l), 13 processors (depth=2), etc. In practice, we use a 

definition of ternarytree which generates balanced ternary trees for any number of processors. 

1 group modu leternarytree(depth:integer); 
2 entryport 
3 linkin:byte; 
4 use 
5 t800; 
6 create 
7 root:t800; 
8 link 
9 linkin to root.linkin[O); 
1 0 when depth>O 
11 create fora II k:[1..3] 
12 child[k]:ternarytree( depth-1); 
13 when depth>O 
14 link fora II k:[1 .. 3] 
15 root.linkout[k] to child[k].linkin; 
16 end. 

To complete the hardware configuration description the connection between the host processor 

and target transputer system must be specified as shown below for both the pipeline and 
ternary tree topologies. Line 9 specifies the connection between the host, represented by the 

component gin, and the first transputer in the pipeline (or ternarytree). Gin is the engine which 

perfonns most of the work of providing the Globally INterconnected abstract machine required 
to execute the logical configuration. Its implementation is described in outline in the next 

section. The name was irresistible. 



www.manaraa.com

324 

1 group module pipe(length:integer); 
2 use 
3 gin; 
4 pipeline; 
5 create 
6 gin; 
7 pipeline(length); 
8 link 
9 gin.linkout to pipeline.linkin; 
10 end. 

1 groupmodulettree(depth:integer); 
2 use 
3 gin; 
4 ternarytree; 
5 create 
6 gin; 
7 ternarytree(depth); 
8 link 
9 gin.linkout toternarytree.linkin; 
10 end. 

The above group modules pipe and ttree compile into the host executable files pipe 

and ttree. The program mandgen described in the previous section compiles into the target 
executable file mandgen.SOO. To execute the Mandelbrot program on a pipeline of four 
processors the user types the following command on the host. The logical to physical mapping 
is depicted in figure 5. 

pipe 4 mandgen.SOO 2.0 2.0 4.0 I pixdisp2 

Similarly, to execute the Mandelbrot program on a ternary tree of depth 2 (13 processors), the 
user types the command: 

ttree 2 mandgen.SOO 2.0 2.0 4.0 I pixdisp 

Note that ttree and pipe can be applied to any application program, they are not specific to the 
Mandelbrot example. 

1 
supervisor 
slave[1] 

0 2 
slave[2] 

0 3 
slave[3] 

1 0 4 
slave[4] 

Figure 5 • Mandgen mapped to a pipeline of 4 transputers 

2 Pixdisp is a program executing on the Unix host which reads from its standard input and displays the bytes 
read as coloured pixels on an Xwindow. 



www.manaraa.com

325 

4 Implementation & Performance 

In this section, we give an overview of how Tonic programs are executed on the 
Meilm Computing Surface. The latter part of the section discusses performance. 

Tonic Configuration Language 

Each group module in a configuration description compiles into a procedure to 

elaborate the structure of that group at run-time. The set of these elaboration procedures when 
executed at run-time generate a directed graph in which the nodes are task instances and the arcs 

are intertask links. Group modules are not represented in this graph, it is a flat representation of 
the hierarchical configuration structure [DUL90]. Consequently, no penalty is paid at run-time 

for using hierarchically structured configuration descriptions. 

Bootstrapping the transputer network. 

When a physical configuration description is executed on the host (e.g. ttree) the 
graph structure generated is passed to Gin. This graph represents the desired configuration of 

transputers required to execute the logical configuration. Gin performs the following sequence 
of actions: 

1) The graph is checked to ensure that it represents a legal transputer configuration. That 

is, all transputer connections are one-to-one, processor identifiers are in a contiguous 
range, and the graph is fully connected (so that there is a path to boot every processor). 

2) Gin then computes a minimum depth spanning tree for the graph. This identifies 

which transputer links will be used for bootstrapping. The complete graph is recorded in 

an adjacency matrix AJ[O .. maxprocessor, O .. maxlink] where maxlink=3 and AJ[iJ] is 

the identity of the processor to which link j of processor i is connected.Processor 0 

represents the host The matrix is marked with those links which will be booted. 

3) Using the svcsd utility, gin grabs the required number of processors and 

interconnects them to conform to the graph generated by the physical configuration 

description. 

4) In the next stage, gin bootstraps the first transputer by sending the application program 
(e.g. mandgen.800) to its link 0. Once the program starts executing, gin sends it four 

further pieces of information: 

a) its processor identifier (in the range J .. maxprocessor). 



www.manaraa.com

326 

b) the maximum number of processors maxprocessor. 

c) the adjacency matrix AJ. 
d) the command arguments represented as strings ( Unix argc & argv). 

For the example, these would be mandgen.800 2.0 2.0 4.0. 

5) At this stage, gin is finished with the bootstrapping process and becomes a server 

which services IJO requests from the application program. It runs until either the program 
running on the network reports an error or terminates. 

The application program loaded into each transputer continues the bootstrap process. 

When started it receives the items a) to d) listed in 4) above. The program then examines the 

entry in the adjacency matrix corresponding to its processor identifier. If an entry AI[ self J] is 

marked to be bootstrapped, the program sends its code to outgoing link j to bootstrap the 

processor to which link j is connected. It then sends the processor identifier AI[selfJ], 

maxprocessor, AI and the command arguments to complete the bootstrap. Note that exactly 

the same code is loaded into each processor. The only value which a processor receives to 

distinguish it from others is its processor identifier. After the flrst level of the boot spanning tree 
has been bootstrapped, booting continues in parallel until the leaves of the tree have been 

bootstrapped. 

Initialisation 

After completing bootstrapping, each transputer executes the same initialisation code. 
This code first calculates a minimum distance routing table from the adjacency matrix. The 

routing table is used by execpar at execution time. Initialisation proceeds by invoking the 

group elaboration procedures. Each transputer node thus has a copy of the complete logical 

configuration graph. However, the kernel (which is part of execpar) only instantiates tasks 

which correspond to its processor identifier ie. an at clause in the logical configuration 

specified "this" processor. The kernel in addition to instantiating tasks creates datastructures to 

implement both local and remote inter-task communication. These communication 

datastructures contain initialised transputer channel words. The Tonic communication primitives 

are implemented using the transputer communication instructions , in, out, a 1 t etc. 

Loading the entire code for the application at each processor has the disadvantage of 

wasting storage when task types are loaded but not instantiated. However, this scheme has the 

following major advantages: 

1) It permits the bootstrap to proceed in parallel. This considerably reduces startup time 

for large numbers of processors. 



www.manaraa.com

327 

2) Since each node has a complete copy of the logical configuration graph, the setup of 
inter-task communication associations at initialisation time does not require remote 
communication. The initialisation of each transputer proceeds in parallel. Again this 
reduces application startup time. Tonic applications typically take less than a second to 

startup. 

Performance 

Figure 6 shows the times required for a request-reply message exchange. The time is 
measured from the time the sending task initiates the exchange by a send-wait to the time the 
reply message completes the exchange. The receiving task executes a receive followed by a 
reply. 

4 byte Request 100 byte Request 
4 byte Reuly 4 byte Reuly 
I 

Intra-Processor I 17uS 19uS 
I 

Inter- Processor I 174uS 241uS 
I 

+ time per additional I 144uS 210uS 
intermediate processor I 

Figure 6 - Request - Reply times. 

The times above are for a one to one request-reply communication i.e. one exitport 
connected to one entryport. Where the communication is n to 1 (n exitports connected to 1 
entryport as in the Mandelbrot example) the time for an individual intra-processor request-reply 
is 'T + S*n uS (for n > 1) where T is the time for a one to one communication. This is because 
many to one communication is implemented using the transputer alt instruction. The receiver 

task waits on a set of transputer channels representing the set of exitports connected to it. 
Consequently, the time to receive from an entryport is proportional to the number of exitports 

connected to it . This represents a considerable performance penalty for large fan-in 
configurations. For example, with 32 processors, the mandgen program has a 32 to 1 

connection to the supervisor's result entryport. Consequently, the performance penalty is 

160uS per communication. We are currently re-implementing intra-processor communication 

using critical regions rather than transputer communication channels to make the receive time 
independent of the fan-in factor. 



www.manaraa.com

Speedup 

35.00 

30.00 

25.00 

20.00 

15.00 

10.00 

5.00 

328 

-•- ttree -o- Linear -•· pipe 

,; ...... r:, •. .,.. .. ........ ,.y.•. 

...... ·1 
•• •r .. _ . .,. ....... . . .•. .... r • .--•· . .,•';.··•' _ ....... . .......... .. ,..':~·--· .-

,...,. •. 
0.00 ·j· I I I I I I I I I II I I I I I I I I I I I I I I I I I I I I 

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 

#processors 

Figure 7 - Mandgen program speedup 

Figure 7 represents the speedup for the Mandelbrot program example plotted against 

the number of processors using a balanced ternary tree hardware configuration (ttree) and a 

pipeline hardware configuration (pipe). Speedup(n) is measured as the time for 1 processor 

(i.e. 1 slave & 1 supervisor) divided by the time for n processors (i.e. n slaves & 1 

supervisor). Not surprisingly, the ternary tree mapping outperforms the pipeline mapping. The 
average processing rate for the 32 processor ternary tree mapping is 26Mflop/S or 0.8Mflop/S 
per transputer. The overall time with 32 processors to complete the computation with the 
parameters (2.0,2.0,4.0) was 3.3 seconds. 

5 Discussion & Conclusions 

The paper has presented a configuration approach to the construction of parallel 
programs in which the functional behaviour of individual components is specified by a 
programming language and the overall parallel program structure is specified by a configuration 
language. The configuration specification declares the instances of component types and their 
interconnections. Component instances execute in parallel. This logical configuration is 
annotated with a mapping to an abstract machine which consists of maxprocessor identical, 
globally interconnected processors. The physical configuration of the real machine is specified 



www.manaraa.com

329 

using the same configuration language. This physical description drives the logical to physical 

mapping process. Both the logical and physical configuration specifications are considerably 
more flexible than those provided by existing systems [INM88b, DSL90, MEI89]. Running a 
Tonic program on different physical configurations with different numbers of processors and 
different inter-processor connections requires no re-compilation. This facilitates both portability 

and experimentation with different logical to physical mappings. The configuration approach is 
similar to that of the MUPPET [MUH88] system which uses a graphical notation to express 
configurations. However, MUPPET does not clearly separate logical from physical 
configurations and is limited in the mappings which can be expressed. Tonic also has a 

graphical notation for expressing configurations and an associated display tool [KRA89]. 
However, for describing regular structures, we find the power of the textual language to be 

more useful. 

In concurrent programming terms, Tonic falls into the class of languages which 
support the process/message passing paradigm [BAL89]. The best known of these languages 
are Occam [INM88b] and Ada[DOD83]. Unlike these languages, Tonic incorporates a separate 
language to describe the structure of concurrent programs in terms of task instances and inter

task message paths (links). These languages also differ in the time at which the program's 
process structure is fixed. Occam defines the process structure statically at compile time, Tonic 

at instantiation/initialisation time and Ada dynamically at run-time. In fairness, it should be 
noted that Ada semantics do not permit an efficient distributed memory implementation. We are 

currently experimenting with an approach which would allow changes to the process structure 
at run~time while retaining a strict separation between programming and configuration 
[MAG90]. This will permit a limited, but efficient, form of process migration to facilitate 
dynamic load balancing. 

We regard Tonic as a prototype implementation to validate the configuration approach 

to parallel programming. Its application is restricted by the reliance on one specific 
programming language -Pascal + message passing. Currently, we are engaged in the 

development of a configuration language (Darwin) [MAG90] and associated tools which will 
permit the configuration approach to be applied to parallel programs composed of components 
written in commonly available languages such as C & Fortran. 

Despite the limitations expressed above, Tonic is a practical and efficient tool for 
developing parallel programs. It hides many of the irrelevant details about the underlying 

hardware which currently harass parallel programmers. Typically, application programmers 
select a physical configuration from a library rather than programming their own. The library 

currently includes pipeline, ring, mesh, torus, binary tree, ternary tree, cube connected cycles 
and WK-Recursive physical topologies. The toolset is used by. both research and 

undergraduate students. 



www.manaraa.com

330 

Acknowledgements 

The authors would like to acknowledge discussions with our colleagues in the Parallel 
and Distributed Systems Group during the formulation of these ideas. We gratefully 
acknowledge the SERC under grants GE/E/62394 (ACME) & GR/G31079, and the CEC in 
the REX Project (2080) for their financial support. 

References 

[ATH88] W.C. Athas, C.L. Seitz, "Multicomputers:Message-Passing Concurrent 
Computers", IEEE Computer, Vol. 21, No.8, August 1988, pp 9-24. 

[BAL89] H.Bal, J. Steiner, A Tanenbaum, "Programming Languages for Distributed 
Computing Systems, ACM Computing Surveys, Vol. 21, No.3, September 
1989, pp 261-322. 

[DOD83} Department of Defense, U.S.A., "Reference Manual for the Ada Programming 
language", ANSI/MIL-STD-1815A, DoD, Washington D.C. Jan 1983. 

[DUL90] N. Dulay, "A Configuration Language for Distributed Programming", Ph.D. 
Thesis, Dept. of Computing, Imperial College, February 1990. 

[DSL90] Distributed Software Ltd," The Hellos Parallel Programming Tutorial", 670 
Aztec West, Bristol, January 1990. 

[INM88a] lnmos Ltd, "OCCAM 2 reference manual", Prentice Hall, 1988. 

[INM88b] Inmos Ltd, "Transputer Development System", Prentice Hall, 1988. 

[KRA85] J.Kramer, J.Magee, "Dynamic Configuration for Distributed Systems", IEEE 
Transactions on Software Engineering, SE-ll (4), Aprill985, pp. 424-436. 

[KRA89] J. Kramer, J. Magee, K. Ng, "Graphical Configuration Programming", IEEE 
Computer, Vol22, No 10, Pages 53-65. 

[MAG89] J.Magee, J.Kramer, and M.Sloman, "Constructing Distributed Systems in 
Conic" IEEE Transactions on Software Engineering, SE-15 (6), June 1989. 

[MAG90] J.Magee, J.Kramer, M. Sloman, and N .Dulay," An Overview of the REX 
Software Architecture", Proceedings of the 2nd IEEE Workshop on Future 
Trends of Distributed Computing Systems" Cairo, Egypt, Sept. 1990, pp 396-
402. 

[MAG91] J.N. Magee and S.C. Cheung," Parallel Algorithm Design for Workstation 
Clusters", Software-Practice and Experience, Vol. 21. March 1991, pp 235-
250. 

[MEI89] Meiko Ltd, "CS Tools Documentation Guide", 650 Aztec West, Bristol, 1989. 

[MUH88] H. Muhlenbein, Th. Scheider, and S. Streitz, "Network Programming with 
MUPPET", Journal of Parallel and Distributed Computing, Vol5, 1988, Pages 
641-653. 



www.manaraa.com

CHAOTIC LINEAR SYSTEM SOLVERS 
IN A VARIABLE-GRAIN DATA-DRIVEN 

MULTIPROCESSOR SYSTEM• 

J ean-Luc Gaudiot and Chih-Ming Lin 

Department of Electrical Engineering - Systems 
University of Southern California 

Los Angeles, California 90089-0781 

Abstract 

Linear systems are important problems in many scientific applications. While asynchronous 
methods are effective solutions to linear systems, they are difficult to realize due to the chaotic 
behavior of the algorithms. In this paper, we investigate the implementation as well as the per
formance of an asynchronous method, namely chaotic relaxation, in our Variable-grain Tagged
Token Data-flow (VTD) System. We compare asynchronous methods with synchronous methods 
executed on both the fine-grain and the coarse-grain execution models. New high-level data
flow language constructs are introduced in order to express asynchronous operations. A new 
firing ~e that deviates from the single assignment rule of functional languages is proposed to 
support the implementation of asynchronous computations in the VTD system. In addition 
to the conventional speedup measure, we then define new performance measurements, called 
Growth Factor, Scalability Factor, and Robustness to characterize the system performan.ce froru 
the machine and application viewpoints. Simulation results indicate that asynchronous methods 
are more efficient than synchronous methods and that the coarse-grain execution mode is more 
efficient that the fine-grain execution mode in our VTD system. 

1 Introduction 

Linear systems play an important role in many applications such as PDE solvers. Gener
ally, linear systems can be solved by direct or iterative methods. Iterative methods can 
further be classified as synchronous [9] or asynchronous [3]. While synchronous methods 
are easy to implement, they do not yield acceptable levels of performance for complex 
problems, mainly because of the synchronization necessary among the various processes. 
On the other hand, asynchronous approaches have been found by many researchers [3, 5] 
to efficiently exploit runtime parallelism. In an asynchronous approach, communication 
between processes is achieved by reading the dynamically updated variables while each 

* This material is based upon work supported in part by the U.S. Department of Energy, Department 
of Energy Research, under Grant No. DE-FG03-87ER25043. 



www.manaraa.com

332 

process continues its execution to update shared variables. Therefore, the chaotic behavior 
of data in an asynchronous algorithm is very complex. However, while an asynchronous 
method can be effective in parallel machines and can deliver high performance, it is dif
ficult to implement due to the chaotic behavior of the method itself. From the software 
perspective, language constructs must be defined to specify the asynchronous method, 
thereby parallelizing the algorithm. From the hardware point of view, special architec
ture schemes dedicated to the algorithm need to be developed. 

The data-flow principles of execution [2] offer the programmability needed to synchro
nize at runtime the many parallel processes on a large scale multiprocessor. Instead of 
relying on the conventional central program counter, the availability of data renders an 
instruction executable. Asynchronous algorithms have been implemented in data-driven 
systems, more precisely in micro-actor-based data-driven systems [5]. Although the mi
cro approach to asynchronous methods correspond well to the simplicity of data-driven 
principles, it yields much overhead to respect the functionality of execution. 

In this paper, we will first introduce special high-level data-flow language constructs 
(Async-Repeat and Async-For) to describe the chaotic behavior in asynchronous algo
rithms. The scheme to form coarse-grain (macro-actor) data-flow graphs and a specific 
firing rule in the Matching Store with Locks of processors will also be introduced in order 
to correctly execute the computations of the asynchronous algorithms. In this paper, we 
are also interested in measuring and comparing the performance of algorithms as well as 
our VTD system: First, to evaluate the performance of the architecture, the conventional 
"Speedup" measurement will be taken to depict the trend of the performance with larger 
machine configurations. Second, to estimate the growth of parallelism within an algo
rithm when the algorithm's complexity has been increased, a new measurement, called 
"Growth Factor", will be defined to show how suitable an algorithm is for multiprocessor 
systems. Third, to measure the efficiency of parallel systems in the execution of parallel 
algorithms, we will introduce another new measurement, called "Scalability Factor", to 
demonstrate the scalability property of the systems. Finally, we will define "Robustness" 
to indicate the potential performance of the systems. 

We shall start our discussion in section 2 by giving a brief introduction to the data-flow 
principles of execution as well as to asynchronous methods for solving linear systems. In 
section 3, the Jacobi method and the chaotic relaxation method are described in a High
level data-flow language along with the new languages constructs. The VTD System and 
the new firing rule for chaotic relaxation and the new performance measurements will be 
described in section 4. Section 5 will present the results of a deterministic simulation on 
the system and concluding remarks will be made in section 6. 

2 Data-flow Principles and Iterative Solutions for 
Linear Systems 

In this section, we first introduce the data-flow principles of execution and review the es
sentials of the synchronous and asynchronous linear system solvers which will be evaluated 
on our VTD system. 



www.manaraa.com

333 

2.1 Data-flow Principles 

Programmability has been identified as the major issue in the design of large-scale multi
processor systems [1, 2]. Indeed, programmers cannot be expected to be able to schedule 
and synchronize the hundreds or thousands of tasks that are required to fully utilize the 
resources of such machines. Therefore, the data-flow model of computation has been 
introduced to alleviate this problem [1]. Data-flow principles allow runtime synchroniza
tion of operations based on their data dependencies. This allows a very large number of 
different tasks to be scheduled efficiently and transparently. 

Data-flow computing is an alternative to the control-flow model. It is inherently 
parallel, as the execution of an instruction is based upon the availability of its arguments. 
Data-flow principles can be characterized by two statements: First, operations execute 
only when all required operands are available. Second, actors are purely functional and 
execution produces no side-effects. Data-flow programs are represented by directed graphs 
which consist of actors connected together with arcs. Arcs represent the data dependencies 
between actors and carry tokens which are the data values passed between actors [2]. 

2.2 Jacobi Method 

The Jacobi iterative method can be derived from a liner system Ax x =bas: 

{k+l} _ - Ei-ti,j=l a;;x}k) + b; 
x1 - for i = 1, ... , n and k ;::: 0 

a;; 
(1) 

where the x~0)'s are initial estimates of the components of the solution x. By examining 
the Jacobi iterative method shown above, it can be seen that all the components of the 
previous (ole!) vector x{k) must be saved before the components of the next (new) vector 
x{k+l} are computed. Therefore, in this algorithm, an iterative sequence of approximations 
x<1>, x<2>, ... , x{n) will be sequentially computed. 

2.3 Chaotic Relaxation 

In the asynchronous approach, each process continues execution to update the elements in 
X(i) and communication between processes has been achieved by reading the dynamically 
updated variables. A subset of asynchronous methods, called chaotic relaxation schemes, 
was introduced by Chazan and Miranker [3] to solve linear systems. In a chaotic relax
ation scheme, practical constraints on the asynchronous behavior are imposed. While an 
asynchronous algorithm imposes no restriction on how "old" a value may be (i.e., how 
many iterations ago it was produced), chaotic relaxation requires that the updated value 
of a point be received within a fixed amount of time. 

3 From Algorithms to Data-flow Graphs 

We have now established two categories of algorithms for linear system solvers that we 
will implement and evaluate on our VTD system. These algorithms will now be expressed 
in a high-level data-flow language translated into data-flow graphs. 



www.manaraa.com

334 

3.1 The Jacobi Method and Synchronous Constructs 

The algorithm is shown in Fig. 1 in SISAL [8]. Line 4 contains the decision to proceed or 
not with the relaxation at each iteration. The Relaxation procedure (lines 5 through 15) 
performs the relaxation for all of the elements in X[i] and generate new values of vector 
X[i]. The Convergence Check procedure (lines 16 through 22) checks all the elements and 
generates a. termination signal back to line 4. Here, we use a. stopping criterion evaluated 
by an L 00 norm. 

In the SISAL program, one should note that the relaxation on each element X[i] under 
the for constructs (lines 5 and 6) can be executed in parallel mainly due to the definition of 
the language constructs. In the same way, the convergence check on each elements of X[i] 
and old X[i] can be executed in parallel under the for constructs in line 16. However, the 
algorithm itseH will be executed in a. synchronous manner. In other words, a step-by-step 
iteration process will ta.ke place. 

3.2 Chaotic Relaxation and Asynchronous Constructs 

The chaotic relaxation is an approach which is particularly successful in parallel environ
ments. However, new language constructs must be introduced to describe the algorithm. 

3.2.1 The Asynchronous Constructs 

Asynchronous computations cannot be easily implemented by traditional high-level pro
gramming constructs. Therefore, we designed the async-repeat and the async-for opera
tors to represent an asynchronous behavior. The main idea of the new async-repeat and 
async-for constructs is to release the synchronization constraints from the repeat and for 
constructs in SISAL since then inherently create synchronization points in the body of 
the loops. 

1. Async-repeat : This construct allows the procedures inside it to be concurrently 
evaluated without any synchronization between one another. For example, in the following 
program, statement (1) and statement (2) can be executed simultaneously and repeatedly 
as long as the condition c :5 100 remains true: 

for initial 
while c :5 100 async-repeat 

a:= old a + 1 ; --- - (1) 
c:= a + b ; - - - - - - - (2) 

return value of c; 
end for 

In the above program, under the asynchronous construct, statement (2) may be executed 
and its result generated before the completion of the execution of statement (1). In other 
words, if statements (1) and (2) were executed independently, c may be already larger 
than 100 (assume b = 101 and a= 0). This would force termination of the process before 
a is updated by statement (1). Note that the execution model described above will not 
be allowed in the conventional repeat construct which only executes the two statements 
one after the other due to the synchronization point imposed by the language construct. 



www.manaraa.com

335 

define main, jacobi 
type OneDim = array[real]; 
type TwoDim = array[OneDim] ; 
function jacobi ( A : TwoDim ; B : OneDim ; N : integer ; 

returns OneDim ) 
(1) for initial 

Err:= 0; 
X := array [1: 0.0, 0.0, 0.0, 0.0] ; 

(4) while Err< N repeat %convergence check 
(5) X := for i in 0, N % relaxation on X 

temp1 :=for j in 1, N 
temp2 := 
ifi ;l: j 

then A[i,j] * old XU] 
(10) else 0.0 

end if; 
returns value of sum temp2 

end for; 
returns array of ( B[i]-temp1 ) / A[i,i] 

(15) end for; % generate new X 
Err:= fori in 1, N %generate error norm 

temp3:= if abs(X[i] - old X[i]) < f 

then 0 
else 1 

(20) end if; 
returns value of sum temp3 

end for; 
returns value of X 

end for 
end function 

Figure 1: A SISAL program for Jacobi methods. 



www.manaraa.com

336 

2. Async-for : While the conventional for construct in SISAL allows every index 
value to be synchronously executed in parallel, the async-for construct releases the syn
chronization between each index value and allows independent execution of index values 
in parallel. For example, in the following program, the return values of array X does not 
need to wait until all the new values of each index i become available. Instead, each new 
value of index i can be updated asynchronously as soon as the value is available and the 
next computation can be started. 

for initial 
X := async-for i in 0, N 

temp := Y[i] X old X[i] ; 
returns value of temp X temp 

end for; 

While the async-for construct allows each index i to be evaluated asynchronously, it 
should be noted that the operation within the construct corresponds to an infinite loop. 
It ensures that the computation will proceed until another process (outer loop) terminates 
the whole execution. The following program is an example which shows that the process 
under the async-for construct will be terminated by the process that is under the async
repeat construct. 

for initial 
while condition async-repeat 

X := async-for i in 0, N 
temp := A[i] X old X[i] ; 
returns value of temp X temp 

end for; 
Procedure_two ; 
Procedure_three ; 

end for; 

Overall, under the bodies of the new async-repeat and async-for constructs, synchroniza
tion constraints can be released while the repeat and for constructs create synchronization 
points inside the bodies of the constructs. However, in general, the async-for constructs 
will require the async-repeat to co-exist in a program. This is because only the async-repeat 
construct can terminate the process under the async-for constructs. 

3.2.2 The SISAL Programs 

Chaotic relaxation can be expressed in SISAL by using the new constructs. First, in 
order to allow several procedures to be executed asynchronously in parallel, the repeat 
must be replaced by async-repeat at the outer loop of these procedures. In Fig. 1, in 
line 4, the repeat should be replaced by async-repeat. Therefore, under the async-repeat 
construct, both the Relaxation procedure (from line 5 to 15) and the Termination Check 
(from line 16 to 23) can be executed concurrently without any dependency between each 
other. Second, in order to allow each index value, which is under the for construct, to 
be executed asynchronously in parallel, the for must be replaced by async-repeat at the 
beginning of the procedure. In line 5, we replace for by async-for. Therefore, inside 



www.manaraa.com

337 

the async-for construct, each index value can concurrently proceed the execution of the 
computation without waiting for other values which are executing the same function. 

4 VTD System and Performance Measurements 

While the macro-actor concept is a solution which reduces overhead in fine-gain computa
tions, the architecture must be able to execute actors of varying sizes. Our Variable-grain 
Tagged-token Data-flow {VTD) system has therefore been designed for this purpose. A 
new firing rule in the VTD system is also proposed to guarantee the proper behavior 
of chaotic relaxation and to achieve efficient computations. To characterize the perfor
mance in the VTD system, new performance measurements are defined along with the 
conventional performance measurements. 

4.1 The VTD System 

The VTD system consists of a set of identical Processing Elements {PEs) connected by a 
hypercube {message-passing) communication network. A single PE consists of 4 units : 
Matching Store Unit, Instruction Fetch Unit, ALU, Token Formatting Unit [5]. 

4.2 The Matching Store with Locks 

In chaotic relaxation, due to the asynchronous iterations at each grid point, the value of 
each grid point must be saved for the relaxation of other grid points. In order to guarantee 
the proper behavior of the chaotic actors, we introduce the notion of locks at the inputs 
of the actors. In other words, we create locks inside the matching store for the firing of an 
actor. Note that the implementation of locks in actors corresponds to the Async-repeat 
and Async-for constructs of the high-level language. The locks will be attached to the 
input actors of a subgraph. These actors represent the processes that can be executed 
asynchronously under the Async-repeat and Async-for constructs. 

Under the new firing rule, when an actor is fired, the input tokens remain in the input 
lock until the next input token is received. In this fashion, the incoming token will replace 
the stored value and will activate once more the actor. Fig. 2 shows the step-by-step the 
operation of the new firing rule of an actor along with the matching store with locks: 
1. Initially, when either token A or token B {A and B have the same tags) comes into the 
actor F, it will be locked inside the actor. 
2. When the partner token arrives, actor F will be fired and will produce an output token. 
3. After firing actor F, both input tokens remain locked inside the actor. 
4. When another token Cis later received by the actor, the actor is fired with the locked 
token on the other port and the new value on the first port. The incoming token will 
remain locked in the actor. Note that it overwrites the previous token value. 

4.3 Performance Measurements 

Many measurements of system performance, such as speedup and system utilization, have 
been used to evaluate multiprocessor systems in the past. However, these measurements 
do not clearly indicate the effectiveness of architectures as well as application programs 



www.manaraa.com

338 

Figure 2: A New Firing Rule with locks in Matching Store. 



www.manaraa.com

Speedup 

16 

8 

4 

2 4 8 

339 

Ideal Speedup 

16 32 

Figure 3: Speedups with Various PEs. 

PE 



www.manaraa.com

340 

because there is no indication of how much of the performance is due to the architectures 
and how much of it is due to the applications. Indeed, the speedup should be measured 
by scaling the problem to the number of processors, not by fixing problem size. An expla
nation of misuses of Amdahl's speedup formula has been demonstrated in [7]. Therefore, 
when multiprocessor systems are evaluated, both parallel algorithms and parallel architec
tures are required to achieve high performance. For instance, a parallel machine cannot 
deliver high efficiency in executing a. sequential program due to the lack of parallelism 
within the program. On the other hand, a. parallel algorithm cannot guarantee high per
formance in a multiprocessor system if the system cannot exploit the parallelism involved 
in the program. Clearly, what we need is a better performance measurement to reflect 
the degree of exploited parallelism resulting from algorithms as well as the ability of the 
architectures to utilize such parallelism. 

In this paper, we are interested in measuring and comparing the performance of algo
rithms as well as our VTD system: First, to evaluate the performance of the architecture, 
the conventional Speedup measurement is taken to depict the trend of the performance 
with larger machine configurations. Second, to estimate the amount of the growing par
allelism within a.n algorithm when the algorithm's complexity has been increased, a. new 
measurement, called Growth Factor, is defined to show how suitable of an algorithm is 
for multiprocessor systems. Third, to measure how efficient of parallel systems in exe
cuting parallel algorithms, we introduce a new measurement, called Scalability Factor, to 
demonstrate the scalability property of the systems. Finally, we define the Robv.stness to 
indicate the potential performance of the systems. 

1. Speedup : Speedup has been conventionally defined as the ratio of the execution 
time of an Application (AP) on N Processing Elements (PEs) to the execution time of 
the same application on a. single PE : 

Speedup (AP p E(N)) = E::c. t~mc of AP on one PE 
I E:z:c. t1me of AP on N PE• 

Under this definition, the ideal speedup of an architecture is N when there are N PEs in 
the system. In other words, if a speedup cure is closer to the line of ideal speedup, then 
the architecture is considered a better parallel system. For instance, Fig. 3 shows that 
system "A" performs better than system "B" in term of system "A" having a speedup 
curve closer to the line of ideal speedup. However, by this definition, it is only shown 
how the execution time can be reduced in various system configurations while the amount 
of complexity in the application remains unchanged. However, this does not show the 
suitability of a.n algorithm for multiprocessor systems. In other words, the speedup curves 
only demonstrate the machine domain performance without considering the application 
aspect. 

2. Growth Factor : Before the speedup in a system is measured, how well an applica
tion can perform in parallel systems must be studied. The growth factor shows how much 
parallelism changes when the complexity of an algorithm is changed. Here, the complex
ity of an algorithm refers to the number of operations needed to execute the algorithm. 
For example, the inner product of vectors V( a1, a2, aa, ... ,am) and U(b11 b2, b3, ••• , bm) has 
a. complexity of 0( m). The growth factor therefore is defined as the ratio of the execution 
time of an Application (AP) with a complexity (M X m) on a. fixed number of n PEs to 
the execution time of the same application with a complexity of m on the n PEs. 

Growth Factor (AP(Mm) PE(n)) = Eze. ti~e of Mm AP on n PEa 
' Eze. t1me of m AP on n PE• 



www.manaraa.com

Growth Factor 

16 

8 

4 

2 4 8 16 

341 

Application A 

Ideal Growth Factor 

32 Complexity(M) 

Figure 4: Growth Factors with Various· Complexity (M). 



www.manaraa.com

Scalability Factor 

1 

0.5 

0.25 

2 4 8 

342 

Ideal Scalability Factor 

Application A 

Application B 

16 32 Scale(S) 

Figure 5: Scalability Factors with Various Scales (S). 

Ideally, a. perfectly parallel algorithm should have a. growth factor proportional to the 
increasing rate of its complexity (M). For example, a vector to vector multiplication is a. 
perfectly parallel statement that the amount of parallelism increases at the same rate as 
the vector length (complexity). Therefore, if an application has a curve of growth factor 
close to the line of ideal growth factor, it is considered a better parallel application. For 
example, in Fig. 4, application "A" is a better parallel application than application "B" 
because the curve of growth factor in "A" is closer to the line of ideal growth factor. 

3. Scalability Factor : The performance of multiprocessor systems should also be 
measured by comparing the execution time of large problems with that of small problems 
on single processor systems. In other words, the complexity in the applications should be 
increased while the size of the machine configuration is increased. The scalability factor 
is defined as the ratio of the execution time of an Application (AP) with complexity (m) 
on n PEs to the execution time of the same application with complexity S X m on S x n 
PEs. 

Scalability Factor (AP(Sm) p E(Sn)) = E:ce •. time of m AP on n PE• 
' E:ce, ttme of Sm AP on Sn PE• 

H an algorithm has an ideal growth factor and a. system has an ideal speedup, then the 
scalability factor should remain a constant for various values of N. In other words, a. 
perfectly parallel algorithm with a. large complexity on a large perfectly parallel system 
configuration should require the same execution time as it would with a small complexity 



www.manaraa.com

343 

Problem Size = 16 x 16 
System Size Chaotic( Macro) Chaotic( Micro) 

number of PEs exe. time speedup exe. time speedup 
1 PE 108291 1 108990 1 
2 PEs 56690 1.91 54430 2.002 
4 PEs 26999 4.01 27174 4.01 
8 PEs 13548 7.99 14840 7.34 

16 PEs 8050 13.45 10538 10.34 
32 PEs 6867 15.76 9708 11.22 

TABLE 1 : Execution Time and Speedup in Chaotic Relaxation. 

on a small system configuration. However, due to the fact that most algorithms and 
systems are not perfectly parallelized, the actual scalability factors will fall below the line 
of ideal scalability factor. Fig. 5 shows that the closer the curve is to the ideal line, the 
easier it will be to scale up the application/system configuration combination. 

4. Robustness: The robustness property of a. system can actually indicate its po
tential performance [6]. The robustness is defined as the ratio of the execution time of 
an Application (AP) with a complexity (R X m) on one PE to the execution time of the 
same application with a complexity of R x m on the R X n PEs. 

Robustness (AP(Rm) p E(Rn)) :::: E:z:e. t~me of Rm AP on one PE 
' E:z:e. hme of Rm AP on Rn PE• 

Essentially, robustness is an indication of how well the architecture/execution model will 
scale up when machine sizes and problem sizes are increased. In fact, one of the most 
important parameters in evaluating a multiprocessor system is to observe the system per
formance with various problem sizes. We thus express the performance of an architecture 
by showing the robustness in a large number of PEs. 

5 Simulation Results 
Once the Jacobi method and chaotic relaxation have been programmed and compiled into 
data-flow graphs. The execution of the graphs in the VTD system can be verified by a 
deterministic simulation in both micro-actor (fine-grain) and macro-actor (coarse-grain) 
execution models. 

5.1 Simulation Results 

The execution of the Jacobi method and chaotic relaxation to solve various size8 of linear 
systems with the termination criterion ll:.z:(A:)- :.z:(A:-t)lloo < 10-3 have been simulated. 
From the simulation results, several statistics and observations have been obtained: 

1. Speedup : The speedup measure has been defined in the previous section. The 
reports of the speedups in various system sizes for both chaotic relaxation and the Jacobi 
method are attached in Tables 1 and 2, while Fig. 6 shows the trend of the speedups with 



www.manaraa.com

344 

Problem Size = 16 x 16 
System Size Jacobi(Macro) Jacobf(Micro) 

number of PEs exe. time speedup exe. time speedup 
1 PE 79924 1 92203 1 
2PEs 42112 1.89 49399 1.86 
4 PEs 23109 3.45 27901 3.30 
SPEs 13640 5.86 18219 5.06 
16 PEs 9759 8.18 14470 6.37 
32 PEs 9244 8.64 13971 6.59 

TABLE 2 : Execution Time and Speedup in the Jacobi Method. 

increasing PEs for the two different relaxation methods. 
Observation: The results indicate that the speedup in chaotic relaxation is better than 
the speedup of the Jacobi method in both macro and micro execution modes. In chaotic 
relaxation, a superlinear speedup can be sometimes observed due to the nondeterministic 
property of the algorithm itself. Indeed, the random sequence of relaxations may lead to 
a faster convergence in multiprocessor systems. This feature is confirmed in Table 1: the 
speedups in a 4 PE system for both macro and micro execution of chaotic relaxation can 
be as high as 4.01 

2. Scalability Factor: The scalability factor of a system was defined in the previous 
section. We exploit the trend of scalability factors in different problem sizes with various 
system configurations. We start with the matrix size equal to 8x8 and the machine size 
equal 8 PE, then 16x16 in 16 PEs, 32x32 in 32 PEs, and 64x64 in 64 PEs. The report 
is shown in Table 3 and the curves are shown in Fig. 7. 
Observation: The results show that the chaotic relaxation in the macro execution mode 
of the VTD system has the best scalability factor while the Jacobi methods in the micro 
execution mode has the worst scalability factor. However, one should note that the 
increasing rate of the machine size from 8 PEs to 16 PEs does not equal the increasing rate 
of the complexity of the algorithms with a. matrix size from 8x8 to 16x16. Therefore, we 
only compare the relative performance of different algorithms in various execution modes, 
instead of comparing it with the ideal scalability factor. 

3. Robustness: The robustness of a. system was defined in the previous section. 
We exploit the trend of "speedups" in many different problem sizes with various system 
configurations. We start with the matrix problem size from 8x8 up to 64x64 and the 
machine size from 1 PE to 64 PEs. The report is shown in Table 4 and the curves are 
shown in Fig. 8. 
Observation: In the results, we know that there are almost linear increasing speedup 
curves for the two methods in each operation mode. This is a very promising feature 
for data-driven multiprocessor systems. Indeed, the robustness property of data-flow 
architectures can guarantee the performance in multiprocessor systems for various problem 
sizes. For example, from Table 4, the speedup of chaotic relaxation for 64x64 problem 
size can reach up to 52 in a 64 PEs system with the macro execution mode. 



www.manaraa.com

Speedup 

16 

8 

4 

2 

2 4 8 

345 

16 

@ 

Chaotic(micro) 

Jacobi(macro) 

Jacobi(micro) 

32 PE 

Figure 6: Speedup with Problem Size : 16 X 16. 

Scalability Factors 

Number Problem Size Chaotic Chaotic Jacobi Jacobi 
of PEs (Macro) (Micro) (Macro) (Micro) 
8 PE 8 X 8 1 1 1 1 

16 PEs 16 X 16 0.416 0.409 0.383 0.372 
32 PEs 32 X 32 0.278 0.262 0.238 0.226 
64PEs 64 X 64 0.153 0.132 0.121 0.114 

TABLE 3 : Scalability Factors in the VTD System with Differents Algorithms. 



www.manaraa.com

346 

Scalability Factor 

1 

1 2 4 8 Scale(S) 

Figure 7: Scalability Factors in the VTD System. 

Speedups of Various Problem Sizes 

Number Problem Size Chaotic Chaotic Jacobi Jacobi 
of PEs (Macro) (Micro) (Macro) (Micro) 
8 PE 8 X 8 7.15 5.54 4.28 3.45 

16 PEs 16 X 16 13.45 10.34 8.18 6.37 
32 PEs 32 X 32 26.26 20.30 16.05 12.21 
64 PEs 64 X 64 52.15 39.77 31.49 23.70 

TABLE 4 : Robustness in Data-flow Architectures. 



www.manaraa.com

32 

PE 

16 

8 

347 

ess 

8 16 32 
Problem Size 8x816x16 32x32 

aotic(m icro) 

64 
64x64 

(macro) 

Figure 8: Robustness curves in Data-How Architectures. 



www.manaraa.com

348 

6 Conclusions 

In this paper, we have demonstrated how synchronous and asynchronous linear systems 
solvers could be described in a high level data-flow language (SISAL) and implemented on 
the Variable-grain Tagged-token Data-flow (VTD) multiprocessor system in both micro 
and macro execution models. The conventional Jacobi method and chaotic relaxation 
were chosen for their known inherent parallelism of execution. While the "conventional" 
principles of the U-interpreter were used in the graph construction of the Jacobi method, 
chaotic behavior could not be easily realized in this model of interpretation. We there
fore proposed a new scheme for the implementation of chaotic relaxation: the "Matching 
Store with Locks" scheme proceeds with the execution to detect any change on the input 
arcs, instead of allowing execution upon arrival of a matched token set. The new de
fined performance measurements Growth Factor, Scalability Factor, and Robustness have 
also characterized the system performance more precisely, besides the traditional speedup 
performance measurement in multiprocessor systems. 

References 

[1] Advanced Topics in Data-flow Computing. Edited by J.L. Gaudiot and L. Bic, 
Prentice Hall, 1990. 

[2] Arvind and R.A. Iannucci. Two fundamental issues in multiprocessors: the data
flow solution. Technical Report LCS/TM-241, Laboratory for Computer Science, 
MIT,September 1983. 

[3] D. Chazan and W. Miranker. Chaotic relaxation. Linear Algebra and Application, 
pages:199-222, 1969. 

[4] J-L. Gaudiot and M.D. Ercegovac. Performance evaluation of a simulated data
flow computer with low resolution actors. In Journal of Parallel and Distributed 
Computing, November 1985. 

[5] J-L. Gaudiot, C.M. Lin, and M. Hosseiniyar. Solving partial differential equations in 
a data-driven multiprocessor environment. In Proceedings of the 15th International 
Symposium on Computer Architecture, Honolulu,Hawaii, May 1988. 

[6] J-L. Gaudiot and Y.H. Wei. Token relabeling in a tagged token data-flow architecture. 
IEEE Transactions on Computers, September, 1989. 

[7] J. Gustafson. Reevaluating Amdahl's law. Communication of the ACM, May 1988. 

[8] J.R. McGraw and S.K. Skedzielewski. SISAL: Streams and iterations in a single 
assignment language, language reference manual, version 1.2. Technical Report M-
146, Lawrence Livermore National Laboratory, March 1985. 

[9] R. S. Varga. Matrix iterative analysis. Prentice Hall, 1962. 



www.manaraa.com

Parallel Associative Combinator Evaluation 
Martin Waite, Bret Giddings and Simon Lavington 
Department of Computer Science, University of Essex, 

Wivenhoe Park, Colchester, 
Essex, England. C04 3SQ. 

[waitm, bret, lavis]@ uk.ac.sx 

Abstract 
A new evaluation model for SK combinatqr expressions is presented and used as a basis for 
the design of a novel processor. The resulting machine architecture resembles a dataflow 
ring, but executions are constrained to be fully lazy. When used in a multiprocessor context, 
different grains of parallelism are exploited at different architectural levels. A dynamic load 
sharing mechanism based on the current physical state of the machine is suggested. Initial 
simulation results are presented, and the cost-effectiveness of the proposed architecture is 
discussed. 

1 Introduction 
Several architectures have been proposed for the efficient execution of functional languag
es. Some researchers, inspired by the simplicity and elegance of Turner's SK graph reduc
tion model rrur79], have constructed hardware that yields orders of magnitude perform
ance improvement over the original software implementation [Cla80], [Sch86]. To a large 
extent these efforts have been overtaken by the development of sophisticated supercombi
nator-based compilation techniques [Hug83] [Joh84], which give similar performance im
provements on conventional microprocessors. 

Attention is now focused on architectures that can exploit the inherent parallelism of the 
functional paradigm. These are usually divided into two broad categories - DataFlow ma
chines, as exemplified by the MIT Tagged-Token DataFlow project [ArN87], and Parallel 
Graph Reduction machines, as exemplified by GRlP [Pey87]. This division tends to ob
scure the fact that they share the same underlying concept of reduction [ArN87]. Each ap
proach possesses properties that assist in the design of multiprocessor architectures. Data
flow models are able to hide network communication latency · [Arl87]. Graph reduction 
models provide a natural synchronisation and problems like cache coherence are easily 
handled [Pey89]. 

When considering computational models for the Flagship project [Wat85], the designers 
recognised the importance of trying to combine these properties of the twq models. At the 
same time, however, they rejected the dataflow ring hardware design in favour of conven
tional microprocessors, mainly for pragmatic reasons. This view is shared by many other 
researchers [Pey89][Bev89], who wish to exploit recent advances in both compilation and 
microprocessor technology. Whilst not denying the practicality of such an approach, we 
tend to agree with the authors of [ArN87] with regard to the suitability of the von Neumann 
processor as the node in multi-node reduction architectures. 

In this paper we explore another approach to the synthesis of dataflow and graph reduction 
principles. Starting from a new evaluation model for SK graph reduction, we develop the 
design of a processor which is very similar to dataflow architectures, and shares their ability 
to exploit fine-grained parallelism. We then show how this processor can be used as the ba
sic node in an extensible architecture 



www.manaraa.com

350 

2 The PACE Evaluation Model 
The majority of SK reduction schemes use a graph of binary application nodes to represent 
the SK expression. This graph is alternately traversed, using either an ancestor stack or 
pointer reversal scheme, to assemble the next redex, and then transformed according to the 
relevant rewrite rule. The many memory accesses required in this process are a major 
source of inefficiency, and to a large extent this inefficiency is carried over into the special
ised SK machines. The evaluation models employed in these machines are essentially no 
different from that of the abstract machine originally described by Turner, and consequent
ly retain the influence of the sequential von Neumann processors which were the vehicles 
for the original software implementations. 

The PACE model uses a different form of representation, which has the effect of reducing 
the number of memory accesses required during evaluation. It also allows the evaluation 
process to be described in terms of independent operations on components of the graph, 
rather than as a series of whole-graph transformations, thereby revealing the inherently par
allel nature of the reduction process. 

2.1 Representation 
SK combinator expressions are represented by a collection of labelled seque?_nces having the 
form #Lm:< x ... xn > where #Lm is the unique label of the sequence and x ... xn is these
quence itself (0 < n < 6). 

Each item xn is either a data constant, an operator (SK combinator or primitive function) or 
the label of another sequence. 

Juxtaposition indicates application according to the usual convention of left association, 
e.g. the sequence< w xy z >represents the expression ((w@ x)@ y)@ z, where@ means 
application. 

Any SK expression can be represented by a top-level sequence together with a sequence for 
each bracketed sub-expression contained in the main expression. For example the pattern
directed defmition of the fibonacci function 

DEF fibO = 1 
fib 1 = 1 
fib n =fib(n-1) + fib(n-2) 

compiles to the SK expression 

T(T(MOJ )(Mil ))(S(B*PLUSfib(CMINUSJ ))(Bfib(CMINUS2))) 

which is represented by the following set of sequences 

#Ll: < T #L2 #L5 > 
#L2: < T #L3 #LA> 
#L3: <M 0 1 > 
#LA: <M 1 1 > 
#L5: < s #L6 #L8 > 
#L6: < B* PLUS #LJ #L7 > 
#L7: < C MINUS 1 > 
#L8: < B #LJ #L9 > 
#L9: < C MINUS 2 > 



www.manaraa.com

351 

2.2 Classification of Sequences 

Sequences may be classified according to the number and type of the items they contain, as 
follows: 

Redexes contain n items, where 1 < n < 6, and item 1 is an operator of arity n-1, and the 
arguments to the operator (items 2 ton) are in the required form (i.e. fully evaluated in strict 
argument positions). 

Oversaturated Sequences can occur in two forms: 

(a) n items, where 2 < n < 6, and item 1 is an operator of arity less than n-1 

(b) n items, where 2 < n < 6, and item 1 is a label 

Weak Head Normal Forms (WHNFs) can take one of three forms: 

(a) a single item which is a data constant of primitive type (number, boolean or character) 

(b) three items, of which the first is the pairing constructor 

(c) n items, where 0 < n < 5, and item 1 is an operator of arity greater than n-1 

Intermediate Sequences (ISs) are those sequences that cannot be classified as any of the 
above. These occur in two forms: 
(a) n items, where 1 < n < 6, and item 1 is an operator of arity n-1, but whose arguments 

(items 2 to n) are not in the required form (i.e. remain unevaluated in strict argument 
positions) 

(b) n items, where n < 3, and item 1 is a label 

2.3 Operations on Sequences 

Evaluation can now be described in terms of three basic operations on sequences. The clas
sification of a sequence determines the operation that may be applied to it 

Reduction is applied to redex sequences as follows: 

If a sequence <xl ... xn> corresponds to the left hand side of a rewrite rule, then it is re
placed by a sequence that corresponds to the right hand side of that rule. If the right hand 
side contains bracketed sub-expressions, then an additional sequence is generated for each 
one. For example, #Lm:< S a b c > is rewritten as #Lm:< a c #Ln > and #Ln:< b c > in 
accordance with the rule Sabc => ac(bc). 

Delta redexes are rewritten in the expected way, e.g. #Lm:< plus 3 2 > is rewritten as 
#Lm:<5 >. 
Decomposition is applied to oversaturated sequences and involves replacing the sequence 
by two shorter sequences. For example #Lm:< I a b > is replaced by the sequences #Lm:< 
#Ln b > and #Ln:< I a>, and #Lm:< #Lx a b >is replaced by the sequences #Lm:< #Ln b 
>and #Ln:< #Lx a>. 

Dereference is applied to a pair of sequences, one of which is an IS and one of which is a 
WHNF, according to the following rule: 

If Sm is a WHNF sequence labelled #Lm, and Sn is an IS sequence labelled #Ln 
which contains #Lm as its leftmost label item, then the label #Lm in Sn may be re
placed by the entire sequence Sm. 

Sequence Sm is not changed by this operation. Sequence Sn is changed, but its meaning re
mains unaltered. Note that we assume that the expression being evaluated is well-typed, 
and that consequently the dereference operation cannot cause Sn to become ill-typed. 



www.manaraa.com

352 

2.4 Evaluation 
The evaluation of an SK expression consists of continually applying these operations to the 
given (and generated) sequences until the head sequence is reduced to a WHNF. All the op
erations preserve meaning, and may thus be applied at any time, without any need for syn
chronisation. Whenever a sequence is changed (or generated) by an operation, it is simply 
classified according to the rules given in section 2.2, and then input to the appropriate op
eration. 

The process may be visualised as follows: 

Figure 1 :Conceptual flow of sequences during evaluation. 

In this abstract description of the evaluation model we can assume that resources are always 
immediately available to carry out the required operations. The model thus possesses the 
same termination properties as head reduction, in the sense that the head expression will be 
reduced to its WHNF if such a form exists. 

3 A Hardware Implementation 
The operations described in Section 2.3 are essentially very simple. It is reasonable, there
fore, to consider constructing special hardware to support the operations, and to use Figure 
1 as a starting point for the design of a physical (as opposed to abstract) reduction machine. 
This machine will take the form of a ring, containing independent units to provide the nec
essary operations. Sequences, in the form of packets, will be directed to appropriate units 
according to their current classification. 

First we develop the design of a simple version of the machine. Later we refme this initial 
attempt in order to ensure termination properties and implement a safe form of parallelism. 

3.1 Packet Format 

Packets consist of a header, followed by the unique label, followed by the sequence itself. 
They therefore contain between 3 and 7 fields, each of which is 32 bits wide. 

The header contains information about the length of the sequence, its current classification, 



www.manaraa.com

353 

descriptors for each item field, (data constant, operator or label), and other control informa
tion. 

3.2 Classification 

Classification is carried out according to the rules given in Section 2.2. For some sequences 
this can be done by examining the header alone. For sequences containing an operator in 
the first item field, header information must be combined with information about the oper
ator's arity, strictness and so on. This latter information is encoded into the operator's op
code in such a way as to make classification a fast bitwise logical operation. The unit that 
performs the classification also routes the classified sequences to their destination. 
3.3 Reduction 

Operators are split into three groups - SK combinators, ALU operators and others. (This 
latter group at present includes only the I/0 primitives, but may later include operators 
which control other specialised devices, such as structure stores, etc.) 

SK redexes are handled by a dedicated processor which implements the SK rewrite rules in 
the way outlined in Section 2.3. The fact that SK rewrites comprise a small fixed set of very 
simple manipulations is clearly appealing to hardware designers. In a sense they represent 
a natural instruction set for a reduction machine. At present we use Turner's set of combi
nators, together with some runtime optimisations which prevent the generation of oversat
urated sequences in most cases. 

ALU redexes are handled by an ALU manager, which accepts a packet containing an ALU 
operator with its arguments, sends these to the actual ALU, and builds an output packet 
containing the result Note that sequences output from the ALU manager are always WH
NFs. They therefore require no further classification, and can be directed immediately to 
the dereference unit 

A similar "manager" approach is taken for the other built-in primitives. Several of the op
erators in this class are required to produce some side-effect in the outside world. The issues 
of input/output, and the need to sometimes force an ordering on external side-effects, are 
best discussed within the framework of the operating system requirements for the machine. 
This is beyond the scope of this paper, and for simplicity we shall assume that the managers 
for these operators act in the same way as the ALU manager, i.e. they cause the required 
operation to take place and return some sequence to the dereference unit. 

3.4 Decomposition 

Decomposition is a relatively rare occurrence in the examples that we have examined so 
far, particularly if we include the runtime optimisations mentioned in section 3.3 above. 
The operation itself is very similar in nature to the SK rewrites, and has a similar require
ment for new labels. It therefore makes sense to handle decomposition within the SK re
duction unit, rather than by means of another specialised unit 

3.5 Dereference 

Dereference is perhaps the most complex of the three basic operations. The essential task 
is that of matching the label of a WHNF with the leftmost label in an IS (which we call the 
target of the IS), and then, if the match is found, performing the desired dereference (as de
fmed in section 2.3) In principle, either partner can arrive first, and must wait for the other. 
The dereference unit must therefore have a storage capability, and a fast matching capabil
ity. Since we are working in a graph reduction model, it is possible that more than one IS 



www.manaraa.com

354 

shares the same target, so we must be able to perform multiple dereferences. 

The basic algorithm for the dereference unit is as follows: 

if the input sequence is classified as IS 
- if the target is in memory and is WHNF 

perform the dereference operation 
and output the resulting sequence 

else store the input IS sequence 

if the input sequence is classified as WHNF 
-for each stored IS having this WHNF as target 

perform the dereference operation 
and output the resulting sequence 

- store the input WHNF sequence 

The critical aspect of this unit's required functionality is the need for fast bidirectional 
matching. Our dereference unit (which we call the Dereference Memory, or DM unit) is 
clearly very similar to the wait/match stores found in DataFlow architectures. These have 
been identified as being difficult units to construct, requiring expensive associative hard
ware [Wat85]. The difficulty arises in the DataFlow model because a node in a DataFlow 
graph typically requires more than one data input before it can be fired. In the PACE model, 
an IS only receives one WHNF input during dereference, and the resulting sequence is im
mediately output for reclassification. In the case of ISs of the form < SBO #Lm #Ln > 
(where SBO is some strict binary operator) this entails extra work, but this inefficiency is 
more than compensated for by the fact that the DM unit can be constructed using available 
RAM. The required associativity can be provided by means of simple links, without any 
need for direct comparison or hashing of labels. 

The DM unit's memory can be thought of as a heap of slots having the following internal 
structure: 

header return target iteml itemZ item3 item4 

cSI 
link sharer 

j j I j 1 
link 

1 
II 

(In practice this single slot would be spread across more than one memory in order to in
crease the potential for pipe-lining within the unit. The actual physical arrangement can be 
ignored for the purposes of this description.) 

Labels are slot addresses, and are not held explicitly. Any stored sequence, whether WHNF 
or IS, occupies the slot corresponding to its own label. A slot may be unused (i.e. on the 
free list), empty (i.e. the label is in use but the sequence is elsewhere in the system) or oc
cupied by an IS or a WHNF. 

When an IS enters the store, the status of its target is determined by retrieving the target's 
header. If the target is in WHNF, the dereference can proceed immediately, and the result-



www.manaraa.com

355 

ing sequence is output In this case nothing has to be stored. H the target is not in WHNF 
(i.e. it is either stored as an IS or it is elsewhere in the system), the incoming IS is stored in 
the slot corresponding to its own label and its target sharer link is set to the value found in 
its target's return link. The target's return link is set to be the label of the incoming IS. The 
list of target sharers is thus operated as a simple pushdown stack. 
When a WHNF enters the store, its own return link is accessed to see if there is any IS wait
ing for it H there is, a dereference can take place. While this is happening, the IS's target 
sharer link is examined. H it contains a label then another dereference can take place. This 
process is repeated until the current IS's target sharer link is found to be blank. The WHNF 
itself can be stored at any convenient time during this operation. 
The dereference operation itself is straightforward. The merging of the two sequences is 
controlled by information held in the two headers (the necessary information being the 
length of the WHNF, and the position of the target field in the IS, which is set during clas
sification). 

3.6 Label Management and Garbage Collection 
The SK Reducer requires a continuous supply of fresh labels, which is provided by a Label 
Manager/Garbage Collector unit To ensure that the SK Reducer never has to pause, the La
bel Manager continually replenishes a buffer in the SK Reducer from the head of its free 
list. At this stage we have not fixed our garbage collection strategy, but we make the as
sumption that it can be implemented as a concurrent background process. For simplicity we 
have omitted reference count adjustments from our descriptions of the SK Reducer and DM 
unit algorithms, and for the same reason we do not show the Label Manager unit in the 
module diagrams. 

3.7 A Simple PACE Module 
In the preceding sections we have introduced hardware units to implement the basic 
operations required by the abstract model. We can now incorporate these units into a simple 
PACE module layout, as shown in Figure 2. Each unit is provided with an input buffer to 
smooth the flow of packets, and a main buffer is placed before the DM unit 

Figure 2 : A simple module 



www.manaraa.com

356 

This design is an almost literal implementation of the abstract model shown in Figure 1. As 
such it is not practical, because it implements a fully eager evaluation process. As 'well as 
the head reduction sequence several other (possibly non-terminating) reduction sequences 
may be invoked. Such sequences could cause the machine to run out of resources before 
the head reduction sequence itself terminates. In order to retain head reduction termination 
properties, we have to make some changes to the model. 

4 Refining the Basic Model 
4.1 Implementing Lazy (Demand-Driven) Evaluation 

In order to implement fully lazy head reduction; we must evaluate only the head expression 
(represented by the first sequence output by the SK Reducer), and delay the evaluation of 
any right sub-trees (represented by 2nd and 3rd sequences output by the SK Reducer) until 
such times as we know their value is required. We implement this as follows. 

During reduction, any 2nd or 3rd sequences output by the SK Reducer are marked as frozen 
in their packet header. Following classification, these frozen sequences must be stored in 
the DM unit's memory until such times as they are either required or discarded. 

For example, #Lm:< Sa b c >is rewritten as #Lm:< a c #L2 >and #Ln:< b c >.These
quence labelled #Ln is marked as frozen. Following classification, sequence #Lm is sent to 
the unit indicated by its classification, whereas sequence #Ln is sent straight to the DM unit 
irrespective of its classification. 

The DM unit's algorithm has to be extended to handle frozen sequences. We have to allow 
for the fact that these sequences could be redexes or oversaturated sequences as well as 
WHNFs and ISs. Furthermore we shouldn't assun1e that they arrive at the DM unit before 
any IS that may demand their value. To cater for this latter point, each slot in the memory 
is given a flag to indicate whether the value of the corresponding sequence has been de
manded by being the target of some IS. The algorithm is extended as follows. 

If an incoming packet is marked frozen and its demanded flag is not set, then the sequence 
is simply stored with no links set If its demanded flag is set, then the frozen mark in the 
incoming packet's header is automatically cleared. WHNFs and ISs may then be treated 
just as if they never had been frozen. Redexes or oversaturated sequences are immediately 
output without being stored. 

If an incoming IS is either not frozen, or is unfrozen on entry by the mechanism described 
in the preceding paragraph, then there are a number of possibilities. If the target sequence 
is not present, the target's demanded flag is set and the incoming IS is stored as for the orig
inal algorithm. If the target sequence is present, then the correct action depends upon the 
target's status. If it is classified as WHNF, dereference can proceed immediately, irrespec
tive of the status of the target's demanded flag. If it is classified as IS, and its demanded 
flag has been set, the incoming IS is stored in the normal way and no further action is re
quired. If it is classified as an IS but its demanded flag is not set, then the incoming IS is 
stored in the normal way, the target's demanded flag is set, and the target becomes the next 
incoming sequence. If it is classified as a redex or oversaturated sequence, the incoming IS 
is stored in the normal way, and the target sequence is immediately output with its frozen 
mark cleared. 

These modifications change our original data-driven model to a fully lazy demand-driven 
model. We have regained the termination properties we desire (as well as other properties 



www.manaraa.com

357 

such as the ability to handle immite data structures), but in the process have lost parallel
ism. 

4.2 Conservative Parallelism 

In the example given above, the frozen label #Ln may appear as the continuation target of 
an IS (the leftmost label item in the IS), or it may appear as a branch target. For example, 
in the sequence #La:< plus #Lc #Lb >, #Lc is the continuation and #Lb is the branch. 

The unfreezing of continuation targets is handled directly by the extension to the DM unit's 
algorithm given above. Demands for branch targets are handled by a Demand Control unit 
which is placed just before the DM unit. When the Demand Control unit discovers a label 
in a strict argument position that is not the continuation target, it issues a demand packet of 
the form DEM <#Lb> to the DM unit. When the DM unit receives such a packet, it outputs 
the demanded sequence and sets its demanded flag, unless it is already stored as a WHNF 
or has its demanded flag set. 

When a demand releases a frozen sequence, this causes a new computational thread, (the 
head reduction of some sub-graph) to be started. This thread will be interleaved in the ring 
with the existing reduction sequences. We have achieved our objective of parallel evalua
tion of required values (conservative parallelism). However, unless we introduce some 
method for controlling the degree of parallelism, we shall reintroduce the termination prob
lem by possibly flooding the machine with more threads than it can handle. 

4.3 Counting Threads 

In order to control the parallelism, we maintain an Active Thread Count (ATC), and inhibit 
or permit the issuing of demands according to its current value. Maintaining the ATC is 
straightforward - the releasing of a frozen sequence represents the starting of a new thread, 
the storing of a WHNF represents the completion of a thread, the storing of an IS represents 
the suspension of a thread, and the release of a suspended IS as a result of dereference rep
resents the resumption of a thread. In many cases, increments and decrements cancel each 
other out and no change has to be made to the current ATC (e.g. when an incoming IS finds 
its target already in WHNF). Since all these operations are performed by the DM unit, it is 
the DM unit that is given responsibility for maintaining the ATC. 

The ATC is held in a register that can be read by the Demand Control unit. The Demand 
Control unit will only issue demands for branch targets when the current ATC is below 
some preset limit. This simple mechanism not only provides control over the evaluation, it 
also provides us with some sort of metric for the module's current workload. 

4.4 A Revised Module Design 

Although the dereference algorithm is now more complex than for the original model, there 
are still only a few basic operations being performed. The additional complexity is mainly 
a matter of condition testing. Careful selection of classification codes, etc., allows much of 
this condition testing to be implemented by means of fast parallel logical operations. A 
hardware implementation is still viable, and in Figure 3 we show a revised module design 
that incorporates the changes made in this section. 



www.manaraa.com

358 

classifier/router 

sk-reducer/ 

decomposer 

Figure 3 : The parallel demand-driven configuration. 

4.5 Loading the Expression 

Now that we have adopted a lazy model, the collection of sequences that constitutes the 
compiled code for the program must be marked as frozen before being loaded through the 
Classifier/Router. In order to start the execution, a OEM sequence containing the label of 
the head expression is added to the collection of sequences. Stricbless analysis of the source 
program can be used to indicate which other parts of the overall expression can be safely 
evaluated. By including OEM sequences for these sub-expressions, we can extend the 
available parallelism. 

4.6 Filling the Pipe 

In order for the module to achieve its maximum reduction rate, its various units must be 
working concurrently. This is only achieved when there are sufficient active threads. Figure 
4 below shows the relationship between the reduction rate and the preset limit to the A TC 
for executions of the fibonacci function on a typical module configuration. 

Reduction 
Rate lower fbresbold 

l 

Preset ATC Level 

Figure 4 : Relationship between reduction rate and preset ATC level 



www.manaraa.com

359 

Beyond a certain lower threshold, the number of currently active threads doesn't affect the 
reduction rate. The maximum reduction rate is fixed by the throughput rate of the DM unit. 
Once this maximum rate has been achieved, the effect of adding more threads is simply to 
increase the size of the input queue of this unit. In examples examined so far the relation
ship between the number of active threads and the maximum queue size has been linear. 
The size of the input buffer provided for the DM unit therefore fixes an upper limit to the 
number of active threads that can be supported at any one time. 

5 An Extensible Architecture 
In this section we address the question of extensibility, that is whether several modules can 
be combined so as to give a performance speedup which is linear with the number of mod
ules used. 

5.1 Some Preliminaries 
We segment the label space by using the most significant part of the label to indicate a mod
ule, and the remaining part to indicate the slot number within the module. At present we 
devote 16 bits to the slot number, giving 64K slots per module. We assume that the defini
tion part of the program is replicated on each of the modules, and that each copy of a par
ticular function definition sequence occupies the same slot within each module. References 
to definition sequences are distinguished in the packet headers, i.e. the descriptor for an 
item may now indicate that it is a data constant, an operator, a transient label or a definition 
label. We introduce three new units into the module design- an Entry unit, an Exit unit and 
a Local Indirection Cache. The extended design is shown in Figure 5. 

Figure 5: A Module for the extended architecture 

We assume that the modules are connected in a way that enables any module to despatch a 
sequence to any other named module. We further assume that the communication medium 
is aware of current A TC levels, and is able to direct sequences to the module with the lowest 
current ATC. 



www.manaraa.com

360 

5.1 Export, Return and Demand Mechanisms 

Export 
When an IS arrives at the Demand Control unit, it represents an ongoing computational 
thread. This thread can be exported by simply transferring the IS to another module. We 
proceed as follows. 

When the Demand Control unit recognises that an IS should be exported it sends the IS to 
the Exit unit. The Exit unit decrements the local ATC, and puts the IS onto the communi
cation medium which directs the sequence to the module with the lowest current ATC. 
When it receives an incoming IS, the Entry unit on the receiving module increments its lo
cal ATC. Any definition labels in the sequence are converted to local references by having 
the local module number masked onto the module part of the label. The sequence is sent to 
the Classifier/Router and from then on is treated just as any other sequence until such a time 
(if any) that it has to be stored as an IS. The DM unit recognises it as a foreigner from its 
label, swaps its label for a newly issued local label, stores the IS in the corresponding slot, 
and places its original label in the return link. The thread is now established on the destina
tion module under a pseudonym label. 

Return 
When the exported and re-labelled sequence finally achieves WHNF, the DM unit recog
nises the return link as belonging to another module, and swaps the labels back, returning 
the pseudonym label to its free list. The sequence is immediately output to the Classifier/ 
Router which recognises it as a foreign WHNF, marks it as having been "evaluated else
where", and routes it towards the Exit unit When the sequence arrives back at its module 
of origin, it is treated exactly as any other WHNF, except that it does not cause an ATC 
decrement when it is stored. 

Demand 
When the Demand Control unit encounters an IS with a foreign target, it first searches the 
Local Indirection Cache. This is a fast associative store containing <foreign label, local la
bel> pairs. If the foreign label is present, the associated local label is substituted for the for
eign label in the IS. If it is not found, then a newly generated label is substituted for the for
eign label, the new pair is entered into the cache and an IS of the form #Ll:<#Lf> (where 
#Ll is the newly generated local label and #Lf is the foreign label) is sent to the Exit unit 
and thence to the relevant module. In either case the modified IS is sent to the DM unit 
where it is stored in the normal way. When the sequence #Ll:<#Lf> arrives at its destina
tion, it is treated just as any other incoming IS. 

The mechanisms for export, return and demand are simple extensions to the existing model, 
and the overhead incurred is negligible. Nevertheless we must endeavour to keep such com
munications to a minimum. 

5.2 Export and Branch Heuristics 

To achieve linear speedup, each of the modules must be performing at its maximum reduc
tion rate at any point during execution. This does not imply that threads have to be evenly 
distributed across the machine, but only that each module's ATC is kept above the lower 
threshold level shown in Figure 4. 

When we commence execution, we would like each module to receive a thread as soon as 
possible. During the course of the execution, in order to maintain locality of reference, we 



www.manaraa.com

361 

would prefer each module to maintain its own ATC level as a result of local branching rath
er than as a result of having threads exported to it If each module's ATC. is at a healthy 
level, it might be advantageous to delay branching, so as to maintain locality, rather than 
branch and be forced to export because of overloading. If at some point any module's ATC 
becomes dangerously low, the system must be able to react quickly by exporting work to it 
immediately. All this suggests that different run-time situations could be ranked in terms of 
the need to branch and the need to export Furthermore, it suggests that ATC levels could 
be used to provide an up-to-date ranking value for the current situation. 

Similarly, we could rank ISs according to how useful their export might be. For instance, a 
sequence like #Lm:<#Lh x> is more likely to spawn new threads on the receiving module 
if #Lh is the label of the head sequence of a divide-and-conquer function definition than it 
is if #Lh is the label of some other function definition sequence. Since labels are slot num
bers rather than word addresses, we could afford to use part of the 32 bit label to encode 
this information, which could be derived from a static analysis of the program. 

At the point when an IS enters the Demand Control unit, both sorts of information could be 
combined to decide whether it is appropriate to export the thread, or branch a new thread, 
or neither. Just how this might be achieved, and how it might be efficiently implemented at 
the hardware level, is the subject of our present investigations. 

Clearly the question of export and branch heuristics is complex, but we have good reasons 
to be optimistic about this approach. Experience with heuristics in other contexts seems to 
indicate that simple heuristics very often yield near optimal results. Also, we are working 
with a tolerant and flexible model, in which "tasks" are interleaved reduction sequences. 
On. the one hand we can allow several such tasks to become suspended before a module be
comes idle. On the other hand, we can move a task from one module to another very rapidly 
at any point during its execution. 

6. Simulated Performance 
6.1 The Simulator 
We have written a software simulator to enable us to examine the behaviour of the proposed 
architecture. The simulator resides in an environment which allows us to create different 
module configurations interactively and save them on file. We are able to write programs 
in SASL, compile them to the PACE format, load and run them on the configuration of our 
choice, and extract statistics. Using a monitoring/debugging tool [Hea90] we are able to ob
serve the flow of packets, the activity of each unit, where bottlenecks occur, and so on. 

The concurrent activity of the various units is modelled using an event queue. Events in
clude requests to transmit sequences from one unit to another as well as the actual processes 
performed by each unit It is therefore able to correctly model contentions on the (single) 
input to each unit At present we assume that each unit has its own input buffer which is 
implemented as a queue, ordered on time of arrival. 

In order to keep the simulator as simple as possible, we have used a module configuration 
similar to the one shown in Figure 5, but with two Classifier/Routers to ease the flow of 
packets. Connections between units are modelled as single 32 bit highways. Our basic unit 
of time is the clock period, or in other words the time taken to transmit one 32 bit word from 
one unit to another. 

We have allowed certain straightforward operations within a process (e.g. condition test-



www.manaraa.com

362 

ing) to occur in parallel within one clock period, but have otherwise been cautious. Al
though there seems to be plenty of scope for pipelining within units, the simulator insists 
that any output sequences generated by a particular unit must be despatched to their desti
nation before the unit can accept an incoming sequence from its input buffer. 

The present simulator thus represents a very simple hardware implementation of the PACE 
model, and doesn't necessarily provide a very accurate prediction for the absolute perform
ance of a fully engineered version. It does, however, fulfil its main purpose of enabling us 
to study the behaviour of a multi-node architecture. 

6.2 Results 
Initial results obtained from the simulator are encouraging. We have examined three as
pects - the efficiency of the PACE evaluation model, the absolute performance of a single 
module, and the speed-up obtained in multi-module configurations. For all these experi
ments the size of the main buffer was limited so as to hold a maximum of 64 sequences at 
any one time. 

Evaluation Model 
We compared run-time statistics from a single module simulation with statistics extracted 
from a conventional SASL implementation [Ha V88]. The table below shows an analysis of 
combinator usage during execution of fibonacci 6, using the pattern-directed definition giv
en earlier. 

Operators I SS' BB' CC' M T Dec 

PACE 17.73 0 5.9 5.9 11.8 24.6 22.2 5.9 

SASL 15.5 17.7 5.2 5.2 10.4 21.6 19.4 0 

Figure 6: Percentage of combinators executed 

On average, three dereference memory operations were required for each reduction in the 
PACE model. One of the major sources of inefficiency in the binary graph model, the cre
ation and subsequent reduction of indirection nodes, is completely eliminated. Since the I 
combinator doesn't appear in the function definition, no I reductions are performed in the 
PACE model. This has the effect of slightly increasing the percentage of useful operator 
reductions, even though we include decompositions in the PACE totals. The pattern-match
ers T ,M and U do not fit comfortably in the PACE model, and direct support for them will 
probably be abandoned in favour of compilation to conditionals. This will simplify the 
hardware design and at the same time yield more efficient computations (in executions of 
nfib using a conditional definition, useful operators accounted for over 30% of reductions). 
Absolute Performance 
To measure the absolute performance we used the nfib benchmark as dermed in Version 
0.99 of LML [AuJ90]. Running nfib28 on one module, with an assumed clock period of 
100 nanoseconds, we recorded a reduction rate of 520K reductions per second, and a func
tion call rate of 55K calls per second. According to figures quoted in [AuJ90] this is roughly 
equivalent to a sun 3/50 executing compiled LML. 

We regard this figure as promising, since there appears to be considerable scope for im
provement on the simple hardware design that we are currently simulating. For example, 



www.manaraa.com

363 

the main .constraint on the performance of a single module appears to be the bandwidth be
tween units, and this could be increased significantly by using multi-layering techniques. 
We believe that by incorporating this sort of feature in a more sophisticated design, we 
could achieve execution times similar to those currently obtained by SPARC-based imple
mentations. 

Speedup 
Figure 7 shows the speedup achieved for various executions of the nfib benchmark. For 
these simulations we assumed that the modules were connected to a bus. For inter-module 
communications, we assumed that each 32 bit word in the sequence took 200 nanoseconds 
to reach its destination and included a 200 nanosecond overhead for each communication. 

i i i ; i l ; i i i l i l Nublbei of Modules 

t:::::~.L ......... L. ......... : ........... : ........ ~.l. .......... : ............ : ........... : ....... ~.i. .......... : ............ : ........... : ...... ~.i ........ : ........... : ........ ...i ...... ~.i ....... ~ 
Figure 7 :Relationship between Number of Modules 

and performance speedup. 

At nfib28 the speedup curve is indistinguishable from the ideal linear relationship ( execut
ing nfib28 on 16 modules gave a 99.14% efficient speedup). Further analysis is required to 
see how close the figures are to the theoretical.maximum speedups. The maximum bus us
age recorded was 63.5% busy for nfib12 on 16 boards. 



www.manaraa.com

364 

These figures were obtained without any form of programmer annotation concerni.ilg task 
grain size. The compiler marked the head sequence of the nfib function definition as being 
the only candidate for export, and the branching and exporting of tasks was controlled en
tirely by the ATC-based heuristics outlined in Section 5.2 

7. Conclusions 

In recent years, the development of sophisticated compilation techniques has led to a 
marked improvement in the efficiency of functional language implementations. In the 
course of this development the SKI combinators have come to be regarded as inefficient 
and too fine-grained to be of practical use. 

In the context of producing implementations for the von Neumann processor these criti
cisms are valid, and become even more so when considering implementations for multi
processor architectures. If, however, we implement the abstract SK machine directly in 
hardware, instead of regarding it as a stage in the compilation to von Neumann code, we 
are presented with a different perspective. 

The core of any functional language implementation is concerned with the task of recon
structing the right hand side of a function definition, with actual arguments substituted for 
bound variables, and then (or in the same process) evaluating the resulting expression. In 
current supercombinator-based implementations this is achieved by executing a sequence 
of von Neumann instructions. In the PACE processor, it is achieved by performing a se
quence of SK reductions. If we compare the efficiencies of von Neumann instructions and 
SK reduction steps in fulfilling this basic task, then we see that the SK reductions are really 
quite efficient. Earlier we noted that over 30% of reductions performed during execution of 
the conditional version of nfib were useful arithmettc operations, the remainder being re
ductions that guided the arguments. to the appropriate operators. It would be interesting to 
compare this ratio with the ratio of useful arithmetic operations to load/store/register moves 
in executions of the von Neumann code produced by a supercombinator-based implemen
tation. 

Of course, a comparison at this level only makes sense if the SK reductions can be per
formed at a sufficiently high rate. In [NoP88], the authors compare executions of a G-ma
chine implementation with those of a SASL implementation. They note that there is a rough 
equivalence between the number of G-machine instructions and the number of SK reduc
tions for the test programs they examined. This would suggest that a reduction rate in the 
order of several millions per second is required to rival the performance of a supercombi
nator implementation running on a single SP ARC processor. 

We believe that a fully engineered version of the PACE design would be capable of this 
sort of reduction rate. Clearly the design effort required would not be justified if the end 
result was a processor with the same capability as an existing product However, our moti
vation is not to design a novel uniprocessor, but to develop a suitable processor for an ex
tensible and scalable parallel architecture. In this context the PACE design appears to have 
significant advantages. 

The overheads of task creation, task scheduling and network communication present prob
lems for designers of parallel graph reduction implementations on current distributed archi~ 
tectures. In order to maintain a viable ratio between these overheads and the actual compu-



www.manaraa.com

365 

tation, the size of individual tasks needs to be quite large. This requirement introduces some 
adverse effects. Firstly there is a loss of available parallelism. (In [NoP88] the authors note 
that the SASL code exhibited a much higher degree of parallelism than the G-machine 
code.) Secondly, there is the problem of ensuring that task sizes are kept above some min
imum level. Since it is in general impossible to determine the size of a task at the compila
tion stage, there is a growing tendency to require the programmer to supply extra informa
tion to the run-time system by means of annotations to the source text. Not only are such 
annotations machine-dependent, they clearly represent an unwelcome complication for the 
programmer. 

In the PACE model, the creation and suspension of tasks is an integral part of the basic 
evaluation mechanism. A newly created task does not have to be scheduled as a separate 
process, but is simply interleaved with existing tasks on the same processor. When a task 
is suspended there is no costly context switch. As long as there are sufficient tasks, their 
creation and suspension has no effect on the useful work rate of the processor. This no-cost 
multi-tasking capability means that it is viable (indeed desirable) to spawn many small 
tasks, and thereby exploit the high degree of parallelism observed by the authors of 
[NoP88]. Furthermore, since a small task size can be tolerated, there is no need for the pro
grammer to consider this aspect of the underlying architecture. 

The use of interleaved reduction sequences also has an impact on task distribution in a mul
ti-processor architecture. New tasks are spawned and become immediately active on the 
same processor as the task that demanded their evaluation. Locality of reference is thus 
maintained by default. It is only broken when tasks have to be moved in order to maintain 
minimum task levels (ATCs) on each processor. The high task generation rate helps to 
maintain local ATCs, and so task movements do not have to occur at the same rate as task 
generation. In other words the fine grain of parallelism does not imply a need for massive 
inter-module bandwidth. The actual mechanisms for exporting tasks, demanding remote 
values and returning results are simple, they integrate smoothly with the processor's inter
nal evaluation mechanisms, and they operate concurrently with the ongoing computation. 
Just as with task creation, task movement can take place without affecting the processor's 
useful work rate. 

8. Future Work 

In this paper we have presented some results from a preliminary investigation into the be
haviour of the proposed PACE architecture. In order to establish the viability of this ap
proach, our immediate task is to run a much wider range of benchmark programs, particu
larly those that involve the manipulation of data structures. Instead of relying on simple del
ta parallelism, we intend to make use of strictness annotations in order to raise the amount 
of available parallelism. Our main goal in this line of research will be the development of 
more general load balancing heuristics. We also need to undertake a preliminary hardware 
design investigation, in order to see if the performance required from a single PACE mod
ule can be achieved. Later, if these initial studies prove successful, we shall move on to a 
concrete design proposal for a fully distributed architecture. 



www.manaraa.com

366 

References 
[ArN87] Arvind and R.SNikhil, 

"Executing a program on the tagged-token dataflow architecture", 
Proc. PARLE (Parallel Languages and Architectures, Europe) 
Conference, Eindhoven. LNCS Springer Verlag, 1987. 

[Arl87] Arvind and R.A.Ianucci, 
"Two Fundamental Issues in Multiprocessing", 
CSG Memo 226-6, Lab for Computer Science, MIT, 1987. 

[AuJ90] L.Augustsson and T.Johnsson, 
Version 0.99 ofLML 
Department of Computer Science, Chalmers University of Technology, Gothenburg, 1990. 

[Bev89] D.J.Bevan, G.L.Burn, R.J.Karia and J.D.Robson, 
"Principles for the Design of a Distributed Memory Architecture for Parallel Graph Reduc
tion", 
The Computer Journal, Vol32 No 5, 1989. 

[Cla80] T.J.Clarke, P.J.S.Gladstone, C.D.MacLean and A.C.Norman, 
"SKIM- the SKI reduction machine", 
Proc. ACM Lisp Conference, Stanford CA, 1980. 

[HaV88] P.H.Hartel and A.H.Veen, 
"Statistics on Graph Reduction of SASL Programs", 
Software- Practice and Experience Vol18(3), 239-253, March 1988. 

[Hea90] M.J .Heaton, 
"Pacetool: A Monitoring Tool for PACE", 
Department of Computer Science, University of Essex, September 1990. 

[Hug83] J.Hughes, 
"The Design and Implementation of Programming Languages", 
PhD. Thesis, Oxford University (1983). 
(Published as Oxford University Computing Laboratory, Programming Research Group, 
Technical Monograph PRG-40, September 1984.) 

[NoP88] E.Nocker and R.Plasmeyer, 
"Combinator Reduction on a Parallel G-Machine", 
in Parallel Processing and Applications, 
E.Chiricozzi and A.D'Amico (eds), (North-Holland), 1988, 399-412 

[Pey87] S.Peyton-Jones, C.Clack, J.Sal.kild and M.Hardie, 
"GRIP: A high performance architecture for parallel graph reduction", 
Functional Programming Languages and Computer Architecture, ed Kahn, 
Portland, Oregon. LNCS 274 Springer Verlag, 1987. 

[Pey89] S.Peyton-Jones, 
"Parallel Implementations of Functional Programming Languages", 
The Computer Journal, Vol32, No 2, 1989. 

[Joh84] T.Johnsson, 

[Sch86] 

[Tur79] 

[Wat85] 

"Efficient Compilation of Lazy Evaluation", 
Proc. ACM SIGPLAN '84, Symposium on Compiler Construction, 
SIGPLAN Notice, Vol19, No 6, June 1984. 
M.Scheevel, 
"NORMA - a graph reduction processor", 
Proc. ACM Conference on Lisp and Functional Programming, Aug 1986. 
D.A.Turner, 
"A New Implementation Technique for Applicative Languages", 
Software- Practice and Experience, Vol9, 31-49, 1979. 
!.Watson, P.Watson and V.Woods 
"Parallel Data-Driven Graph Reduction", 
University of Manchester, 1985. 



www.manaraa.com

Static Analysis of Term Graph Rewriting Systems 

Chris Hankin 
Dept. of Computing, Imperial College of Science, Technology and Medicine 

180 Queen's Gate, LONDON SW7 2BZ, UK 

ABSTRACT 

In this paper we present a framework for the abstract interpretation of term graph rewriting 

systems. The framework is based on the approach taken by the Cousots for flowchart 

programs. We give an example of the use of the framework by presenting an interpretation 

which performs a form of type inference. 

1. Introduction 

In Term Graph Rewriting Systems (TGRS) [Bar87] rewrite rules relate (rooted) graphs rather 

than the finite trees which are used in Term Rewriting Systems(TRS). The main distinction 

between TGRS and TRS is that sharing is explicitly captured in TGRS by shared subgraphs 

and, since cyclic structures are permitted, fmite term graphs can represent infinite tenus. There 

is a strong correspondence between computation in a TGRS and in a modern graph reduction 

machine. 

Viewing a graph rewrite system as a program raises the question of compilation and thus 

optimisation. Many of the classical analyses of functional programs [AH87] appear to be 

applicable in this new context. There may be some advantage to performing analyses at this 

intermediate level because, as it is "closer" to the machine, some opportunities for optimisation 

may be exposed which are hidden at the source language level. In this paper we will be 

concerned with semantics-based compile-time analysis of rewrite systems. The sort of 



www.manaraa.com

368 

properties that we will be interested in include the following: Strictness/Needed ness [Bar87a]; 

Store Usage [Hud87]; Complexity [GH85], [San90]; Relevant Rules [Mis84]; and Types 

[Ban89]. 

The rest of this paper is organised into three main sections. In the next section we introduce 

the necessary details of TGR systems; this work has been reported in [Bar87] and [Ken88] and 

the interested reader is referred to those sources for further information. Section 3 sets up a 

framework for abstract interpretation; we present a "collecting" semantics [Cou77] - the most 

precise semantics which records complete information about possible executions of a program. 

The final main section presents an approximation of the collecting semantics - an abstract 

interpretation- which provides information similar to that produced by the analysis of [Ban89]. 

Section 5 contains some conclusions and directions for future work. 

2. Term Graph Rewriting 

The definitions presented in this section are based on [Bar87). We give an operational account 

of TGR; [Ken88] gives a categorical semantics for a similar system. Throughout this section 

we will use the following fragment of a (term) rewrite system as a mnning example: 

upto 0 ~ nil 

upto (succ n) ~ 

sum (cons ax)~ 

sum nil 

!nit 

concat (upto n) (cons (succ n) nil) 

a+ (sum x) 

0 

sum(upto 4) 

The intention is that upto generates a list of integers from 1 up to the given parameter using the 

built-in concat and cons "functions"; sum adds the elements of a list together; and !nit defines 

the top-level expression to be evaluated. Notice that the example is first-order and presented in 

a functional notation [Klo85); this is not a limitation of our general approach but the particular 

analysis of Section 4 is not relevant for applicative-style systems. 

The main objective ofTGR is to explicitly capture sharing as part of the rewrite mechanism. In 

TGR, rewrite mles effectively relate pairs of term graphs. 

Definition 2.1 (Term Graphs) 

A term graph is represented by the quadmple: 



www.manaraa.com

(N,lab,succ,r) 

where N is a set of nodes 

lab : N --7 Symbol 

369 

is a partial labelling function (nodes corresponding to variables 

are not labelled, i.e. lab(n) = .l for those nodes) 

succ : N --7 N* is the node successor function (_ * fom1s sequences) 

r is a distinguished node called the root 
We write Gin to denote the subgraph of G rooted at the node n. 

0 

We will present an example shortly, but first we define the form that rules have in TGR: 

Definition 2.2 (Term Graph Rewrite Rules) 
A term graph rewrite rule is a triple: 

(g,n,n') 

where g is a graph, i.e. a structure (N,lab,succ) 

n is a node in g representing the root of the left hand side of the rule 

n' is a node in g representing the root of the right hand side of the rule 

such that all variable nodes appear in gin. 

0 

We illustrate these two definitions by showing the TGR representation of the second rule for 

the upto function. In term graph diagrams we will represent nodes by boxes, the name of a 
node may be written beside the box, the lab function is represented by writing symbols inside 

boxes and the succ function is represented by arrows between boxes. The diagram for the 

upto rule is: 

Fig. 1 A Rewrite rule 

Notice that the graph structure explicitly captures the sharing that is implicit in the tem1 rule. 



www.manaraa.com

370 

In order to define a notion of reduction it is necessary to introduce a mechanism for identifying 

redexes in a graph. In order to do this, we have to introduce a number of definitions. 

Definition 2.3 (Homomorphisms) 

Given two term graphs, G and H, a mapping g : G 4 H (defined on the nodes of G and H) is 

homomorphic at a node n in G if: 

either laba(n) = .L 
or labH(g(n)) = laba(n) 

g(succ0 (n)j) = succH(g(n))j for all i, succ(n)i is the i-th successor of n 

0 

Definition 2.4 (Total Homomorphisms) 

Given two term graphs, G and H, and a mapping g : G 4 H, g is a total homomorphism if it is 

homomorphic at every node of G. 

0 

Definition 2.5 (Redex Occurrence) 

A red ex occurrence in some graph G is a total homomorphism from the left hand side of some 

rule to G. 

0 

For example there is a redex occurrence of the illustrated rule in the initial graph as shown in 

Figure 2. 

Figure 2: A redex occurrence 

Graph rewriting is a three phase process: the build phase, the redirection phase and the 
garbage collection phase. 



www.manaraa.com

371 

During the build phase, copies of the nodes in the right hand side of the rule which do not 

appear in the left hand side are added to the graph; pointers to variable nodes are fixed up to 

point at the matching subgraph. The result of the build phase is shown in Figure 3. 

Definition 2.6 (The Build Phase) 

Let H be the result of the build phase applied to a graph G, rewrite rule (g,n,n') and redex 

occurrence f: g ~G. We write: 

H G +r (g,n,n') 

and H is defined as follows: 

0 

NH = Na + (Ngln'- NgJn) +is disjoint union,- is set difference 

labH(m) = laba(m) m e Na 

labg(m) 

succH(m)i = succa(m)i 

SUCCg(ffi)j 

f(succg(m)i) 

otherwise 

me Na 

both m and succg(m)i in Ngln'- Ngln 

min Ngln'- Ngln and succg(m)i in Ngln 

During the redirection phase all pointers to the root of the left hand side are redirected to point 

to the copy of the root of the right hand side. If the image of the root of the left hand side is the 

root of the whole graph, the root of the resultant graph will be the copy of the root of the right 

hand side of the rule; otherwise the overall root is unchanged. 

Fig 3. The Build phase 



www.manaraa.com

372 

Definition 2.7 (The Redirection Phase) 
Define H[a :=b) to be the term graph (NH,lab,succ,r) such that: 

lab(n) = labH(n) for all nodes in NH 

succ(n)i b if succH(n)i = a 

r = 

otherwise 

ifrH =a 

otherwise 

If His the result of the build phase for an occurrence f and rule (g,n,n'), then: 

J H[f(n) := f(n')] if n' e gin 

H[f(n) := n'] otherwise! 

is the result of the redirection phase and we write: 

J = H[f,(g,n,n1
)] 

The final phase is garbage collection which _simply discards all nodes which are not accessible 

from the root of the graph. 

Definition 2.8 (The Garbage Collection Phase) 
For some term graph G the result of garbage collection, written GC(G), is defined as: 

GC(G)= G Ira 

In our example, garbage collection removes the leftmost upto and succ nodes. 

3. A Collecting Semantics 

A collecting semantics collects complete information about possible executions of a program 

[Cou77]. Abstract interpretations may be expressed as abstractions of, and proved correct with 

respect to, a collecting semantics. In the classical setting, the collecting semantics associates a 

context vector, a mapping from program points to sets of possible environments, with a 

program. The collecting semantics is defined in terms of a state transition function. 

1 This delinition is slightly different from that given in [Bar87] which docs not seem to handle selector rules 
correctly. 



www.manaraa.com

373 

In our presentation, we make use of the following two sets: 

Rule the set of rules; elements are triples as presented in the last section 

Graph the set of graphs; elements are quadruples (N,lab,succ,r) 

We use the notation: 

Graph -+ Graph 

to represent the set of total graph homomorphisms. We define the next "state" for term graph 

rewriting by formalising the notion of reduction strategy. Following [Bar87], a strategy is a 

mapping from a graph to a set of reduction sequences; we will represent a reduction sequence 

as a sequence of pairs: 

(Occurrence,Rule) 

Thus the sequence: 

(gl,rl)(g2,r2) ... (g0 ,rn) 

associated with some graph, G1, stands for a reduction sequence of n reductions steps: 

Gl --+g r G2 --+gz r ... Gn --+g r Gn+l 
l• 1 • 2 n. n 

where gi is an occurrence in Gi of the left hand side of ri. The formal type of strategies is: 
S e Strategy= Graph --+ 2((Graph ~Graph) x Rule)* 

We require that all sequences are nonempty [Bar87]. A strategy is deterministic if for all 

graphs, G, S(G) contains at most one element. Sis a one step strategy (or ]-strategy) if for 

all graphs, G, every member of S(G) has length 12. If G is in normal form, then S(G) will 

be empty. 

Next we define our notion of state. To record the state of the system, it is sufficient to know 

the current state of the top-level graph. Thus we have: 

st e State =Graph 

For now we will restrict our attention to 1-step, deterministic strategies and we will abuse 

notation by writing: 

(f,r) = S(G) 

to identify the single (Occurrence,Rule) pair when S(G) is nonempty. The next state function, 

nstate, is defined as follows: 

nstate : State --+ State 

nstate (G) = let seq = S(G) 

in if seq= 0 
then G 

else let (f,r) = seq 

2An example of a slmtegy which is not a 1-stratcgy is a strategy which reduces each rcdex to root-stable form 
(the groph analogue of weak head normal form) 



www.manaraa.com

374 

in GC((G +r r)[f,r]) 

We are now ready to define the collecting semantics; we follow [Jon87] in identifying program 

points with rules. We consider a set ofm rules ((gi>ni,n'i) I 0<i:5m} and an initial graph, Init, 

which we assume is not in normal form. We associate a "context" [Cou77] with each rule 

which is a set of pairs, where each pair specifies a graph and an occurrence of the left hand side 

of the nile in that graph: 

Cr e Context = 2Gmph x (Gmph ~ Gmph) 

Cr = ( (G,f) I n ~ 0, G = nstate"(lnit), (f,r) = S(G)} 

Thus a context specifies, for each use of the rule, which graph was being reduced and which 

redex within the graph was contracted. A context vector associates a context with each rule: 

Cv e Context-vector= Rule~ Context 

and we define the vector associated with a program to be: 

Cv = A.r.Cr 

This semantics is similar to that presented in [Jon87] but, in contrast to Jones' semantics ours 

is more directly based on the Cousots' work using state transition functions and also takes the 

reduction strategy into account. 

The set of context vectors fom1s a complete lattice with the following characteristics: 

.l = Ar.0 

T = A.r. ( (G,f) I G e Graph, r = (g,n,n'), 

Cv1 uCv2 = 

Cv1 nCv2 = 
Cv1 ~ Cv2 ~ 

fan occurrence of gin in G} 

A.r.Cv1(r) u Cv2(r) 

A.r.Cv1 (r) n Cv2(r) 

'1:;/r e Rule. Cv1(r);;;;;! Cv2(r) 

It will be convenient in the later development to have a fixed point definition of the Context 

vector associated with a program. We define the function: 

F: Context-vector~ Context-vector 

F(Cv) = UreRulc U(G,t)eCv(r)( 
let H = nstate(G) in 

if S(H) = 0 
then .l 

else ([s := ( (H,h)}] where (h,s) = S(H))) 

u ([t := ( (lnit,k)}] where (k,t ) = S(Init) ) 

where [s := ... ] is a "small" context vector which maps the rules to the specified context and 

every other rule to the empty context: 



www.manaraa.com

375 

A.re Rule. if r=s then { (H,h)) else 0 
note that the union opemtion is the operation from the lattice of context vectors. A consequence 
of this definition is the following: 

Proposition 3.1 

F is continuous 

Thus F has a least fixed point which may be found by an iteration starting with the bottom 

context vector. 

Proposition 3.2 

fix F = A.r.Cr 

Proof 

We show by mathematical induction that: 

pi+l(.L) = A.r.{{G,f) I o:::;n:::;i, G = nstaten(Init), (f,r) = S(G)) 

Basis: F1(.L) = UreRulc U(G,f)eFl(J.)(r) ( 

Inductive Step: 

let H = nstate(G) in 

if S(H) = 0 
then .L 

else ([s := { (H,h))] where (h,s) = S(H))) 

u ([t := { (Init,k))] where (k,t ) = S(Init) ) 

= ([t := { (Init,k))] where (k,t) = S(Init)) 

= A.r. { (Init,k) I (k,r) = S(Init)) 

= Ar. { (Init,k) I Init = nstateO(Jnit), (k,r) = S(Init)) 

Since we are considering deterministic 1-stmtegies, there is at most one Gin pi+l(.L) such that: 

G = nstatei(Init) 

We therefore consider two cases: 

(1) There is no such G 

Then there is some normal form graph H such that: 

H = nstatek(Init) 

form some k:::; i. pi+2(.L) adds no new context vectors and the result follows trivially. 



www.manaraa.com

376 

(2) There is such a G 

Let H = nstate(G) 

Again there are two cases to consider: 

(2a) SCH) = 0 

pi+2(..L) adds no new context vectors and the result follows trivially. 

(2b) SCH) = Ch.s) 

pi+2(..L) = pi+ l(..L) u [s := ( (H,h)}] 

= pi+I(_L) u A.r.{(H,h) I H = nstatei+l(Init), (h,r) = S(H)} 

= A.r.{(G,f) I OS:nS:i, G = nstate"(lnit), (f,r) = S(G)} 

u A.r.((H,h) I H = nstatei+l(Init), (h,r) = S(H)} 

by I.H. 

= A.r. ( (G,f) I OS:nS:i+ 1, G = nstate"(lnit), (f,r) = S(G)} 

by defn. ofu 

The main result then follows by taking the least upper bounds of both sides of the equation. 

0 

4. Approximating the Collecting Semantics 

4.1 Banach's Analysis 
The analysis in [Ban89] produces all possible (S,k,T) triples such that a node with label T can 

appear as the k-th successor of a node with labelS during some reduction sequence: 

Fig 5. An SkT triple 

The analysis is guaranteed to be finite by ensuring that the set of symbols is finite; under the 

assumption that the only infinite subset of symbols is the integers, Banach does this by 

defining abstract graphs such that: 



www.manaraa.com

labn 

succ n 

= 

= 

377 

(lab n) if (lab n) is not an integer, Int otherwise 

succ n 

The analysis is a form of type inference. For example, consider the program presented in 

Section 2; the symbol"sum" will have four triples associated with it as a result of the analysis: 

{ (sum,l,concat), (sum,l,cons), (sum,l,nil), (sum,l,upto)} 

from which, combined with an syntactic analysis of the rules, it can be inferred that sum is a 

function on lists. This is rather incomplete type information but it is sufficient to provide 

information to a more sophisticated analysis, presented in [Ban89], which allows atomicity 

conditions on rewrite rules to be relaxed. Thus the analysis is a vital component of an analysis 

which leads to efficient parallel implementations of graph rewriting languages. 

4.2 Banach's Analysis as an Abstract Interpretation 
The approach of abstract interpretation involves the development of a semantics which 

approximates the collecting semantics and gives the required information. In the literature, we 

can identify two relevant approaches: grammar-based analyses as presented in [Jon87] and the 

more traditional approach based on Galois connections [Cou77] or logical relations [Abr90]. 

The former approach involves abstracting the collecting semantics by some form of grammar. 

For term rewriting systems this grammar normally takes the form of a regular tree grammar. 

Program properties are then expressed as decidable questions about the tree grammar. This 

approach is treated in detail in [Jon87], the results are encouraging and should be investigated 

further in the context of TGR systems. For the purposes of this paper, we will concentrate on 

the second approach using Galois connections. 

A Galois connection between a pair of complete lattices is a pair of functions ( a.;y) such that the 

following properties are satisfied: 

a. and "(are monotonic 

a. o 'Y S. identity 

"( o a. ~ identity 

In abstract interpretation, we normally use (a.,"() pairs such that the first inequality becomes an 

equality. The intention is that one lattice represents values in a real (concrete) computation, call 

it C, and the other lattice contains some abstract representation of the values, call the lattice A. 

Then a. : C --? A is an abstraction function and "( : A --? C is a concretisation function. 

Abstract interpretation proceeds by abstracting the initial state and then performing some 

abstract computation, the end result of which gives the required information. The correctness 

criterion for the analysis is that concretisation of the end result should give a superset of the 

values produced by the real computation. 



www.manaraa.com

378 

The abstract interpretation will abstract a context vector by a set of triples: 

SkT = (Symbol x Integer x Symbol) 

Acontext-vector = 2SkT 

where Symbol is the finite set of node labels and elements in the set SkT are used to represent 

the same information as that produced by Banach's analysis. We ensure that Symbol is finite 

by using the same device as [Ban89] and assigning the symbol Int to any node labelled by an 

integer. The function Jab maps each node to its associated abstract symbol: 

lab (n) = Int if lab(n) is an integer, Jab(n) otherwise 

We will assume that symbols have a fixed arity, given by the following function: 

p : Symbol ~Integer 

These two constraints together ensure that the set SkT is finite. Acontext-vector is clearly a 

complete lattice. 

In order to construct the abstraction and concretisation maps, we need to be able to abstract a 

single context with respect to a specified rule. This operation is achieved by the abs function: 

abs: Graph x (Graph ~Graph) x Rule~ Acontext-vector 

abs (G, f, r) = U meGif(n) { <ll!.b.(m),i,lab(mi)) I 0 < i::;; p<ll!.b.(m)), succ(m)i = mj) 

where r = (g,n,n') 

The abstraction map is defined as follows: 

a: Context-vector~ Aeon text-vector 

a(Cv) = U re Rule U (G,f)e Cv(r)abs(G,f,r) 

and concretisation is defined as follows: 

y: Acontext-vector ~Context-vector 

y(Av) = U { Cv e Context-vector I a(Cv)::;; Av ) 

We then have the required adjointness property for our abstraction and concretisation maps: 

Proposition 4.1 

(a,y) is a Galois connection and, moreover a andy are continuous. 

0 

The abstract interpretation involves a fixed point computation over abstract context vectors. 

We will construct it in a way which should be reminiscent of the nstate function of Section 3. 



www.manaraa.com

379 

We need to introduce a number of definitions and auxiliary functions before we can define the 

abstract interpretation. 

An assignment from an abstract contect vector is a mapping that maps variable nodes to 

symbols. If a particular variable node is the i-th child of a node labelled S and there is an 
(S,i,T) triple in the vector, then the assignment can map the variable node to the symbol T. An 

assignment is consistent if, whenever the variable node is a child of more than one node, there 

are appropriate (Sj,ij,T) triples in the abstract context vector (i.e. all of the triples contain the 
same symbol T). We define the predicate is-assignment which returns true when a consistent 

assignment exists: 

is-assignment : Acontext,vector x Graph -7 Boolean 

is-assignment(A v ,G) = 'il ne G. 'iiO<iS::p(J..aQ(n)). 

((llill(succ(n)i) = ..L) => 

3T.'ilme G.'i/O<jS::p(lab(m)). 

(succ(m)j = succ(n)j) => 
(llill(m),j,T) e Av) 

and 

((llill(succ(n)j) "# ..L) => 

(l..i!Q(n),i,l..i!Q(succ(n)i)) e A v) 
When consistent assignments do exist, the function assignments generates a "small" function 

which maps the variable nodes to the set of possible symbols which might be assigned to them: 

assignments : Acdntext-vector x Graph -7 (Node -7 2Symbol) 

assignments(A v ,G) = U neG U O<iSp(!l!h(n)) 

if lab(succ(n)j) "# ..L 

then 0 
else ( [succ(n)i = (T I 'ilme G. V'O<jS::p<lli..Q(m)). 

(succ(m)j = succ(n)j) => 

Olli2(m)j,T) e Av)]} 

Finally we need to apply the given assignment and generate the set of (S,k,T) triples present in 

the resultant graph; this is done by the function triples, it takes two parameters, a graph and an 

assignment: 

triples : Graph x (Node -7 2Symbol) -7 2SkT 

triples(G,f) =U U 
neG O<iSp(illh(n)) 

if lab(succ(n)j) "# ..L 

then ( (lg_Q(n),i,lab(succ(n)i))) 



www.manaraa.com

380 

else [ 01J..Q(n),i,S) I S e f(succ(n)j)} 

Armed with these definitions we can define abstract versions of the three phases of graph 

rewriting. 

Definition 4.2 (The Abstract Build Phase) 
Given an abstract context vector G, an assignment f and ruler(= (g,n,n')): 

G ±rr = G u triples(gln',f) 

Definition 4.3 (The Abstract Redirection Phase) 
Given an abstract context vector G, an assignment f and ruler(= (g,n,n')): 

GI.f.rl = G u [ (S,k,T) I (S,k,lab(n)) e G and 

(T=Iab(n') or Te f(n'))} 

Definition 4.4 (The Abstract Garbage Collection Phase) 
Given an abstract context vector G: 

GC(G) = G 

i.e. abstract garbage collection is the identity function. 

0 

Finally we define the function E. which models the function F (defined in Section 3): 

E : Acontext-vector -7 Acontext-vector 

E(Av) = u rERule 
(if is-assignment(A v ,gin) 

then GC((Av ±rr)JLrD 

else Av 

where r = (g,n,n') 

and f = assignments(A v ,gin)) 

u triples(lnit,A.r.0) 

E is clearly continuous and thus the abstract context vector associated with a program, which is 

the least fixed point of E. may be found by iterating from 0. Notice that our abstract 

interpretation takes no account of the reduction strategy or pattern matching; this is equivalent 

to Banach's analysis but there may be better analyses which do take some account of the 

strategy. 



www.manaraa.com

381 

We close this section with the safety theorem. We need a number of technical results before 

we can state and prove the safety theorem. The first lemma establishes the monotonicity of the 

operations used in the abstract interpretation. We assume the following orderings for 

assignments and graphs: 

f ~ f ~ dom(f) :1 dom(f) and ('v'ne dom(f). f(n) :1 f(n)) 

G' ~ G ~ 3ne G'. G = G' I n 

Lemma 4.5 
1. triples is monotonic 

2. assignments is monotonic 

3. the abstract rewriting operations are monotonic 

0 

i.e. G is a subgraph of G' 

For a graph G, occurrence f and ruler(= (g,n,n')), we define 

assoc(G,f,r) = A.me gin. if l.i!.ll(m) = .L then (l!Lb.(f(m))} else 0 

and we call assoc(G,f,r) the assignment associated with the occurrence. 

Lemma 4.6 
For all graphs G, occurrences fand rules r such that fis an occurrence ofr in G: 

is-assignment(T,gln) and (assignments(T,gln) ~ assoc(G,f,r)) 

where T = triples(G,A.r.0) 

0 

The next three lemmas relate the abstract and concrete rewriting operations. 

Lemma 4.7 

Let f be an occurrence of some ruler(= (g,n,n')) in some graph G. Let 

T = triples(G,A.r.0) 

and 

then 

0 

f' = 
T±rr :1 

Lemma 4.8 

assignments(T,gln) 

triples(G +r r, A.r.0) 

Let f be an occurrence of some ruler(= (g,n,n')) in some graph G. Let 

T = triples(G,A.r.0) 

and f' = assignments(T,gln) 



www.manaraa.com

then Tf.f..r} :2 

0 

Lemma 4.9 

382 

triples(G[f,r], A.r.0) 

GC(triples(G,A.r.0)) :2 triples(GC(G),A.r.0) 

0 

The last lemma establishes a relationship between the abstract interpretation and the collecting 

semantics. 

Lemma 4.10 

'v'i~O. 'v're Rule. 'v'(G,f)e Fi(J_)(r). 

is-assignment(Ei(j_),gln) and Ei(j_) :2 triples(G,A.r.0) 

where r = (g,n,n') 

Proof 

By induction. 

Basis: 

trivial 

Inductive Step: 

By definition, since we are considering deterministic !-strategies, Fi+l (j_) has at most one new 

element. If it ·has none we are done. Otherwise, the new element will be of the form: 

[s := {(H,h)}] 

where H = nstate(G) for some (G,t) e Fi(J_)(r) and h is an occurrence of some rule s. 

Let r = (g,n,n') and s = (k,m,m'). 

Then is-assignment(Ei(J.),gln) by I.H. 

Let r = assignments(Ei(J.),gln) 

then Ei+l(J.) :2 GC((Ei(j_) ±r r)If.J:l) by defn. 

:2 Q.C.((triples(G,A.r.0) ±r r)If.J:l) 

and 

0 

:2 triples(H,A.r.0) 

is-assignment(Ei+ 1 (l.),klm) 

Finally, we have: 

The Safety Theorem 

y (fix E) ~ fix F 

by I.H. and Lemma 4.5 

by Lemmas 4.7, 4.8, 4.9 

byLemma4.6 



www.manaraa.com

383 

Proof 
First, it follows as a direct corollary of Lemma 4.10 and the fact that: 

abs(G,f,r) = triples(Gif(n), A.r.0) 

that for all i;;::O: Ei(.L);;:: <X(Fi(.L)) 

We now concretise both sides of the inequality: 

'Y(Ei(.L)) ;;:: 'Y(«(Fi(.L))) 

;;:: Fi(.L) 

by monotonicity of 'Y 
by Proposition 4.1 

and take the least upper bounds of both sides: 

u. y(Ei(.L)) = 
I 

y(Ui Ei(.L)), by continuity of 'Y = y(fix f), by defn 

U. Fi(.L), lhs 
I 

= fix F, by defn 

0 

5. Conclusions 

We have sketched the development of a systematic approach to the static analysis of TGR 

systems and illustrated it in an application related to type checking. Our main contribution is 

that we have shown how the standard framework for abstract interpretation can be applied to 

Term Graph Rewriting Systems; the details of the particular abstract interpretation are 

secondary. 

The style of the analysis presented in this paper is operational. [Ken88] presents a categorical 

semantics for graph rewriting in which the rewriting process is modelled by a pushout 

construction. This formalism allows elegant proofs for some standard results (e.g. Church 

Rosser properties) and may hold the key to a more algebraic approach to static analysis. 

The approach to abstract interpretation which is based on the analysis of certain forms of 

grammar derived from a collecting semantics also leads to-a very different style of analysis and 

is worthy of further investigation. 

Acknowledgements 

Thanks are due to Sebastian Hunt for his encouragement and constructive criticism of earlier 



www.manaraa.com

384 

drafts of this paper and to Richard Banach, Jesper JS11rgensen, Muffy Thomas and the PARLE 

reviewers for helpful comments. The author was partially funded by ESPRIT Basic Research 

Action 3074: SemaGraph- The Semantics and Pragmatics of Generalised Graph Rewriting. 

References 
[AH87] Abramsky S. and Hankin C. L.(eds) Abstract Interpretation of Declarative 

Languages, Ellis Horwood, 1987. 

[Abr90] Abramsky S. Abstract Interpretation, Logical Relations and Kan Extensions, to 

appear in Logic and Computation, 1 1. . 

[Ban89] Banach R. Dataflow Analysis of Term Graph Rewriting Systems, PARLE '89, 

Volume II, LNCS 366, Springer Verlag, pp 55-72. 

[Bar87] Barendregt H. P., Eekelen M. C. J. D., Glauert J. R. W., Kennaway J. R., 

Plasmeijer M. J. and Sleep M. R. Term Graph Rewriting, PARLE '87, Volume II, 

LNCS 259, Springer Verlag, pp 141-158. 

[Bar87a] Barendregt H. P., Kennaway J. R., Klop J. W. and Sleep M. R. Needed 
Reduction and Spine .Strategies for the Lambda Calculus, Information and 

Computation, 75 3, pp 191-231. 

[Cou77] Cousot P. and Cousot R. Abstract Interpretation: A unified lattice model for static 
analysis of programs by construction of approximations of fixed points, 4th 

POPL, pp238-252, 1977. 

[GH85] Goldberg B. and Hudak P. Serial Combinators: Optimal Grains for Parallelism, 

2nd FPCA, LNCS 201, Springer Verlag, pp 382-399. 

[Hud87] Hudak P. A semantic model of reference counting and its abstraction, in [AH87], 

pp45-62. 

[Jon87] Jones N.D. Flow analysis of lazy higher-ordeifunctional programs, in [AH87], 

pp103-122. 

[Ken88] Kennaway J. R. On "On Graph Rewritings", Theoreticai Computer Science, 52, 

pp37-58. 

[Klo85] Klop J. W. Term Rewriting Systems, Notes for the seminar on graph reduction 

machines, Ustica, September 1985. A revised version to appear in the "Handbook 

of Logic and Computer Science", Oxford University Press, 1991. 

[Mis84] Mishra P. and Keller R. M. Static inference of properties ofapplicative programs, 
11th POPL, 1984. 

[San90] Sands D. Complexity Analysis for a Lazy Higher-order Language, ESOP '90, 

LNCS 432, Springer Verlag, pp 361-376.· 



www.manaraa.com

Scheduling of OR-parallel Prolog on a Scalable, 
Reconfigurable, Distributed-Memory 

Multiprocessor* 

J. Briat, M. Favre, C. Geyert 
Projet CMaP, LGI 

BP 53 X, 
38041 Grenoble Cedex 

E-mail: {briat, favre }@imag.fr 

J. Chassin de Kergommeaux 
CAP-Gemini-Innovation 

7, chemin du Vieux Chene, ZffiST 
F -38240 Meylan 

E-mail: chassin@capsogeti.fr 

Abstract 

The OPERA project aims at efficiently implementing Prolog on a scalable, re
configurable distributed-memory architecture. The OPERA computational model 
exploits OR-parallelism following a classical multisequential approach: each pro
cessor executes a complete Prolog engine based on the WAM; inter-processor com
munication is reduced to work installation, the complete state of an active Prolog 
engine being copied to an idle one. Scheduling is performed by a hierarchy of spe
cialized processors, operating in parallel of the computation of the Prolog program. 
To avoid costly synchronization, schedulers use an approximate representation of 
the state of the system. Because of the important overhead of task installation in a 
distributed-memory system, only workers having a large amount of work to execute 
can give work to idle workers. Several dynamic work regulation strategies have 
been designed and are currently being tested. The prototype implementation of 
OPERA on a transputer-based Supernode is one of the most efficient existing Fro
log implementations on the transputer and reaches effective speed-ups in -parallel 
over efficient sequential Prolog systems. 

Keywords: OPERA, OR-parallel Prolog, WAM, distributed-memory, Supern
ode, scalable multiprocessor, reconfigurable multiprocessor. 

*This work has been partially sponsored by tile Centre National d'Etude des T!Sl!Scommunications 
(CNET) and ESPRIT project P1085. 

tUniversity of Porto Alegre, CPGCC-USRGS, ca.ixa postal 1501, 90000 Porto Alegre RS Brasil, 
geyer@SBU. USRGGS.ANRS.BR 



www.manaraa.com

386 

1 Introduction 

The aim of the OPERA project is to use the important computing power offered by 
scalable distributed-memory multiprocessors to efficiently execute Prolog programs in 
parallel. The transputer architecture is suitable to the building of inexpensive massively 
parallel architectures such as the dynamically reconfigurable Supernode [HJMWS86], 
in the development of which part of the OPERA team was involved. Prolog has been 
chosen because of the inherent parallelism of the language, which allows the execution 
of ordinary Prolog programs in parallel. Contrary to the Concurrent Logic Languages 
approach [Sha89], which aims at developing new languages for parallel processing, the 
goal of OPERA is to speed-up the computation of "standard" Prolog programs by use 
of parallelism. Among the potential sources of parallelism offered by Prolog programs, 
OPERA exploits OR-parallelism, expected to require less communications than AND
parallelism and therefore be more suitable for existing distributed-memory architectures. 

The computational model of OPERA follows a classical multisequential approach: 
each processor (worker) executes a Prolog engine which computes portions of the search 
tree defined by the program. Parallelism is initiated by otherwise idle workers: no more 
parallelism than available resources is generated. The OPERA Prolog engine is based on 
the most efficient compilation technique used for Prolog, known as the Warren Abstract 
Machine (WAM) [War83]. The WAM has been extended into a "TWAM" (Transputer 
Warren Abstract Machine), tailored to a distributed-memory architecture. When an 
"idle" worker takes work from an active one, the stacks describing the state of the 
computation are copied from the active to the "idle" worker. 

Scheduling is one of the most important issues to be solved by parallel Prolog sys
tems. The scheduler must keep the workers as busy as possible while limiting the 
overhead generated by parallelism. The first constraint implies generating enough par
allelism but the second implies that the granularity of each new parallel activity remain 
bigger than the overhead it introduces. Scheduling is more important in distributed
memory than in shared memory architectures because of the higher cost of task creation 
in the former. Scheduling is also more difficult in distributed-memory architectures be
cause of the lack of global state for the parallel Prolog system, unless extremely costly 
synchronization algorithms are used. The computational complexity. of task scheduling 
increases with the number of processors used by the multiprocessor, since the amount of 
exploited parallelism should increase as well. Because of the complexity of scheduling, 
important computing resources are devoted to schedule tasks in OPERA. The structure 
of the OPERA scheduler is hierarchical and mimics the architecture of the control net
work of the Supernode, used for the implementation. Specialized scheduler processes 
keep an approximate record of the states of their slave schedulers or workers and balance 
the workload among these slaves. Several load balancing strategies, based on dynamic 
criteria, have been designed and are currently being tested. 

A prototype implementation of OPERA is now running on Supernode. The sequen
tial efficiency of this implementation is one of the best sequential Pro log implementations 
on transputer. First experimental results show good performance speed-ups for parallel 
computations over sequential ones, for programs providing a large enough search space. 



www.manaraa.com

387 

The organization of this paper is the following. After this introduction, the ar
chitecture of the Supernode is briefly described. The following section presents the 
computational model of OPERA. The scheduling issues and their solutions in OPERA 
are then described. The next section sketches the current implementation and gives the 
preliminary results obtained by the OPERA prototype. The two last sections of the 
paper compare OPERA to similar approaches and conclude the paper. 

2 Architecture of the Supernode 
The target multiprocessor architecture of the OPERA project is the Supernode [HJMWS86] 
developed in the ESPRIT project 1085. The Supernode architecture is a dynamically 
reconfigurable array of transputers. It is based on a general purpose parallel processor, 
T800 floating point transputer, together with a specific programmable switch allowing 
dynamic reconfiguration of the links between worker transputers. The Supernode archi
tecture is a two-level architecture, where Tnodes can be considered as building blocks 
for two level multiprocessors called Meganodes. 

A basic Tnode module is composed of 16 working transputers in the basic version 
and 32 transputers in the "tandem" version. Interprocessor communication is provided 
by a crossbar switch controled by a specialized control transputer. Working transputers 
are connected to the control transputer by a dedicated control bus, used to pass commu
nication requests as well as miscellaneous control commands for the working transputers 
(initialization, termination, etc.). A 16 transputer Tnode is represented in figure 1. 

Several Tnodes can be interconnected by a second-level network of crossbar switches 
in order to build a Meganode. The structure of the network of switches of a Meganode 
is organized as a three stage Clos network [CL084] in which the crossbar switches of 
the Tnode modules participate as first and third stages. The network of switches is 
controled by a hierarchy of control tansputers interconnected by a hierarchy of identical 
control buses. 

The interconnection network topology can be defined statically as a four degree 
graph: two dimensional mesh, tore, etc. Connections can also be modified dynamically, 
depending on the needs of the working transputers. Interconnection requests are then 
transmitted using the control bus. In any case, the control of the connections is left 
to the application which must implement a deadlock-free connection algorithm in the 
control transputers. 

The exchange of small data messages between working transputers is very inefficient 
compared to the copy of large blocks of memory. This inefficiency stems from the inef
ficiency of the initialization of the connection before the actual transfer of the message. 
The connection of two working transputers, belonging to the same Tnode, will take 
in the order of 250 micro-seconds in the best case and much more in the worst case. 
Once a direct connection is established, the time taken to transfer n bytes between two 
working transputers in the same Tnode is [TP90]: 

Ttrans(n) = 4.85 + 1.125 X n JLS. 

When the message transfer takes place between two transputers belonging to different 



www.manaraa.com

T414 (20Mhz) 
+ 

512KoRAM 

388 

Control Bus (events ALL, ANY) 

1'800 (20Mhz) TBOO (20Mhz) T800 (20Mhz) 
+ + + ••• 2MoRAM 2MoRAM 2MoRAM 

n = 

1--- Crossbar Switch 

0112 
,,~ 

-

C004 (swill:b) 

Tranputer Link (10 Mbits/s) 
Control Bus (8 bits, 100 Ko/s) 

Memory Interface 

T800 (20Mhz) 
+ 

2MoRAM 

16 

v ..... 16"4 

On request from two processing transputers, the control transputer T414 connects them 
directly through the crossbar switch. Sixty four links connect the Tnode to the external 
world, used to interconnect Tnodes to obtain a Meganode. The Meganode architecture is 
scalable up to 1024 T800 processors. 

Figure 1: Architecture of the Supernode 



www.manaraa.com

389 

Tnodes, the initial connection time is much longer, while the relation between the 
transfer time and the message length is: 

Tlrana(n) = 5.61 + 2.2 X n p.s. 

Because of the inefficiency of the dynamic interconnections at the second level, OPERA 
uses static interconnections between Tnodes. 

Transfer of messages is performed in parallel to normal computation by the sender 
and receiver working transputers, using a DMA mechanism. Since DMA accesses to 
memory are interleaved with local accesses, the overhead of the copy operation remains 
limited for both transputers. 

The software environment available for the Supernode at the beginning of the 0 PERA 
project was very limited. Therefore, important efforts had to be devoted to basic system 
work at the beginning of the project (BFF+sg) to be able to use the Supernode. 

3 The OPERA computational model 

3.1 OR-parallelism in Prolog programs 

Potential OR-parallelism appears during the computation of a Prolog program when 
several clause heads can be unified with the current goal. In a sequential system, 
clauses are evaluated following their lexical order in the program, a new clause being 
tried after a backtracking operation. In an OR-parallel Prolog system, these clauses 
are tried in parallel. For example, let p(X,Y), q(Z,X) be the current resolvent, p being 
defined by: 

p(X,Y) :- ... , X=a, s1(X,Y). 
p(X,Y) :- ... , X=b, s2(X,Y). 
p(X,Y) :- ... , X=c, ss(X,Y). 

All three clauses can be executed in parallel in an OR-parallel Prolog and different 
bindings for X passed to the s1 and q. Even if the "size" of p is small, the granularity 
of OR-parallel tasks can be important if solving q requires important computations: all 
parallel branches will indeed compute q in parallel for different values of X. 

3.2 Overview of the OPERA computational model 

The computational model of OPERA is multi-sequential: each processor executes a 
Transputer Warren Abstract Machine (TWAM) on a local copy of the Prolog program. 
The TWAM is based on the Warren Abstract Machine (WAM) [War83], regarded as the 
most efficient implementation technique for Prolog. OPERA executes sequential (deter
ministic) programs at an efficiency close to the best sequential Prolog implementation 
based on the WAM. Idle workers request work from active workers having untried alter
natives recorded in choice points. New tasks are created on idle workers, using complete 
choice-points of active workers. 



www.manaraa.com

390 

When taking work from an active worker, an idle worker copies the state of the 
active TWAM, recorded in several stacks, when the choice-point providing work was 
created. Variables created before this choice-point but bound after must be unbound. To 
distinguish valid and invalid variable bindings, all bindings are tagged with a date. Other 
solutions performing sharing of stacks [War87,WRCS87] cannot be applied because of 
the inefficiency of small message passing, compared to copying of large chunks of data, 
in a distributed-memory architecture such as the Supernode. 

3.3 Process structure of a worker (TWAM) 

Each worker is composed of four processes: the Solver, the Exporter, the Importer and 
the Spy (see figure 2). The Solver implements a sequential Prolog engine similar to the 
WAM. The Exporter transfers stacks when exporting work to the Importer of an idle 
worker (see section 3.5). The Spy informs the scheduler of the state of the TWAM (see 
section 4). 

3.4 TWAM data structures 

The local and global stacks of the W AM have been reorganized into four stac]ts in 
the TWAM. Choice points are managed in a special stack of the TW AM, instead of 
being interleaved with clause activation records in the local stack of the W AM. The 
main advantage of this solution is to isolate the communication between the export 
and the solver processes, which takes place when an untried alternative is exported. 
Another additional data structure is the variable stack, used to store all the Prolog 
variables. Each variable of the variable stack is tagged with a "date", which is actually 
the depth of the current OR-node in the search tree as in the Kabu-Wake model [Mea86]. 
Grouping the variables in a special stack improves the efficiency of the copy operation 
(see section 3.5), at the expenses of memory usage and access time to the variables (one 
more level of indirection is required). 

3.5 Copying of stacks 

When backtracking, the Solver of a worker W2 may find an empty choice point stack 
and therefore become idle. The Importer of W2 then requests work from its Scheduler 
and waits until it is granted work from an export worker W1 • The relevant portions 
of the stacks of W1 are then copied on W2• The order of the copy operations is the 
following (see figure 2): 

1. The transfer of stacks using DMA mechanisms is initiated by the Exporter of W1 

and the Importer of w2. 
2. The portion of the variable stack existing at the creation of the choice-point having 

given work is copied from the workspace of W1 to the workspace of W2• The use 
of dates allows the Solver of W1 to remain active during the whole copy operation, 
without requiring any synchronization, when binding a v:ariable on one of its 
stacks. 



www.manaraa.com

391 

3. The relevant portions of the other stacks of W1 are copied on W2 while, simulta
neously, the Importer of W2 tests the date of each variable copied in phase 2 to 
check whether it belongs to the resolvent being copied. Variables bound after the 
creation of the choice-point of W1 which has given work, are reset by the Importer 
ofW2. 

4. When the transfer is over, the Exporter of W1 and the Importer of W2 acknowledge 
the transfer to the Scheduler and the Solver of W2 resumes work. 

Since the Solver and the Importer are never active at the same time, they can 
be executed as a unique process. The overhead of stack copying can be reduced by 
remarking that most of the time wl and w2 already share a portion of the program 
search tree. In this case, only part of the stacks of W1 need to be copied on W2• This 
incremental copying optimisation is currently exploited by the MUSE system [AK90]. 

4 Scheduling of work 

Scheduling is difficult in OPERA because of the high cost of task creation on the target 
multiprocessor architecture. The structure of the OPERA scheduler is hierarchical: 
specialized master schedulers schedule slave workers or schedulers. The schedulers of 
OPERA are designed to use an approximate representation of the system, to avoid 
costly synchronizations. 

4.1 Task granularity issue 

It is possible to give the conditions under which it is worthwhile to export work in an OR
parallel Prolog system, where the computation of both the exporter and the importer 
workers will proceed independently, without any synchronization or communication. 
LetT be the time necessary for a worker W1 to complete a task. Let us assume that 
this task can be split in two subtasks of durations T1 and T2 and let E2 be the overhead 
caused to W1 by exporting the task T2 from W1 to W2 , and 12 the time required by W2 

to import the task T2. Obviously: T = T1 +T2. In order for the parallel computation of 
T1 and T2 to terminate faster than the sequential computation ofT, the two following 
inequalities must hold: 
T > (T- T2 ) + E2 (time necessary for W1 to complete) 
T > I2 + T2 (time necessary for W2 to complete) 
These inequalities can be simplified to: 

I2 < T1 = T- T2 

These constraints mean that the granularities of both the exported and remaining tasks 
depend on the time taken to transfer (export and import) a new task. This transfer time 
depends a lot on the multiprocessor architecture. It is much longer on a distributed
memory than on a shared-memory architecture. In the Supernode, DMA accesses to 



www.manaraa.com

392 

the memory are interleaved with local accesses and therefore the export time overhead 
E 2 can be expected to be low; on the contrary the speed of the links - 1 MegaByte per 
second- is limited compared to the speed of a standard bus (such as VME for example) 
and the import time 12 can therefore be expected to be fairly important. To limit both 
the export and import times, the scheduler must select, among the possible exportable 
tasks, the task requiring the smallest stack transfers. In addition, because of the second 
inequality above, the scheduler should insure that an active worker, giving work to an 
idle worker, keeps enough work to remain active after the initialization of the new task. 

To stress the importance of the task granularity problem, early measurements indi
cate that, on average, it takes as long to transfer a task between two transputers of the 
same Tnode module, as to execute 200 inferences with a TWAM Prolog engine. This 
problem is going to be even more serious in a Meganode, since the time required to set 
up a connexion between two transputers of different Tnode modules is much longer. 

4.2 Structure of the OPERA scheduler 

Several possible structures have been considered for the OPERA scheduler: 

centralized: scheduling is performed by a unique process. This is the simplest solution 
to implement, although the scheduler process may become a bottleneck, especially 
in a scalable multiprocessor including a potentially high number of processors such 
as the Meganode. 

distributed: scheduling is distributed among the workers. This solution is more dif
ficult to implement since there is no shared data. In addition, it generates some 
traffic control overhead on the communication links. 

hierarchical: scheduling is implemented as a hierarchy of specialized scheduler pro
cesses. At the lower level, inside a Tnode module, this solution is equivalent to 
the centralized structure. In a Meganode, the schedulers of the Tnode modules 
are hierarchically connected, mimicing the architecture of the machine. The hier
archical structure does not introduce any bottleneck since each scheduler controls 
a limited number of workers or schedulers of a lower level. This structure also 
creates a limited overhead since the control traffic, on the control buses, remains 
independent of the data traffic on the links. 

The hierarchical structure being best suited to the scalable distributed-memory ar
chitecture in general and to the architecture of the Supernode in particular, it has been 
retained for the OPERA scheduler. 

4.3 Work selection strategies 

4.3.1 Classification of workers and clusters 

On each worker, the Spy process (see section 3.3) informs the scheduler of the activity 
of the worker. Three classes of workers have been defined: 



www.manaraa.com

393 

idle: an idle worker does not have any Prolog task to compute and after having sent a 
request for work to its scheduler, it is expecting an import autorisation. 

quiet: a quiet worker is active but does not have enough work to share with an idle 
worker without taking the risk of becoming rapidly idle. As long as it remains 
quiet, a quiet worker does not communicate with the rest of the system. 

overloaded: an overloaded worker is active and has enough work to share with an idle 
worker. 

The Spy estimates the workload of the active workers: workers are classified quiet or 
overloaded depending on whether they are below or above the threshold. If all workers 
are overloaded, more resources can be used. If some workers are idle, too many resources 
are used. Maximum efficiency in the use of the multiprocessor is reached when all the 
workers are quiet. 

This classification is generalized to the Tnode modules of a Meganode, the threshold 
between quiet and overloaded Tnodes being of course different. 

4.3.2 Evaluation of workload 

There are no simple and exact criteria to evaluate the load of a worker. Compile time 
analysis of the granularity of Prolog programs is currently an active research topic 
[SKD90]. In OPERA, the evaluation of workload is performed dynamically. The sim
plest heuristic, used in the current OPERA prototype implementation, is to measure the 
workload by the number of choice points of the worker. This measure is maintained by 
the Spy and transmitted to the Scheduler. The threshold between quiet and overloaded 
workers is then simply a number of choice points. 

4.3.3 Evaluation of the state of an OR-parallel Prolog system in a distributed-
memory computer 

Maintaining the exact state of a distributed-memory system amounts to the costly 
problem of global synchronization in a message passing architecture [Ray88]. There
fore a more pragmatic solution was devised for OPERA. The OPERA strategy is first 
described for a Tnode and then generalized to a Meganode. 

The Spy samples the measure of the number of choice-points and filters the "noise" 
caused by small and unsignificant variations of the load, the frequency of which increases 
with the efficiency of the Prolog engine and is therefore high in OPERA. The filtered 
values are then transmitted to the Scheduler. The measure of the workload of a worker 
is sampled and filtered to limit the activity of the Spy, source of overhead for the system, 
and the number of messages from the Spies to the Scheduler, to avoid saturation of the 
Scheduler. 

Because of the filtering and of the transmission delays from the Spies to the Sched
uler, the global state managed by the Scheduler can only be approximate. The· dis
crepancy between the approximate and the real state of the system may be the origin 
of inappropriate scheduling decisions: an overloaded worker may become quiet or idle 



www.manaraa.com

394 

after it has been selected by the scheduler to give work to an idle worker. Experimental 
results indicate that the frequency of this case depends on the value of the threshold 
and remains very low for sufficient thres'9-old values. 

The previous solution can be generalized to the Meganode, where the Schedulers of 
the Tnode modules play the part of the Spies on the workers, reporting to the second
level Scheduler. 

4.3.4 Communication protocol between Scheduler, Importer and Exporter 

To cope with the inaccuracy of state information maintained by the Schedulers, a pro
tocol has been defined between the three entities involved in the creation of a new task. 
This protocol can be decomposed into four major steps (see figure 2}: 

1. A Scheduler receives, via the control bus, a request for work from the Importer of 
a worker W2 and an overload signal from the Spy of W1• 

2. The Scheduler establishes a communication link through the crossbar switch (switches 
in the case of a Meganode}. It then sends export and import autorisations to W1 

and W2, giving the identification of the ports to use for sending and receiving the 
TWAM stacks. 

3. Transfer of the stacks between wl and w2 takes place (see section 3.5). fu case 
where W1 has become quiet or idle in between, W1 simply sends a NOWORK 
signal to w2. 

4. After completion of the transfer or transmission of the NOWORK signal, both 
the Exporter of W1 and the Importer of W2 release their communication link by 
sending their precise load (neither sampled nor filtered} to the controler/Scheduler. 

At the end of step 4, receiving the exact load values of both W1 and W2 allows the 
Scheduler to update its approximate state and avoid consecutive inappropriate decisions. 
fu particular, if no task could be transferred (NO WORK signal in step 3}, the Scheduler 
classifies wl as quiet or idle, depending on its load, w2 remaining idle. If a transfer took 
place, the state of wl may remain overloaded or become quiet, while the state of w2 is 
changed from idle to quiet. As a consequence, the more scheduling decisions made, the 
more accurate the state of the system maintained by the scheduler. 

4.3.5 Selection of work 

Idle workers obtain from their scheduler the address of a choice point (of an active 
worker) containing at least one untried alternative. Two conflicting criteria are used by 
the scheduler to select work in the search tree: 

1. maximize the benefit provided by the selected work, which is equivalent to max
imizing the granularity of this work. To reach this goal, the OPERA scheduler 
selects the highest possible work in the tree, following the heuristic "the higher 
the work, the larger the granularity". 



www.manaraa.com

Load= 
overload 

OVERLOADED 
WORKER 

395 

LOAD BALANCING 
CONTROLLER 

Scheduler 

IDDLE 
WORKER 

Figure 2: Software structure of OPERA 

Load= 
no more 

work 



www.manaraa.com

396 

2. minimize the overhead generated by the initialization of the new task. This can be 
obtained by selecting, among the possible works, the work that minimizes the size 
of the stack segments to be copied, at the possible expense of the granularity. To 
further minimize the copying overhead, which mainly derives from initializations 
of transfers, several choice-points can be used to create a new task. This number 
of choice-points must be carefully chosen to leave enough work for the overloaded 
worker. 

Finding the best possible compromise is an open problem. The current prototype 
selects the highest work in the search tree, the height in the search tree being measured 
by the value of the counter of choice-points. 

5 Implementation and preliminary results 

5.1 Implementation 

Because of the lack of software environment available on the Supernode, much basic 
system work has been necessary prior to the implementation of OPERA [BFF+89]. 
In spite of this difficulty, special care has been taken to depart from a very efficient 
sequential implementation in order to provide effective speed-ups over efficient sequential 
Prolog systems. Therefore the WAM code generated by the compiler is expanded into 
a mixture of in-line code and runtime subroutine calls, both written in the assembly 
code of the transputer. In the existing prototype, cut and side-effects have not yet been 
included in the parallel Prolog engine. 

5.2 Sequential efficiency 

The TWAM is one of the most efficient existing Prolog implementations on transputer. 
Measured on the standard naive-reverse benchmark, OPERA runs at 34 KLIPS (KiLo 
Inferences per Second). This performance is confirmed by the results of several other 
classical benchmarks. Because of the specificity of the transputer architecture, it is 
difficult to relate the performance of OPERA with the performance of other Prolog 
systems running on different hardware. The transputer delivers 10 RISC Mips if all 
program and data are located in the internal 4 KBytes RAM. Processor address and 
data paths being multiplexed, the actual efficiency of the transputer is much lower for 
programs using external memory intensively such as Prolog systems. The transputer 
architecture is indeed optimized for context switching at the expense of sequential per
formance: few registers are available and bit field manipulations - intensively used for 
tag management-, are very expensive. Altogether, transputers do not execute Prolog 
systems better than 1 Mips CISC processors. The actual efficiency of the TWAM de
pends a lot on the use of the internal RAM. In the sequential version of the TWAM, 
it is used to store the TWAM registers and the runtime system. This optimization has 
not yet been included in the parallel TWAM which runs sequentially at 21 KLIPS on 
naive-reverse. 



www.manaraa.com

397 

5.3 Parallel benchmarks 

Several small benchmarks, mainly provided by ECRC, have been used to measure the 
efficiency of OPERA running in parallel. Because of the lack of "one-solution" predicate 
or commit in the current OPERA prototype, some programs had to be slightly modified. 
All the pragmas indicating parallel predicates have also been removed in order to use 
ordinary Prolog programs. The programs used for table 1 are: 

hamilton: the problem is to find a closed path in a graph. The graph used in the 
benchmark includes 20 vertices and 60 edges. All solutions are computed (460,000 
inferences). 

map: computes all solution to a small map coloring problem (22,800 inferences). 

queens!: this is a solution to the queens problem where the rows and columns already 
used in a partial solution are recorded to avoid using them again and therefore 
reduce the search space. All solutions (92 for eight queens) are computed (ap
proximately 103,000 inferences for eight queens). 

queens2: this is a more "natural" solution to the queens problem, where each possible 
row is tested for each column. All solutions (92 for eight queens) are computed 
(approximately 233,000 inferences for eight queens). 

5.4 Parallel results 

As is classical for parallel systems, the speed-ups of OPERA running in parallel, rela
tive to sequential execution, depend on the size of the problem being solved. Almost 
linear for large size problems, they level off rapidly for the "smallest" benchmarks (see 
table 1). When the number of workers available implies to use too small problems for 
task creation, the speed start decreasing. 

6 Related work 

Several OR-parallel Prolog systems have already been efficiently implemented on shared 
or distributed-memory architectures. In most cases, scheduling is distributed among 
workers and uses global data. 

The OPERA computational model is mainly inspired from the Kabu-Wake model 
[Mea86], the first system to copy stacks when a task is created and to date the variable 
bindings to discard invalid bindings. The scheduler is distributed and performed by 
otherwise idle processors. Processors having work to share are interrupted and copy 
their state to idle ones. The implementation, on a specialized distributed-memory 
architecture, is based on a rather slow interpreter and provides linear speedups for large 
search space programs. 

The Muse model [AK90] also performs copying of the stacks from active to idle 
workers, but it assumes that the multiprocessor provides some global address space. In 
Muse, active workers do not give work, but share it with idle workers. Aurora [LBD+ss] 



www.manaraa.com

398 

Table 1: Execution times of benchmarks running in parallel 

The first line gives the execution time, measured in milliseconds. The second line is the 
speed-up of parallel execution relative to the parallel system running on a single processor. 
The measures of OPERA are compared to Quintus Prolog release 2.4.2 running on a 1.5 
MIPS SUNS/50 and on a. 12.5 MIPS SUN4/60. 

Program 1 2 4 8 12 16 Quintus Quintus 
Sun3/50 Sun4/60 

ham 31271 16937 8122 4320 3260 2791 27100 6000 
1 1.85 3.85 7.24 9.59 11.2 1.15 5.2 

map 1568 893 515 378 1350 300 
1 1.76 3.04 4.15 1.16 5.2 

queens1-8 3890 2060 1112 682 592 540 4350 930 
1 1.89 3.50 5.70 6.57 7.20 0.89 4.2 

queens1-10 90926 45628 23029 11663 8275 6433 103300 21900 
1 1.99 3.94 7.79 10.98 14.13 0.88 4.15 

queens2-8 8571 4397 2380 1319 1085 933 8650 1867 
1 1.95 3.60 6.50 7.90 9.18 0.99 4.6 

and PEPSys [BdKH+88] do not copy the state of active workers to idle ones but they 
share it. Limited work has been devoted to scheduling in the PEPSys implementation, 
since the cost of task installation is independent of the respective positions of the idle and 
active workers in the search tree. This is not the case in Aurora where four schedulers 
have been implemented [CS89] [BDL +88] [Bra88] [BMS90]. Compared to the scheduler 
of OPERA, the schedulers of Muse, Aurora and PEPSys share the caracteristics of being 
executed by otherwise idle workers and using an exact representation of the program 
search tree in shared memory. 

K-LEAF [BCM+9o] differs from multisequential systems in that process creation 
is performed "eagerly" by active workers and not "lazily" by idle ones. Scheduling is 
distributed, employing an idle mask message circulating along a virtual ring. Workers 
having sendable processes send work to idle ones, identified from the mask, before 
propagating the idle mask. K-Leaf is implemented on an experimental transputer-based 
architecture, fully connected by a Delta network, the software of which provides virtual 
global address space. 

The closest approach to the Opera scheduler is perhaps followed by the Japanese 
Fifth Generation Computer Systems project where it is considered [Chi90] that "social 
systems provide good models for parallel processing". The hierarchical structure of the 
scheduler of OPERA is similar to the hierarchical structure of the management in a 
company. 

It is difficult to compare the efficiency of OPERA and other OR-parallel Prolog 
systems since, because of the lack of predefined predicates in the current OPERA pro
totype, so-far it has only been possible to run a small number of benchmarks in parallel. 
Another difficulty is that the other systems mentioned above have been implemented 



www.manaraa.com

399 

on different multiprocessor architectures. However, preliminary results available indi
cate that OPERA compares favorably to the most efficient existing OR-parallel Prolog 
systems. 

OPERA runs sequentially approximately three times faster than the emulated ver
sion of K-LEAF1• OPERA seems also more efficient than Muse, Aurora and PEPSys, 
although it is difficult to compare one processor of a Sequent to a transputer! In parallel, 
the speed-ups of OPERA are lower than the speed-ups provided by the other systems. 
Several reasons may explain these lower results. The main reason is probably the high 
cost of inter-processor communication in the Supernode compared to shared-memory or 
fully connected multiprocessors. Another possible explanation is the high efficiency of 
the sequential Prolog engine of OPERA, which increases the relative overhead of task 
scheduling and requires larger benchmarks (the speed-ups of queensl(lO) are good) to 
deliver good speedups. The experimental conditions are also different, since, contrary 
to the other systems, all programmer annotations of "parallel" predicates have been 
removed from the benchmarks used by OPERA, which are plain Prolog programs. In 
addition, a large number of optimizations have not yet been included in the current 
OPERA prototype, such as incremental copying of the stacks and giving several choice 
points to idle workers, to reduce the task installation overhead. 

7 Conclusion 

The OPERA project aims at implementing Prolog efficiently on scalable, distributed
memory architectures. Prolog is a good candidate for parallel programming because 
of the inherent parallelism of Prolog programs. OPERA exploits OR-parallelism, ex
pected to require less communication than AND-parallelism and therefore more suitable 
to distributed-memory architectures. The computational model of OPERA is based 
on efficient sequential Prolog engines running almost independently on each processor. 
Scheduling is performed by specialized processors, structured hierarchically. Each sched
uler controls several slave workers executing a Prolog engine or several slave schedulers 
at a lower level. To avoid costly synchronization, the schedulers use an approximate 
representation of the state of the system, using sampled and filtered measures performed 
by their slaves. In spite of the lack of software on the Supernode, an efficient prototype 
of OPERA has been implemented on Supernode. The efficiency of the sequential Pre
log engine is close to the best existing Prolog implementations while parallel execution 
provides good speed-ups for large search space programs. 

Future developments of OPERA include extensions and improvements of the cur
rent prototype. The basic Prolog engine and scheduler of OPERA will be extended to 
support more standard Prolog predefined predicates, especially cut or commit, to allow 
running a larger number of existing Prolog programs. Implementing side-effect predi
cates will change dramatically the scheduling since executing these predicates restricts 
the possible execution schedules. Other extensions will support the use of a large scale 

1provided that queens1 and queens£ of K-LEAF are respectively queens£ and queens1 from ECRC 
and considering that the hamilton problem of K-LEAF, using a ten nodes graph, is much smaller than 
the hamilton problem of ECRC, using a 20 nodes graph. 



www.manaraa.com

400 

Meg anode, composed of interconnected Tnodes. Several improvements can also be done 
to increase the efficiency of the OPERA prototype. To improve the speed of the Pro
Jog engine of OPERA, optimal use of the internal RAM should be incorporated in the 
parallel engine. The overhead of task creation can be decreased by using incremental 
copying optimisation and more sophisticated work selection strategies. 

Acknowledgements 

The implementation of OPERA on Supernode would not have been possible without the 
invaluable help of Jacques Eudes, Philippe Waille and Miguel Santana who contributed 
to the implementation of the software development environment of the Supernode and 
of Patrick Poissonnier who implemented the measurement tools. 

References 

[AK90] K. A. M. Ali and R. Karlsson. The Muse or-parallel prolog model and its 
performance. In Proceedings of the NACLP'90, Austin, 1990. 

[BCM+9o] P.G. Bosco, C. Cecchi, C. Moiso, M. Porta, and G. Sofi. Logic and func
tional programming on distributed memory architectures. In Proceedings 
of the 6th International Conference on Logic Programming, pages 325-339, 
Jerusalem, June 1990. 

[BdKH+88] U. Baron, J. Chassin de Kergommeaux, M. Hailperin, M. Ratcliffe, 
P. Robert, J.C. Syre, and H. Westphal. The parallel ECRC prolog system 
PEPSys: An overview and evaluation results. In Proceedings FGCS'88, 
Tokyo, Nov-Dec 1988. International Conference on Fifth Generation COm
puter Systems. 

[BDL +88] R. Butler, T. Disz, E. Lusk, R. Olson, R. Overbeek, and R. Stevens. 
Scheduling or-parallelism: An argonne perspective. In K. Bowen 
R. Kowalski, editor, Proceedings of the Fifth International Conference 
and Symposium on Logic Programming, pages 159Q-1605, Seattle, August 
1988. 

[BFF+89] J. Briat, M. Favre, D. Fort, Y. Langue, and M. Santana. Parx: a paral
lel operating system for transputer-based machine. In Proceedings 10th. 
Occam User Group, 1989. 

[BMS90] Anthony Beaumont, Muthuraman, and Peter Szeredi. Scheduling or
parallelism in Aurora with the bristol scheduler. Technical Report TR-
90-04, University of Bristol, March 1990. 

[Bra88] Per Brand. Wavefront scheduling. Internal report, SICS, Gigalips project, 
1988. 



www.manaraa.com

[Chi90] 

(CL084] 

[CS89] 

401 

T. Chikayama. Current status of research and development of parallel 
inference systems in fifth generation computer systems. Pre-conference 
Workshop on Parallel Logic Programming, 7th International Conference 
on Logic Programming, ICLP'90, Eilat, june 1990. 

Charles CLOS. A study of non blocking switching networks. In Chuan
Lin Wu and Tse-Yun Fen, editors, Tutorial Interconnexion Networks for 
parallel and Distribued Processsing. IEEE Computer Society Press, 1984. 
republished from The Bell System Technical Journal, March 1953 pp406-
424. 

A. Calderwood and P. Szeredi. Scheduling or-parallelism in Aurora. In 
Proceedings of the 6th International Conference on Logic Programming, 
Lisboa, June 1989. 

[HJMWS86] J.G. Harp, C.R. Jesshope, T. Muntean, and C. Whitby-Stevens. The 
development and application of a low cost high performance multiprocessor 
machine. In Proceedings ESPRIT'B6: Results and Achievements. Elsevier 
Science Publishers, 1986. 

[LBD+88] E. Lusk, R. Butler, T. Disz, R. Olson, R. Overbeek, R. Stevens, D.H.D. 
Warren, A. Calderwodd, P. Szeredi, S. Haridi, P. Brand, M. Carlson, 
A. Ciepielewski, and B. Hausman. The Aurora or-parallel prolog system. 
In Proceedings FGCS'BB, Tokyo, Nov-Dec 1988. International Conference 
on Fifth Generation Computer Systems. 

[Mea86] H. Masuzawa and et al. Kabu wake parallel inference mechanism and its 
evaluation. In 1986 FJCC, pages 955-962. IEEE, November 1986. 

[Ray88] Michel Ra~nal. Networks and Distributed Computation. Concepts, Tools 
and Algorithms. Computer Systems Series. The MIT Press, 1988. ISBN 
18130-4 RAYNH. 

(Sha89] E. Shapiro. The family of concurrent logic programming languages. acm 
computing surveys, 21(3), september 1989. 

[SKD90] M. Hermenegildo S. K. De bray, N-W Lin. Task granularity analysis in 
logic programs. In Proceedings of the ACM SIGPLAN'90 Conference on 
Programming Language Design and Implementation, White Plains, New 
York, June 20-22 1990. 

[TP90] A. Touzene and B. Plateau. Mesures de performance des communica
tions du meganode a 128 transputers. Technical report, LGI-IMAG, projet 
CMaP, 46, avenue Felix Viallet, 38031 Grenoble Cedex, France, 1990. 

[War83] David H. D. Warren. An Abstract Prolog Instruction Set. Technical 
Report tn309, SRI, October 1983. 



www.manaraa.com

402 

[War87J D.H.D. Warren. The SRI model for or-parallel execution of prolog. Ab
stract design and implementation issues. In 4th Symposium on Logic Pro
gramming, pages 46-53, San Fransisco, Sept. 1987. 

[WRCS87] H. Westphal, P. Robert, J. Chassin, and J.-C. Syre. The PEPSys model: 
Combining backtracking, and- and or-parallelism. In 4th Symposium on 
Logic Programming, pages 436-448, San Fransisco, Sept. 1987. 



www.manaraa.com

Flexible Scheduling of Or-parallelism in Aurora: 
The Bristol Scheduler 

Anthony Beaumont, S Muthu Raman~ Peter Szeredit 

and David H D Warren 

Department of Computer Science, University of Bristol, 

Bristol BS8 1 TR, U.K. 

Abstract 

Aurora is a prototype or-parallel implementation of the full Prolog language for 
shared memory multiprocessors, based on the SRI model of execution. It consists 
of a Prolog engine based on SICStus Prolog and several alternative schedulers. The 
task of the schedulers is to share the work available in the Prolog search tree 

This paper describes the Bristol scheduler. Its distinguishing feature is that work 
is shared at the bottom of partially explored branches ("dispatching on bottom
most"). This can be contrasted with the earlier schedulers, which use a "dispatching 
on topmost" strategy. We argue that dispatching on bottom-most can lead to good 
performance, by reducing the overheads of scheduling. 

Our approach has been to find the simplest scheduler design which could achieve 
performance competitive with earlier more complex schedulers. This design gives 
us a flexibility in deciding strategies for sharing work and allows us to examine ways 
of improving the performance on both non-speculative and speculative work. We 
note that in speculative regions the priority of some work is higher than others. We 
have investigated strategies which help workers to avoid low priority work. 

We present the basic design of the Bristol scheduler, discussing the data struc
tures and the main algorithms. We also present performance results for the new 
scheduler using a number of benchmark programs and large applications. We show 
that the performance of the Bristol scheduler compares favourably with other sched
ulers. Our work also shows that special treatment of speculative work leads to 
improved performance. 

Keywords: Implementation, Or-parallelism, Multiprocessors, Scheduling. 

1 Introduction 

Aurora is a prototype or-parallel implementation of the full Prolog language for shared
memory multiprocessors, currently running on Sequent and Encore machines. It has 
been developed in the framework of the Gigalips project, a collaborative effort between 

• Vi8iting from (and present address) National Centre for Software Technology, Gulmohar Cross Road 
9, Juhu, Bombay 400 049, India 

tOn leave from (and present address) SZKI, IQSOFT, Donati u. 35-45, Budapest, Hungary 



www.manaraa.com

404 

groups a.t Argonne National Laboratory, University of Bristol, and the Swedish Institute 
of Computer Science (SICS). A full description of Aurora. ca.n be found elsewhere [8]. 

Aurora. is based on the SRI model [13] in which or-parallel execution of Prolog pro
grams consists of the exploration of a. search tree in parallel by a. number of workers. A 
worker is defined as an abstract processing agent. During execution, a. tree of nodes is 
created, where each node represents a Prolog choicepoint. A worker will begin working 
on a task by taking an alternative from a node, creating a new arc of the tree. The task 
will be explored in the normal sequential Prolog manner, and will end when the worker 
runs out of work. The way workers move around the tree and communicate with. each 
other in order to find tasks is determined by some scheduling strategy. 

Branches of the tree are extended during resolution and destroyed on backtracking. A 
major problem introduced by or-parallelism is that some variables ma.y be simultaneously 
bound by workers exploring different branches of the tree. The SRI model dictates that 
each worker will maintain a. binding array to hold the bindings associated with its current 
branch. We can say that a worker is positioned a.t a. node, when its binding array holds 
the bindings associated with the path between the root and the given node. Moving up 
a branch involves removing bindings, while moving down involves adding bindings to the 
binding array. 

In Aurora. the search tree is divided into public and private regions, the boundary 
between the two being marked by a sentry node. Private regions contain nodes which 
are explored by a. single worker, and for workers to be able to share work at a node, 
that node has to be made public. Another distinction is that nodes can be either parallel 
or sequential through user declarations. Alternatives from sequential nodes can only be 
executed one a.t a. time. We can also think of each node as being either live (i.e. having 
·unexplored alternatives) or dead (no alternatives to explore). A node is called a. fork node 
if it has more than one child. 

An Aurora. worker consists of two components: the engine, which is responsible for 
executing the Prolog code and the scheduler, responsible for finding work in the tree and 
for synchronising with other workers. There is a strict interface between these components 
[12] which enables independent development of different schedulers. Aurora execution is 
governed by the engine: whenever the engine runs out of work in its private region it 
will ask the scheduler to find more; a. process called task switching. The Aurora. engine is 
based on SICStus Prolog version 0.6 which has been extended to comply with both the 
SRI model and the engine/scheduler interface. 

2 Scheduling Strategies 
We now discuss the problem of finding a. new task for a. worker which has run out of 
work. We have already stated that work can only be taken from public nodes, therefore 
idle workers must find a. live, parallel, public node. If we assume that initially all work is 
public then we could allow idle workers to search the tree to find work. This will allow 
work to be found from any branch but not without some cost. An idle worker may have to 
search a large number of nodes before work is found, and also the search will require some 
synchronisation to avoid searching branches as they are being reclaimed by backtracking 
workers. 



www.manaraa.com

405 

To focus the search into areas of the tree where work may be more likely to be found 
we could search only those branches which are currently being extended by busy workers. 
Selected workers could be scanned to assess whether the branch they are working on 
contains work or not. 

We should note however that a branch can be explored quicker by a single worker if 
that worker keeps the task private, rather than making some or all of it public. This 
indicates that if all workers are busy then there is no reason to make work public and 
therefore it would be better to assume that initially all work is private and that workers 
make work public on demand only. 

Following this approach, an idle worker searching for a new task might select a worker 
which has private work and ask it to share some or all of it. We must remember however 
that searching for work only on branches which are currently being explored assumes that 
all live nodes have at least one busy worker positioned below them, if this assumption is 
not true, some nodes will become inaccessable. 

Another consideration is which of the available tasks an idle worker should prefer. 
When earlier schedulers were designed it was thought that a worker should keep most of 
its work private to make its task as large as possible. Only the topmost task was made 
available to other workers. If the busy worker kept the topmost task public and that task 
was not quickly exhausted then the worker would not be interfered with as it explored 
the rest of the branch. This is known as topmost dispatching. 

An alternative strategy investigated in this paper is bottom-most dispatching when 
work is shared at the bottom of partially explored branches and we will discuss this later. 

2.1 Topmost dispatching schedulers for Aurora 
There were three earlier schedulers for Aurora, all using topmost dispatching. 

The Argonne scheduler [4] uses local information that is maintained in each node to 
indicate whether there is work available below the node. Workers search the tree, using 
this local information to migrate towards regions of the tree where work is available. The 
workers always take the topmost task from a branch since this is always the first task 
found as they move down. A bitmap in each node indicates which workers are positioned 
at or below the node and workers are required to update these bitmaps as they move 
around the tree. Information in the bitmaps can be used to locate other workers, for 
example in the case of pruning a subtree it is necessary to inform the workers which are 
positioned in that subtree that they have been pruned. 

The Manchester scheduler [5] tries to match idle workers with the nearest available 
outstanding task, where "nearness" is measured by the number of bindings to be updated 
between the worker's current position and the available work. Minimising the distance 
between worker and task means that the worker will not consider any task below the 
topmost one on each branch. Again bitmaps are employed to mark the presence of 
workers on a branch. The Manchester scheduler uses them both for matching idle workers 
to available work and for locating workers during pruning. 

The Wavefront scheduler [3] employs a data structure known as the wavefront which 
links all the topmost live nodes together. Workers find work by traversing the wavefront. 
As nodes are exhausted the wavefront is extended to allow access to the next live parallel 
node. 



www.manaraa.com

406 

Topmost dispatching, used by all of these schedulers, has the disadvantage that unless 
the topmost task is large it will be quickly exhausted and the worker will have to repeat 
its search for work. This leads to relatively high task switching costs for fine granularity 
programs and also slows down the busy workers since they have to spend more time 
maintaining a live public node at the top of their branch. 

2.2 The Muse Scheduler 
Another approach to the or-parallel implementation of Prolog is the Muse system [1][2] 
which is based on having several sequential Prolog engines, each with local address spare 
and some shared memory space. Workers in Muse copy each other's state rather than 
sharing it as is the case in Aurora. Potentially increasing the overheads involved in task 
switching. Therefore Muse requires a way of reducing the frequency of task switches 
involving copying. 

The Muse scheduler uses bottom-most dispatching, so that a busy worker, when in
terrupted for work, will share all nodes on its branch. This allows an idle worker to 
begin work at the bottom-most of these nodes. The advantage of this strategy is that 
once the work at the bottom-most node is exhausted, more work can be found by simply 
backtracking to the next live parallel node, further up the branch. Backtracking to a 
public node is more expensive than backtracking to a private one, however these minor 
task switches are much less expensive than the major task switches which require a wider 
search for work. It has been found that bottom-most dispatching can reduce scheduling 
overheads by increasing the number of minor task switches and reducing the number of 
major task switches. 

To help an idle worker decide which busy worker to interrupt for work, Muse introduces 
the concept of richness. Each branch of the tree has an associated richness, which is an 
estimate of the amount of work on that branch. In the muse system, richness is based 
on the number of unexplored alternatives on the branch. An idle worker will choose a 
busy worker from t],le subtree below the idle worker's current node, the choice of worker 
depends on the richness of each busy worker's branch. The idle worker will interrupt the 
worker which is working on the richest branch, ie. has the most work to share, which will 
further help in increasing the ratio of minor to major task switches .. 

3 Principles of the Bristol scheduler 
In designing the Bristol scheduler we took into consideration the results from performance 
analyses of earlier schedulers and used this information to try and incorporate the best 
features of other schedulers into our design. 

A performance analysis of the Manchester scheduler [11] indicated that the migration 
of workers to new tasks was not a significant overhead and that much more important was 
the administrative overhead associated with task switching, estimated to be equivalent 
to 4-7 Prolog calls per task. The conclusions of this analysis are that simplifying the 
scheduling algorithm and tuning the scheduler could reduce the costs of task switching 
and, more importantly, minimise the number of major task switches. Keeping this in 
mind we have tried to keep the design of the Bristol scheduler as simple as possible. 



www.manaraa.com

407 

One of the requirements of the Bristol scheduler is that it should be flexible enough 
for us to try different scheduling strategies and this will allow us to compare bottom-most 
and topmost dispatching using the same scheduler. However, based on the good results of 
the Muse scheduler, we decided to use bottom-most dispatching as the default strategy. 
The key overhead in earlier Aurora schedulers is the major task switch. If bottom-most 
dispatching reduces the number of major task switches, and if minor task switches are 
not very expensive then the total scheduling overheads will be reduced. 

A second reason for using the bottom-most dispatching strategy is its suitability for 
scheduling speculative work. This is illustrated by the following program: 

p:- condition, !, pred1. 
p:- pred2. 

All work in the second clause is said to be speculative because if condition succeeds 
then the second branch will be pruned away. Intuitively, it would seem better to direct 
workers to help in evaluating condition, rather than pred!J. Similarly, one would want to 
give higher priority to work which is further to the left within condition [6]. Therefore, 
in a speculative subtree the deepest work on the left-hand branch is the least speculative 
and should have the highest priority. 

Earlier schedulers could not handle speculative work at all effectively. Our aim is 
to implement an effective speculative scheduling technique within the Bristol scheduler. 
The bottom-most dispatching strategy helps in directing workers to deeper regions of the 
search tree but this is not sufficient on its own as a scheduling strategy since the deeper 
branches may not be the least speculative. What we require is some way of concentrating 
workers in the leftmost region of a speculative subtree. 

This suggests that rather than rely on taking work from busy workers, idle workers 
would need to scan a speculative subtree to find the least speculative available work. Our 
design allows us to experiment with such a strategy. 

A problem with bottom-most dispatching is that it increases the size of the public 
region of the tree and backtracking through this region (public backtracking) is more 
expensive than private backtracking. We will try to analyse the effect of this problem by 
comparing bottom-most and topmost dispatching strategies using the Bristol scheduler. 

4 Implementation of the Bristol scheduler 

During this section we will discuss some of the issues involved in the implementation of 
the Bristol scheduler. 

4.1 Data structures 
We include the notion of richness introduced by the Muse scheduler and use an estimate 
of the number of live nodes on a branch as the richness of each branch. Actually, each 
node is given a richness which is an estimate of how many live nodes there are above it. 

Primarily a worker wants to know if another worker has work available and must be 
able to send a message to it, for example, to ask for work. In our implementation, each 



www.manaraa.com

• 
0 

Uve~dnode 

Root node with 
worltrzid. 

408 

Wod=B Wod=B 

Figure 1: WORKER A BACKTRACKING TO A FORK NODE 

worker bas a message area, enabling other workers to send messages to it, and a record 
of the richness of its current branch which can be read by other workers. 

To give some indication of a worker's position in the tree, each worker bas an associated 
root node, which is defined to be the root of the subtree in which that worker is leftmost. 
Initially, this is equal to the workers' sentry node when it first starts work. The identifier 
of the worker is stored in its root node, and that worker will be known as the owner of 
the node. All nodes subsequently created will contain a pointer (so called root pointer) 
to that workers' root node. 

A worker's root may change due to the actions of other workers in backtracking. 
When a worker backtracks to a fork node from the first child, leaving another worker 
below, then the backtracking worker must move the root of the remaining worker up the 
tree to reflect the change. This is illustrated in Figure 1 where worker A backtracks out 
of the left subtree, leaving worker B as the new leftmost worker (the letters in the root 
nodes show the identity of the worker they belong to). In this case, worker A will put B's 
identity into its old root and make that node the new root of worker B. B's old root bas 
its root pointer set to point to the new root. 

In a speculative region we will want to find the leftmost (least speculative) task, and 
therefore will need some way of searching a subtree from left to right. By following the 
root pointers to a root node and finding its owner, we have a way of finding the leftmost 
worker in any subtree, and we can also tell if that worker bas work available. To continue 
searching for work, a worker requires some way of finding the bottom of the leftmost 
branch and moving right. Each worker maintains a pointer to its sentry node which 
marks the leaf of the public branch. After identifying the owner of a root node and if 
that worker bas no private work then the worker's sentry node pointer is used as a way of 
gaining access to the bottom of that worker's branch. The owners identity in a root node 
acts as a leaf pointer. 

In order to simplify the further search for work the notion of right pointer is introduced. 
This is illustrated in Figure 2 where we can see bow the tree is organised. The right pointer 
points to the next sibling, if there is one. For the rightmost child of a live node the right 
pointer will point to itself, indicating the potential work present there. For the rightmost 



www.manaraa.com

409 

• Live ponlld node 

0 Root node wilh 
wormid. 
(luC poinla") 

Plnnl Polnler - Ri&ht Polnler 

Rootpoiner 

Workl:rB 

Figure 2: ORGANISATION OF THE TREE 

child of a dead node the right pointer will point upwards to the first ancestor which has 
either a right sibling or a live parent. 

We use a flag to indicate that the right pointer of a node points to a right sibling 
and not to some other node. Using the root, leaf and right pointers a worker can search 
around the tree from left to right. This method of linking the nodes of a tree to allow left 
to right traversal was ta.ken from the data structure used in Andorra-1 for maintaining 
the goal list (9). 

4.2 Looking for work 

The engine will hand over control to the scheduler when the worker backtracks to its 
sentry node and the scheduler will be responsible for finding work in the public region of 
the tree. We a.re exploring two different strategies which the scheduler will use to find 
work, the richest worker strategy and the left-to-right search strategy. 

4.2.1 The richest worker strategy 

Following the richest worker strategy, the scheduler will attempt to find work in two ways; 
Firstly it will backtrack through the nodes above the worker's current position to see if 
any work ca.n be found nearby. If a live parallel node ca.n be found then the scheduler 
ta.kes an alternative from it and returns control back to the engine to restart work. If 
no work ca.n be found then the other workers will be scanned to see if they have work 



www.manaraa.com

410 

available. The idle worker will identify the worker which is working on the richest branch 
and interrupt it for work. That worker will then make all of its private nodes public and 
the idle worker can begin work at the bottom of that branch. Note that the number 
of nodes being made public is flexible in that we could limit this number and therefore 
bottom most dispatching need not necessarily be used. 

This strategy has the advantage that work is made public only on demand, so if a 
worker is not interrupted for work it will not make any nodes public. Workers may have 
to migrate further when taking work from another worker. We hope that the bottom-most 
dispatching strategy will minimise the number of major task switches, and most work will 
be found quickly from a node just above the workers current position. 

4.2.2 Left to right search 

We want to get some indication of how much can be gained by treating speculative work 
differently from non-speculative work and have explored an alternative strategy, which 
we call left-to-right search. The assumption behind this strategy is that the whole tree is 
speculative and that work on the leftmost branch has the highest priority, and the priority 
of work decreases the further away it is from the leftmost branch. This assumption clearly 
represents too narrow a view of speculative work; in general all work is non-speculative 
unless it is in the scope of a pruning operator. Setof (and bagof) create subtrees which 
are locally non-speculative even if the setof itself is speculative, ie all branches should 
have equal priority. We describe a more refined strategy for handling speculative work in 
Section 6. 

Related work by Sindaha [10) uses. a similar method to search for work in a speculative 
subtree. However the left to right search is implemented by explicitly linking the sentry 
nodes of all branches to create a data structure similar to the wavefront. Workers find 
work by traversing this data structure. This work is not as far advanced as the Bristol 
scheduler but we hope later to compare this approach with our own. 

The left to right search strategy also uses bottom-most dispatching. Finding work will 
again begin by backtracking through the nodes immediately above the worker's current 
position to find nearby work. H no work can be found the worker will search the tree 
from left to right, by following the root, leaf and right pointers. The leftmost worker can 
be identified as the owner of the root of the tree, the scheduler will search right from the 
leftmost worker until it finds either a worker with private work which it can share, or a 
live parallel node. 

4.3 Side-effects and suspension 

A goal of the Aurora system is to implement all standard Prolog built-in predicates, 
preserving their sequential semantics. To achieve this, we delay the execution of a call to 
a side-effect predicate until it becomes leftmost in the whole tree. We implement this delay 
by allowing workers to suspend a branch when executing a side-effect predicate. There are 
some special predicates, for example those used in the implementation of set of, where it 
is sufficient to ensure that the branch is leftmost within some subtree. Checking whether 
a worker is leftmost within some subtree is done simply by testing if the worker's root 
node is at or above the root of the subtree. Asynchronous versions of these side-effect 



www.manaraa.com

411 

predicates are also provided and these suspend only if they occur within the scope of a 
cut and may be pruned. 

To suspend a branch, all a worker must do is to mark its root node as suspended and 
make the root of the suspended node point down to the sentry node on the suspended 
branch. The scheduler will then find a new task for the suspending worker to begin. 

We next look at how suspended branches can be restarted. If a worker backtracks out 
of, and reclaims, the leftmost child of a node, it will check to see if there is a suspended 
right sibling of that node. If there is, it will delete the suspended :O.ag and proceed to 
check if the branch has now become leftmost in the subtree in which it was suspended. 
If this is the case the worker will restart the suspended branch. If the branch cannot be 
restarted the worker will set the suspended :O.ag in its own root and carry on looking for 
work. The suspended branch will wait until some other worker notices the new suspended 
node while backtracking. 

4.4 Cut and commit 

Aurora supports two pruning operators: the conventional Prolog cut, which prunes all 
branches to its right and a symmetric version of cut called commit, which prunes branches 
both to its left and right. To preserve the sequential semantics, a pruning operation will 
not go ahead if there is a chance of it being pruned itself by a cut with a smaller scope. It 
may be possible to improve on this and we are investigating the method which has been 
implemented in Muse where the worker will not suspend the branch but partially do the 
pruning and leave the rest to be done as and when it ceases to be endangered by the cut. 

A pruning operation should suspend only if a branch to its left leads to a cut of smaller 
scope. But, to determine whether a particular pruning operation should suspend or not 
we need some information about the presence and scope of cuts in the tree. 

The engil\e-scheduler interface [12] makes the necessary information available to the 
scheduler and we use it to implement the Bristol scheduler's pruning operators in the 
following way. 

The scheduler decorates the tree with information about the presence and scope of 
cuts. When a node is created which has parallel alternatives containing cut, then that 
node is marked as a cut boundary node. Each node contains a cut counter, which indicates 
the number of cuts in the worker's continuation when the node was created. The worker 
also keeps a cut counter and this is incremented when a clause containing cuts is .entered 
and decremented whenever a cut is executed. When executing a cut, a worker will check 
if any of the nodes below the cut boundary have children to the left and are either marked 
a8 a cut boundary or have a cut counter greater than the workers current cut counter. If 
such a left sibling is found then the cut will be suspended. For a more detailed description 
of decorating the tree with cut scope information the reader is referred elsewhere [6]. 

We will now look at how pruning is implemented in the Bristol scheduler. A pruning 
worker will visit each node below the boundary node of the cut (or commit), first removing 
all unexplored alternatives at the node's parent, and then pruning all the right siblings of 
the node. If the pruning operation is commit then left siblings must be pruned too. All 
siblings except the leftmost will be root nodes. 

To prune a sibling, the worker will mark the node as pruned and try to identify the 
worker which will take responsibility for clearing the pruned subtree away. Unless the 



www.manaraa.com

0 Ldt root node 

412 

Region to 
be pruned ·········•··• .. .. ·· .. 

Wier: A '• Wkr B Wkr: C Wkr: D ••••• ··. . .... 
····· ······•· . ._.····································· 
Figure 3: WORKER A ABOUT TO PERFORM A CUT 

sibling node is suspended, this means the worker will interrupt the owner of the node. 
Tha.t worker will then pa.ss on the interrupt to any other workers in the subtree. To prune 
the leftmost sibling in the ca.se of commit, then the worker must follow the node's root 
pointer to find its root. If its root is not marked suspended then the owner of the root 
will be interrupted with the information tha.t its subtree is pruned. 

If any of the siblings are suspended, it is not possible to identify workers which are 
in the subtree below tha.t node. These subtrees must be searched to inform any workers 
which are working there that they have been pruned, although a.ll the pruning worker will 
do is to marked them a.s unsearched. The search will be carried out by one of the pruned 
workers a.s it moves out of its own pruned subtree. The pruning worker will only search 
pruned subtrees if no other worker can be found to do the job for it. In this case it will 
search until it finds the first worker to be pruned and then tha.t worker will take over any 
further searching. 

Figure 3 shows an example where worker A wants to perform a cut up to the cut 
boundary and there are five other workers in the region which is to be pruned. Worker A 
will be able to identify and interrupt workers B, E and F. Worker B will search the subtree 
whose root wa.s suspended at the time worker A did the pruning and will interrupt worker 
C. That worker will in turn interrupt worker D. The interrupted workers will then backtrack 
out of the pruned region and look for work elsewhere. 



www.manaraa.com

413 

5 Performance results 

To assess the performance of various aspects of the Bristol scheduler, we have used a. 
number of benchmarks and application programs, descriptions of which can be found 
elsewhere [11](7]. All the programs were run on a. Sequent Symmetry using the Foxtrot 
version of Aurora.. 

To discover which dispatching strategy should be preferred, we have run the Bristol 
scheduler on a. number of programs using 10 workers under both topmost and bottom-most 
dispatching. We obtained figures on the frequency and duration of task switches in each 
program. Task switching begins when a. worker backtracks to its sentry node and ends 
when a. new task is found and control passes back to the engine. A distinction is drawn 
between minor task switches, which end when work is discovered on the same branch, and 
major task switches, when the worker finds that no work is left on its current branch and 
it must find work from another part of the tree. Bottom-most dispatching should reduce 
the number of expensive major task switches, while increasing the number of minor task 
switches. Table 1 shows for each program the average number of ~ask switches made by 
each worker, and also gives the average duration of each task switch in microseconds. 

Number Average duration 
Bottom-most Topmost Bottom-most Topmost 
dispatching dispatching dispatching dispatching 

Program Major Minor Major Minor Major Minor Major Minor 

parse1 7.7 12.5 8.5 11.5 2315 310 2037 232 
parse2 11.0 26.0 14.2 19.7 1554 219 1377 187 
parse3 7.2 12.0 7.7 10.5 2431 209 2342 202 

parse4 12.2 47.2 34.7 46.5 1929 229 1560 212 
parseS 13.0 87.2 58.7 75.0 2114 213 1707 187 
db4 4.5 21.5 5 14.7 1808 196 1386 175 
db5 5.0 25.7 6.5 17.7 1465 191 1351 170 

farmer 3.7 4.7 4.0 4.2 3298 192 3596 180 
house 4.2 13.2 4.0 3.2 1756 255 1873 184 
8queens1 1.5 9.25 10.2 10.2 2623 247 1293 204 
8queens2 1.7 18.7 16.0 15.5 2674 217 1096 165 

tina 21.5 92.7 17.7 52.7 3925 208 4072 168 
saltmustard 1.0 3.7 1.0 1.5 2256 231 2276 190 
protein 12.0 163.0 74.0 232.0 2804 103 1264 97 
warplan 12.7 60.0 30.5 37.2 5347 247 2864 209 

Table 1: TABLE SHOWING THE AVERAGE NUMBER OF TASK SWITCHES MADE BY EACH 
WORKER AND THE AVERAGE DURATION IN MICROSECONDS, OF EACH TASK SWITCH 

We find that the number of major task switches is significantly reduced while the 
number of minor task switches is slightly increased. Also the average duration of both 



www.manaraa.com

Percentage of time spent 
taok ~witching (per worker) 

70 

60 

so 

40 

30 

20 

10 

414 

Bouom most 
l@iii.W!@I di.Jpa!ching 

--· Topmost dispa!ching 

Figure 4: GRAPH OF THE PERCENTAGE OF TOTAL TIME EACH WORKER SPENDS IN 
TASK SWITCHING 

major and minor task switches tends to increase somewhat. This reflects the increased 
size of the public region of the tree, under bottom-most dispatching there will be more 
public backtracking to be done before the worker eventually finds a new task. 

To get a clearer picture of how much time was spent in task switching we computed 
the percentage of total time, which on average, each worker spent in task switching. 
This information is shown in Figure 4. We can see from this graph that bottom-most 
dispatching leads to less time spent task switching in all but five of our programs. From 
this we can conclude that in general it will be better to employ bottom-most dispatching, 
although there will be some occasions when we will lose out. It may eventually be possible 
for the scheduler to recognise which dispatching strategy should be used but currently we 
do not have enough information to implement this. 

We next compare the Bristol scheduler with the Manchester scheduler, a topmost 
dispatching scheduler which is the most developed of the existing Aurora schedulers. The 
results, given in Table 2, reflect fairly closely what we would expect from the comparison of 
topmost and bottom-most dispatching in the Bristol scheduler, although the Manchester 
scheduler performs better on a. couple of the benchmarks where we might have predicted 
equal or better performance by the Bristol scheduler. This may be partly due to the 



www.manaraa.com

415 

Manchester scheduler's strategy of matching idle workers to the nearest available work 
whereas, with the Bristol scheduler, this does not happen. 

Bristol Scheduler Manchester Scheduler 

Goals (*Times) 1wkr 10wkrs 1wkr 10wkrs 

parse1 *20 1.95 0.74(2.62) 1.94 0.81(2.38) 

parse2 *20 7.37 1.50(4.90) 7.35 1.69(4.34) 

parse3 *20 1.68 0.67(2.49) 1.66 0.72(2.29) 

parse4 *5 6.85 1.04(6.57) 6.80 1.24(5.47) 

parseS 4.96 0.64(7.78) 4.79 0.85(5.61) 

db4 *10 3.11 0.44(7.06) 3.06 0.41(7.53) 

db5 *10 3.79 0.52(7.30) 3.72 0.51(7.34) 

farmer*100 3.77 1.95(1.93) 3.80 2.26(1.68) 

house*20 5.55 0.94(5.88) 5.17 0.85(6.05) 

8-queens1 8.48 0.88(9.65) 8.28 0.83(9.93) 

8-queens2 21.89 2.21(9.91) 21.66 2.16(10.0) 

tina 19.72 2.14(9.23) 18.77 1.99(9.41) 

sm2 *10 11.65 1.32(8.82) 11.27 1.23(9.19) 
protein 28.56 3.01(9.49) 27.66 2.94(9.41) 
warplan (blocks) 2.73 0.33(8.27) 2.50 0.38(6.58) 

warplan (strips) 42.44 4.62(9.19) 40.40 4.46(9.06) 

AVERAGE (6.94) (6.64) 

Table 2: TABLE COMPARING AURORA UNDER THE BRISTOL AND MANCHESTER SCHED
ULERS (RUNTIMES IN SECONDS WITH SPEEDUPS IN BRACKETS) 

To obtain a comparison of two similar bottom-most dispatching schedulers, we have 
compared Aurora. under the Bristol scheduler with Muse 0.6 (Figure 3). This version of 
Muse supports some form of delayed release which is not yet supported by the Bristol 
scheduler. Also, the muse system has been compiled using the GNU C compiler, which 
allows use of inline declarations, while the Bristol scheduler was not. 

Generally the Bristol scheduler produces better speedups than the Muse scheduler, but 
this is generally somewhat outweighed by the faster engine performance of Muse. Muse's 
faster engine performance is due to the overhead of the SRI model in Aurora. which adds 
about 25% to the single worker runtime. This is much greater than the corresponding 
overhead in Muse which is around 5%. 

The next part of our performance analysis looks a.t our strategies for handling spec
ulative work. The left to right search strategy is used here to find out what the benefits 
might be of treating speculative work differently and what the overheads are. We will 
later propose a better strategy for adapting the Bristol scheduler for speculative work. 
We first look a.t the overheads of the left to right search strategy in finding all solutions. 
Table 4 shows that the 10 worker performance is degraded by about 11%, and this is due 
both to the extra. synchronisation required in searching for work in this manner, and also 



www.manaraa.com

416 

Aurora Muse 

Goals [*Times] 1wkr 10wkrs 1wkr 10wkrs 

parse1 *20 1.95 0.74(2.62) 1.58 0.58(2.72) 

parse2 *20 7.37 1.50(4.90) 5.89 1.19(5.03) 
parse3 *20 1.68 0.67(2.49) 1.36 0.60(2.27) 
parse4 *5 6.85 1.04(6.57) 5.53 0.82(6.74) 
parse5 4.96 0.64(7.78) 3.91 0.51(7.67) 
db4 *10 3.11 0.44(7.06) 2.38 0.35(6.80) 
db5 *10 3.79 0.52(7.30) 2.91 0.42(6.93) 
farmer*100 3.77 1.95(1.93) 3.12 1.90(1.64) 

house*20 5.55 0.94(5.88) 4.35 0.89(4.89) 

8-queens1 8.48 0.88(9.65) 6.64 0.70(9.49) 

8-queens2 21.89 2.21(9.91) 17.14 1.77(9.68) 
tina 19.72 2.14(9.23) 14.79 1.66(8.91) 

AVERAGE (6.28) (6.06) 

Table 3: AURORA. UNDER THE BRISTOL SCHEDULER, COMPARED WITH MUSE (RUN
TIMES IN SECONDS WITH SPEEDUPS IN BRACKETS) 

due to the fact that taking the leftmost available work may not give the worker access to 
as many live nodes as the deepest available work would have done. Therefore the number 
of major task switches is increased. 

We now take a number of application programs and look at the speedups obtained 
when finding the first (leftmost) solution, comparing the Manchester scheduler with three 
versions of the Bristol scheduler; richest worker, an improved version of richest worker 
where idle workers try to find work from the leftmost worker before trying the richest 
worker and the" left-to-right search. The results are shown in Table 5. Since speculative 
computation always gives some variation in runtimes, depending on how well the workers 
were utilised during the computation, we present the speedups a ranges of best-worst. The 
results are given in Table 5, and show that when the computation involves speculative 
work, the bottom-most dispatching strategies all perform better than the Manchester 
scheduler. The improved richest worker strategy gives some improvement over the original 
richest worker strategy but the left-to-right search gives the best performance. 

6 A strategy for scheduling speculative work 

In order to improve on our relatively crude left to right search strategy for speculative 
work, we have designed a better strategy which will be implemented in a future version 
of the Bristol scheduler. 

For this more general strategy, we no longer treat the whole tree as being speculative 
but allow for intermingling of speculative and non-speculative subtrees. We will want 
to distribute workers evenly among speculative subtrees so as not to focus too many 



www.manaraa.com

417 

Richest Left to 

worker right search 
Goals [*Times] 1wkr 10wkrs 10wkrs 
parse1 *20 1 2.62 2.44 
parse2 *20 1 4.90 4.14 
parse3 *20 1 2.49 2.24 
parse4 *5 1 6.57 5.71 
parse5 1 7.78 6.79 
db4 *10 1 7.06 6.78 
db5 *10 1 7.30 6.65 
farmer*100 1 1.93 1.68 
house*20 1 5.88 4.44 
8-queens1 1 9.65 8.83 
8-queens2 1 9.91 9.43 
tina 1 9.23 7.89 
sm2 *10 1 8.82 7.77 
AVERAGE 6.47 5.75 

Table 4: SPEEDUPS FOR DIFFERENT SCHEDULING STRATEGIES (BRISTOL SCHEDULER) 

Aurora Scheduling strategy 
one Manchester richest leftmost left to 

Application worker scheduler Worker then richest right search 
Protein 1 2.90-2.65 2.30-1.96 3.28-2.97 4.46-4.36 
Puzzle 1 1.13-1.09 1.33-1.25 2.64-1.77 6.10-5.06 
Warplan 1 1.15-1.08 1.11-1.06 1.12-1.10 1.57-1.36 
16Queens 1 1.05-1.05 3.35-2.31 3.38-3.30 6.40-3.78 
triangle 1 6.44-6.00 7.06-6.60 7.20-6.60 7.68-7.34 
tina 1 4.56-4.41 4.56-4.22 4.70-4.48 4.86-4.63 
Average 1 2.87-2.71 3.28-2.90 3.72-3.37 5.18-4.42 

Table 5: SPEEDUPS (BEST-WORST) WITH 10 WORKERS FINDING THE FIRST SOLUTION 



www.manaraa.com

418 

resources into one particular subtree. We will also want workers to be able to reassess how 
speculative their current branch is. For example, a task which was the least speculative 
of a particular subtree at one moment may later become the most speculative if branches 
appear to its left. Workers should be able to suspend such a task in favour of a task on 
one of the higher priority branches to its left, an operation known as voluntary suspension. 
We believe that voluntary suspension is crucial for effective handling of speculative work. 

Since it is very difficult to compare the speculativeness of two tasks in separate specu
lative subtrees we will not allow workers to move from one speculative subtree to another. 

Our strategy can then be summarised as follows: 

• First try to obtain non-speculative work. 

• If only speculative work exists then find work from the speculative subtree containing 
the smallest number of workers. 

• Always search speculative subtrees from left to right. 

• Allow workers to periodically consider voluntary suspension of speculative work, in 
order to find less speculative work. 

7 Conclusions 

We presented a simple, flexible scheduler based on the principle of "dispatching on bottom
:rpost". We have described the algorithms for finding work, public backtracking, pruning 
and suspension. The current implementation supports the full Prolog language. 

We have presented figures to show that bottom-most dispatching generally produces 
better performance in Aurora than topmost dispatching, since it decreases the duration 
of time workers spend in task switching. 

The results from running benchmark and application programs show that it is possible 
to get very good speedups for non-speculative computation from the Bristol scheduler 
using the richest worker strategy. Comparing that version of the Bristol scheduler with 
the Manchester scheduler we note that the Bristol scheduler's bottom-most dispatching 
strategy pays off on the parsing examples where the search trees are deep and narrow. 
The Manchester scheduler performs better on those examples where the search tree is 
shallow and broad. 

Speedups from the Bristol scheduler are generally better then those obtained from the 
Muse system, although that system obtains somewhat better overall speed because of the 
lower overhead involved in adapting Sicstus Prolog to the Muse model. 

When working on programs with large amounts of speculative work we can benefit by 
employing a strategy which prefers to schedule work on left of the speculative region. We 
can conclude that even though there is an overhead associated with using the left to right 
search strategy, which is due to the need for synchronisation during the search, we can 
benefit by using it to schedule work from regions where work on the left side is of higher 
priority. 

We have described a general strategy for handling speculative work, which, based on 
the results presented here, we believe will give improved performance on speculative work. 
Our future work will center on implementing this strategy and analysing its performance. 



www.manaraa.com

419 

8 Acknowledgements 
The Authors are indebted to other members of the Gigalips project for careful reading 
and invaluable comments on this paper, to Mats Carlsson for his work on The Aurora 
engine and interface, to Bogdan Hausmann for his work on speculative scheduling, and 
to Khayri Ali and Roland Karlsson for their comments and for providing the benchmark 
timings from Muse. 

This work was supported by ESPRIT projects 2471 {"PEPMA") and 2025 ("EDS"). 
S Muthu Raman was supported by a UN Development Programme Fellowship. 

References 
(1] Khayri Ali. Or-parallel execution of Prolog on BC-Machine. SICS Research Report, 

Swedish Institute of Computer Science, 1987. 

(2] Khayri A. M. Ali and Roland Karlsson. The Muse or-parallel Prolog model and its 
performance. In Proceedings of the North American Conference on Logic Program
ming, MIT Press, October 1990. 

[3] Per Brand. Wavefront scheduling. 1988. Internal Report, Gigalips Project. 

[4] Ralph Butler, Terry Disz, Ewing Lusk, Robert Olson, Ross Overbeck, and Rick 
Stevens. Scheduling OR-parallelism: an Argonne perspective. In Proceedings of the 
Fifth International Conference on Logic Programming, pages 1590-1605, MIT Press, 
August 1988. 

[5] Alan Calderwood and Peter Szeredi. Scheduling or-parallelism in Aurora - the 
Manchester scheduler. In Proceedings of the Sixth International Conference on Logic 
Programming, pages 419-435, MIT Press, June 1989. 

[6] Bogumil Hausman. Pruning and Speculative Work in OR-Parallel PROLOG. PhD 
thesis, The Royal Institute of Technology, Stockholm, 1990. 

[7] Feliks Kluzniak. Developing Applications for Aurora. Technical Report TR-90-17, 
University of Bristol, Computer Science Department, August 1990. 

[8] Ewing Lusk, David H. D. Warren, Seif Haridi, et al. The Aurora or-parallel Prolog 
system. New Generation Computing, 7(2,3):243-271, 1990. 

(9] V. Santos Costa, D. H. D. Warren, and R. Yang. The Andorra-! Engine: A parallel 
implementation of the Basic Andorra model. In Logic Programming: Proceedings of 
the 8th International Conference, MIT Press, 1991. 

[10] Raed Sindaha. Scheduling speculative work in the Aurora or-parallel Prolog system. 
March 1990. Internal Report, Gigalips Project, University of Bristol. 

[11] Peter Szeredi. Performance analysis of the Aurora or-parallel Prolog system. In 
Proceedings of the North American Conference on Logic Programming, pages 713-
732, MIT Press, October 1989. 



www.manaraa.com

420 

[12] Peter Szeredi, Mats Carlsson, and Rong Yang. Interfacing engines and schedulers in 
or-parallel prolog systems. In PARLE91: Conference on Parallel Architectures and 
Languages Europe, Springer Verlag, June 1991. 

[13] David H. D. Warren. The SRI model for or-parallel execution of Prolog-abstract 
design and implementation issues. In Proceedings of the 1981 Symposium on Logic 
Programming, pages 92-102, 1987. 



www.manaraa.com

Virtual Memory Support for 
OR-Parallel Logic Programming Systems 

Abstract 

Andre Veron·, Jiyang Xu, 
S. A. Delgado-Rannauro, K. Schuerman 
Distributed and Parallel Systems Group 

European Computer-Industry Research Center 
Arabellastr. 17 

D-8000 Miinchen 81, FRG 
email : elipsys@ecrc.de 

Most previous parallel logic programming systems have been built on top of classical 
operating systems. The advances in the area of parallel operating systems have made 
it possible to explore new execution models that take advantage of their features. In 
this paper we propose a family of execution models (VM,VMBA,VMHW) that make use 
of the new virtual memory technologies such as copy-on-write, memory inheritance, and 
distributed shared memory. Preliminary results from our implementations and simulations 
are reported. 

1 Introduction 

There has been a great deal of research in the field of parallel logic programming in the 
past few years, and many systems have been developed ([19, 5, 3, 2, 4, 16]) and inter
esting results reported. The ElipSys (ECRC Logic Inference Parallel System) project at 
ECRC, a component of ESPRIT II Project 2025 EDS ([20, 14]) is integrating mechanisms 
for exploiting OR-parallelism, solving constraint satisfaction problems and supporting a 
tightly coupled KBMS. The research reported here has been carried out within the ElipSys 
project. 

Most previous research on parallel logic systems has been based on the currently stan
dard Unix1 like environments, probably with extensions to deal with multiprocessors. The 
recent advances in parallel operating systems (OS), especially in virtual memory syst.ems 
such as copy-on-write techniques, lazy memory allocation and sparse memory maps, have 
motivated us to investigate new parallel execution models that take full advantage of these 
new concepts. In addition, we also make proposals for general purposes new operating 
systems paradigms which would support cleanly our execution models. 

1Unix is a registered trade mark of AT&T. 



www.manaraa.com

422 

In this paper we present several execution models that make use of the new virtual 
memory technologies and report the preliminary results from our implementation and 
simulations. In Section 2 we review a few existing parallel execution models, in order 
to provide adequate background for our own proposals. Possible virtual memory sup
port and the virtual memory execution model are discussed in Section 3, and a series of 
other execution models based on the virtual memory concepts are presented in Section 4. 
Results from our simulation and implementation are reported in Section 5. 

2 Review of Execution Models 

The processing of a query in a Prolog-like system amounts to traverse a directed tree 
exploring the paths from the root down to the leaves. The nodes in the tree which have 
more than one outcoming arcs are called branching nodes. As the processing starts from 
the root and flows down along one path and reaches nodes, variables are created. A newly 
created variable is not immediately given a value. When it is created, it is added to an 
environment of variables which goes along with the processing. Traversing one node can 
give a value to a variable which has been allocated when traversing a node upper in the 
tree. Giving a value to such a variable is called binding the variable. 

An AND-parallel system is able to traverse concurrently the nodes along one path. 
An OR-parallel system is able to traverse different paths at the same time. This paper 
deals with problems specific to the design of OR-parallel systems. 

Branching nodes of the tree are called OR-nodes. The tree to be traversed is called 
an OR-tree. Two paths in the tree have the same beginning sequence of shared nodes 
upto their first common OR-node. If those two paths are to be processed in parallel, it is 
taken as an assumption that the shared nodes must be processed only once. The parallel 
execution only begins when the last node of the shared sequence has been traversed or 
equivalently when the first common OR-node has ·been traversed. 

The problem then is that a variable in the environment built so far can be bound 
independently by the traversing processing of both branches. Hence a single memory 
location is not sufficient enough to implement the variable. Solutions to the multiple 
value representation problem are called binding schemes and are one major issue for OR
parallel execution models of logic systems. 

Starting from a naive execution model, we briefly present in the following a few well
known techniques and binding schemes for designing OR-parallel systems. 

2.1 Sequential Execution Model (WAM) 

Prolog is the most well-known logic programming language on sequential machines, and 
a standard basis of Prolog implementations is the WAM ([23]). 

The WAM is a thoughtful abstract machine and includes many optimizations which 
are not detailed here. It is a stack based abstract machine. Variables and terms are 
allocated in two stacks, the global and local stack that we will call term stacks from now 
on. Variables are updated as the execution flow proceeds along one path. The machine 
avoids the retraversing of shared sequences of nodes when processing two different paths: 



www.manaraa.com

423 

An additional stack called the tmil stack, is used to record all modifications done to 
variables created after the last traversed OR-node: After a path is explored, all bindings 
made since the last traversed OR-node are undone (i.e. backtracked) and the next branch 
of the last reached OR-node is processed. 

2.2 Parallel execution models: The Na'ive approach 

A naive but direct way to implement the computation model is to fork subprocesses 
whenever an OR-node is reached. The tree of processes reflects directly the OR-tree. Each 
subprocess receives a copy of the parent's environment and works independently. Since 
the variables are physically duplicated in each subprocess, the multiple value problem is 
naturally solved. 

Although it is very simple, theoretically neat, and intrinsically parallel, this model 
is not realistic due to its inefficiency. The very fine granularity of computation implies 
intensive forking operations, which may take far more time than normal computations in 
classical operating systems. This kind of overhead is not offset by parallelism. 

2.3 Parallel execution models: User level processes 

The na"ive execution model maps branches in the computation tree directly onto OS pro
cesses in order to achieve parallelism. Standard OS process creation is, however, normally 
a costly operation when it is used as intensively as implied by our computation model. 
A large portion of the cost is due to the copying of the parent environment (memory 
contents), although only a small part of it is usually accessed by the children. 

Other source of per-process overhead come from the fact that the fork-like primitive is 
offered as a mean to create processes that are intended to be independent tasks. Compared 
to our needs it incurs additional overhead stemming from the management of the execution 
environment, such as file descriptors, communication ports, etc. Clearly, our computation 
model is a single task with multiple branches and most of the functionality that causes 
the overheads is not needed. 

A common technique to tackle the mismatch is to simulate processes at the user level, 
rather than using OS processes. In order to avoid confusion, we use another term, el
thread (for ElipSys-thread), to refer to the (logical) process concept we have discussed so 
far, i.e., a sequential piece of work between two OR-nodes. The term process is reserved 
to refer to OS entities. 

In the simulation approach, a number of OS processes, called workers, are created at 
system initialization time, possibly one per processor. Each el-thread has then a user-level 
thread control block and a user-level implemented scheduler allocates each el-thread to a 
worker when an idle worker is available ([9, 11, 6, 21]). 

2.4 Parallel execution models: Reducing the number of pro
cesses 

Even when el-threads are simulated at the user level, their management (creation, schedul
ing, completion) is costly. This cost is proportional to the number of el-threads generated. 



www.manaraa.com

424 

Because the number of el-threads is normally much higher than the number of available 
processors, an obvious improvement is to throttle the number of el-threads generated. 

The OR-nodes are partitioned into branch points, whose branches will be processed 
in parallel by forking el-threads, and choice points, whose branches will be processed se
quentially. This can be achieved either statically by annotations of certain OR-nodes, or 
dynamically by using some load information, or both. When the branch points are appro
priately chosen, we can reduce the number of el-threads significantly without observing a 
significant loss in parallelism. 

Consequently the execution of an el-thread does not correspond to the traversing of 
a sequence of nodes between two OR-nodes but rather to the traversing of an "included" 
subtree of the original tree. 

The machinery for traversing this subtree can be then based on a sequential one for 
instance the WAM. As a matter of consequence, from now on, it is considered that an 
el-thread executes a WAM machinery and therefore owns some area of (virtual) memory 
where its WAM stacks and data structures are implemented. A variable is said to be 
shared or non-local if has been allocated before the last traversed branch point. 

2.5 Shared Binding Environments 

The copying of parent stacks is the most important overhead associated with each el
thread creation. There have been several schemes that are based on shared environ
ments ([15]). The common property of these schemes is that the parent environment is 
shared by all children, rather than copied. However the shared environments are read-only 
for the children. The parent is idle when there are live children and hence does not modify 
the shared environment either. Modifications to a shared environment are achieved by 
using auxiliary data structures, which can be viewed as virtual copies of the environment. 
Because it is often the case that only a small portion of the parent environment is actually 
accessed by the children, the copying overhead of these schemes is significantly reduced. 

The Hash Window model. In the hash window model ([7]), the parent stack space 
is not copied at fork time, instead, a private data structure (a hash table), called the hash 
window, is associated with each el-thread and is initialized to empty. 

When binding a non-local variable, instead of modifying the variable directly, the 
value of the variable is entered in the hash window (with the address of the variable as 
its key). Accordingly, to retrieve the value of a non-local variable, a search in the hash 
window of the current el-thread has to be done. Note that if the variable has not been 
previously cached in the hash window, the search must go through the hash windows of 
the parent, the grandparent, and so on, until a hash window holding a binding for the 
variable is found. Only if no such hash window is found (i.e no ancestor of the el-thread 
has bound the variable), the variable is considered free. Figure 1 shows the structure of 
hash windows. 

The hash window binding scheme is used in Argonne National Lab's parallel Pro
Jog ([10]). An optimization of the scheme based on caching accesses and sequentialization 
has been used in the PEPSys system and shown to be a satisfactory approach ([5]). 



www.manaraa.com

425 

@X ~I ~=':::;Q;:;l Free variables are 
@Y I 7?...,. __ representedbysell 

@Z I 7 ? references. 

····~ 

Figure 1: The hash window model 

The Binding Array model. The binding array model is another scheme based 
on shared environments. This method has been independently proposed by D. S. War
ren ([24]) and by D. H. D. Warren, and is the basis of the Aurora Parallel Prolog imple
mentation ([19]). 

A binding list is associated with each el-thread. The elements of the binding list are 
pairs of the form (Vid, Value), which records the modifications to non-local variables 
Vid. Bindings to non-local variables are achieved by appending new binding pairs to the 
binding list, without modifying the variables themselves; bindings to local variables are 
made by modifying the variables in place. 

Since the values of non-local variables are stored in the form of a list, retrieving the 
value of a non-local variable would require a linear search in the binding list. As a standard 
optimization technique, a data structure called the binding array is associated with each 
worker to cache the bindings. The binding array must be initialized from the binding lists 
when context switching from one branch to an other. Each non-local variable is assigned 
an index, starting from 0 and up. The indices can be stored in the variables themselves. 
When the binding to a non-local variable is made, beside updating the binding list, the 
corresponding entry in the binding array is also updated. Therefore, the value of a non
local variable can be obtained in the binding array immediately without searching the 
binding list (Figure 2). 

3 Virtual Memory Execution Model 

3.1 Virtual Memory Support 

Many advances have emerged in the field of parallel operating systems during the last 
decade. Examples include memory sharing, copy-on-write techniques, lazy memory allo
cation and lazy page mapping, sparsely used address space, shared virtual memory on 
distributed memory machines, and light-weight threads. 

As already mentioned the naive execution model could be realized by implementing 



www.manaraa.com

3 
4 
5 

Binding 
Array 1 

I 
I 

~ 

~ 
I 

I 
I 

I (jj IIR 

ra Xl7 

'.'~'\.... 
I I -~ 1-------

.. 

Y:aX 

········ ••••••• Worker1 

426 

@XI BA I i-3 I 
@VI BA I i-4 I 
@ZI BA I i-5 I 

z: .. s 
X:=7 X:=5 

------------I 
I 
I 
I Worker2 I --

Inactive 

Figure 2: The binding array model 

~ 
' ' ' ' ' ' ' ' ~ .lii)XI5 

············ ... 

3 
4 
5 

• Binding 
Array2 

el-threads with "standard" processes, each having its own address space, but the overhead 
of process creation (a large part of which is due to memory copying) made the approach 
unrealistic. Modern operating systems such as Chorus2 ([1]) and Mach ([22]) make ag
gressive use of copy-on-write techniques to reduce the cost of copying data in operations 
such as· message passing, accessing memory-mapped files, creating new processes, and so 
on. With the copy-on-write technique, it is now possible to consider the naive model se
riously, because the cost of memory copying can be reduced dramatically for the patterns 
of memory references in the computation model. 

3.2 Virtual Memory Model 

Let us take Mach, which is an existing operating system that implements the idea of 
memory inheritance, and show by an example how the naive model can be implemented. 
In Mach, the traditional concept of processes is split into two parts: tasks and threads. 
A task is a unit of resource allocation, which includes an address space, a number of 
threads, file descriptors, communication ports, and so on. A thread is like a process 
without resources; it cannot exist on its own but must be associated with a task. A 
traditional Unix process is therefore a Mach task with a single thread and the target onto 
which an el-thread is mapped. 

The address space of a task can be inherited by its child tasks according to the inher
itance property associated with each region of its address space. A region is a block of 
contiguous memory locations, subject to the restriction that the starting and the ending 
addresses must be on page boundaries. A memory region can have one of the following 
three classes of inheritance property: 

• VM-INHERIT-SHARE. The region is shared by its child tasks. 

2Chorus is a registered trademark of Chorus Systemes. 



www.manaraa.com

427 

syJ:,n:: VM-INHERIT-SHARE 
areas 

I I 

-~~--~~-~~~~;-~~;~ .......... I ......... ................... ·; 
............................. ;~ .... ~; Global used 

Stack 
VM-INHERIT-NONE : alref.dY : 
............................ ·i ....... . cDpJeo •••••••••••••• ·i 
VM-INHERIT-COPY I ~I 
............................. ~ ............................. ! 

unused 

Local used 
Stack 

unused VM-INHERIT-NONE . . ............................................................ . . . . . . . . . . T~l{ used 

unused 
VM-INHERIT-NONE 

parent child 1 child2 

Figure 3: Inheritance Properties of Different Regions 

• VM-INHERIT-COPY. The region is copied (lazily, i.e., copy-on-write) by its child tasks. 

o VM-INHERIT-NONE. The region is unmapped in the child tasks. 

With these mechanisms, we can implement the naive model by mapping an el-thread 
onto a Mach task with a single thread. Since the virtual memory inheritance is the key 
issue, we rename the model as the virtual memory execution model from now on. All 
three types of inheritance property are needed for our execution model (see Figure 3). 
The regions for the program area, the symbol tables and the internal databases are always 
shared. The terms stacks are divided into two parts: the used part and the unused part at 
the time of forking. The former is (lazily) copied and the latter is unmapped in the child's 
address space. The trail stack is, however, private to the owner and is not mapped in the 
children address spaces. Figure 3 gives an intuitive view, where dashed lines represent 
pages that are shared with the parent, solid lines represent pages that are already copied, 
and dotted lines are unmapped pages. 

Figure 4 shows the difference between the naive model implemented with traditional 
processes and the virtual memory model implemented with memory inheritance technol
ogy. In the latter case pages that are not modified are not copied, shown as dashed 
lines. 

3.3 Owning Threads 

When the copying overhead is reduced by means of copy-on-write, other sources of over
head of process creation become significant. These heavy-weight processes are the basic 
units of resource allocation and offer a multi-purpose set of functionalities which are not 



www.manaraa.com

@)Clint! 7 

@VI!at! 1 

@ZI!atl a 

.·· ....... ·· 

V:=X 

:~:lot: 39 :~~ 
@ZI;at! a I @;~ 

······· 
Z:=8 
X:=7 

..... . ...... · 

(a) Naive Model 

X:=5 

428 

I 
I 

j@VI!at 1.1 
I • 
I : 
I .: 
I .• 
I ,.•" 
I ,.••" , .. 
I 
I 
I 
! 

V:-X 

I@XI!nt I 7 
I 
I 

I@ZI!Ji I .a 

.·· .. · 
z:..a 
X:=7 

@Xm: 
@V : 
@Z I 

········· : 

(b)VMModal 

Figure 4: The Virtual Memory Execution Model 

needed by the el-threads (files, communication ports, threads). Their management (cre
ation, scheduling, termination) thus incurs an unnecessary overhead. It is for this reason 
that the user-level execution models reviewed in the previous section have been intro
duced. The time for a Mach task creation operation on a SUN3 is in the order of tens 
of milliseconds ([22]). It is estimated in ([25]) that on the same machine a forking time 
of le5s than a millisecond is needed for an OS process based implementation. The above 
proposal for the implementation of the virtual memory model is therefore only practical 
for parallel computation with a large grain size. 

Threads have been introduced in operating systems as alternative entities to heavy 
weight processes for writing software where the use of simultaneously and concurrent 
active computations is desirable. Threads are light-weight with respect to scheduling, 
creation and destruction compared to the higher level entity they belong to (task in Mach 
or actor in Chorus). 

While threads allow a new programming style which is not affordable with standard 
processes, they lack some of their features and cannot replace them. In particular, all 
threads within one task or actor share the same address space, making it impossible to 
implement the virtual memory model presented above, mapping an el-thread onto an OS 
thread. 

Therefore, we propose a new type of thread, called an owning thread, which is mainly a 
Chorus or Mach thread but owns an address space. The address space is inherited by the 
child owning threads in a similar way to that of a Chorus actor or a Mach task. A further 
restriction we impose is that a parent owning thread always sleeps until its offspring die. 
This restriction fits with our computational model and the computational models of many 
other parallel applications. 

Like Mach threads, owning threads are running inside a higher level abstraction (actors 
or tasks) which provides them with common resources (such as open file table and message 
ports) and their protection. A fixed region of each owning virtual space is used to store 
the common resources and is forcibly shared. 



www.manaraa.com

429 

3.4 Implementation Notes and Optimizations 

Like in the virtual memory system of Mach or Chorus, pages to be copied to child threads 
are set to read-only at forking time. This operation has a cost linear to the size of the 
region to be copied. It could be thought to be a flaw in the scheme as it is claimed in 
Mach or Chorus that the time needed to fork a new task or actor is almost independent 
of the size of the space to be copied ([1, 22]). One must bear in mind that it comes from 
the small cost of scanning the memory map (that these systems do as well to protect the 
copied region from further write) compared to the cost of managing other structures and 
handling all the complexity of a general virtual memory system. 

Owning threads are scheduled in or out during the quantum of time allocated to their 
task or actor. Switching between two owning threads (within a quantum of time) is first 
done by unmapping the copied parts of the address space of the active one and then 
mapping the copied address space of the one to be scheduled in. The shared parts of the 
address space are not touched. 

Putting a parent owning thread to sleep until its offspring die means that a piece of 
memory copied to a child is not modified until all children terminate. When an update 
occurs, the original is directly available for copying through the sleeping parent's control 
block. The mechanism of history objects ([1]) is not needed. 

All the virtual memory handling is done when the operating system performs a schedul
ing operation or answers a fork call, that is, when the processor is in kernel mode. An 
immediate consequence of this is that only one call to the kernel is needed to fork and 
copy the memory regions. There is no need to make additional system calls to manage 
the address space. This is a result of the integration of virtual memory handling in the 
concept of owning threads. 

The memory inheritance mechanism we have discussed so far is very general: there 
can be several different regions to be (lazily) copied, each of which can start anywhere 
in the user address space and have a variable size. We observe that this generality is 
not necessary for our execution models: in the virtual memory model above, the number 
of regions to be copied is fixed (one for each Prolog stack segment) and their starting 
addresses are also fixed; in the VMBA model that we will present in the next section, the 
number of copy-on-write regions is reduced to one, although still having a variable size; 
and in the VMHW model, also presented in the next section, there is only one region 
(for the hash window) to be (lazily) copied, which starts from the same address and has 
a fixed size. The simpler the layout of the copied address space is, the simpler and the 
more efficient the forking and the scheduling can be made. 

4 VMHW and VMBA Models 

The underlying idea of the execution models proposed in the following is to map el-threads 
onto owning threads. The virtual memory mechanisms associated with owning thread 
allows to achieve lazy copying of a parent's environment into the children's environment. 
This has somehow the same flavor as the binding technique presented in [12] for the Token 
Machine. The approach depicted here differs in that it bridges the gap between binding 
schemes which are normally considered different. 



www.manaraa.com

430 

.. ··· ····~·53·· ·. 'i;;a· ..... X:..S 3 § 
.. / 4~··· · X:.7 ·······... 4§ 

@X I BA I i-3 
@Y I BA I i.4 
@Z IRA I isS 

3
1_ ... /. . .,-'~· .,, ····· .. ····.... -~:·1··... . .. ~. 

4 •·• .• ·•·•·... 5 
5 •• ••· ·· .• 

Figure 5: The Virtual Memory Binding Array Model 

4.1 VMBA Model 

In the virtual memory model, one region is used for each stack of the execution model. 
The cost of copy-on-write is somewhat proportional to the number of regions to be copied 
and the number of pages in each region. 

We propose here another virtual memory based execution model, called the virtual 
memory binding array model (VMBA model), which reduces the number of copied regions 
to one. 

In the VMBA model, each variable is assigned a binding array index as in the BA 
model. Unlike the BA model, binding lists are not used, and the original information of 
bindings to shared variables are directly stored in the binding array. A binding array is 
therefore needed for each el-thread, unlike in the BA model, where only a single BA is 
needed for all el-threads running in the same worker and where the contents of the BA is 
updated during el-thread context switches. 

Since the bindings made in the binding array of the parent el-threads are valid for the 
current el-thread, its binding array should be initialized to the same state of its parent. 
Apparently we can again use the copy-on-write technology for the binding array region. 
Note that all the Prolog stack regions are read-only now and do not need to be copied. 
We therefore manage to reduce the inherited regions to one, and the size of the region 
can be smaller than in the VM model. Figure 5 shows the VMBA model and its memory 
inheritance pattern. To simplify the picture, the page size is assumed to be one word in 
the figure. The pages which have not actually been copied are shaded. 

The most striking difference between the VMBA model and any other binding array 
based models is the low cost of context switching from one branch of the OR-tree to 
another. It is done in constant time thus giving the same freedom for scheduling the 
el-threads processing as for instance in the classical hash window based schemes. 

The VMBA model has been presented as an improvement of the VM model in that 
the region to be copied at forking time is smaller. Nevertheless it has still potentially 
an unbound size. This is a drawback also to be encountered in classical binding array 



www.manaraa.com

Z:-8 
X:.7 

431 

@X I >'9 
@Y I >'~ 
@Z I >'? 

X:..S 

••••• 
Figure 6: The Virtual Memory Hash Window Model 

implementations. A zone of memory in virtual space has to be statically dedicated to 
the binding array and given a size hopefully big enough to cater for the majority of the 
computations to be run. As a first consequence the system may run out of memory with a 
full binding array and some available space elsewhere in the stacks or vice versa. Secondly, 
the flexibility required for efficiently and dynamically modifying regions layout is a strong 
requirement that might be not fulfilled by the operating system. 

4.2 The VMHW Model 
In Section 2.5 we reviewed the hash window model. We now introduce the virtual memory 
hash window (VMHW) model, which fits better with the concept of memory inheritance. 
Instead of being initialized to an empty value and linked with the preceding hash window, 
an el-threa.d's newly created hash window is initialized with the value,i.e with a copy, of 
the parent's hash window. The copying is performed lazily by using owning threads. One 
region of fixed size is dedicated in the virtual space to the implementation of the hash 
window and is copied by copy-on-write at forking time. 

Note that in the HW model, getting the value of a shared variable may require a 
two-level search: searching the chain of hash windows from the current el-thread to the 
el-thread where the variable is created, and searching the collision chain of each hash 
window in this chain. In the VMHW model, a single level search (through the collision 
chain in the current hash window) is enough, because the collision chains of ancestor hash 
windows are inherited (Figure 6). 

A major overhead of the hash window model or VMHW model is that the collision 
chains may be very long as the computation proceeds and the time to access a shared 
variable is unbound. A larger hash window size can reduce the problem, but then the cost 
of hash window initialization increases, consequently its memory consumption increases. 

The contradiction over the hash window size can be partly solved using the copy
on-write technology for the VMHW model. Although it is still not cost-free to use an 
arbitrarily large hash window size, a much larger size than in the "standard" hash window 
model becomes feasible now. 



www.manaraa.com

432 

The size of the hash windows can be used as a tuning parameter for exploiting at 
its best the implementation of owning threads furnished by the operating system. This 
model inherits its flexibility from the hash window scheme, while using owning threads 
brings the possibility of using the virtual memory hardware in a dedicated and protected 
way for pedorming operations previously done by software at user level. 

As we have mentioned in the previous section, the memory inheritance used in the 
VMHW model is in a very restricted form. Only the region for the hash window needs 
to be copied, and its starting address and size are fixed (the collision chains are stored 
in the global stacks, not in the hash window regions). It is then possible to implement 
owning threads more efficiently by dedicating to the style of inheritance. 

4.3 Implementation Issues 

Shared memory machines. On this type of machine two different processing elements 
can make references to the same piece of physical memory. A child thread running on a 
different processing element than its parent can therefore reference in its private memory a 
piece of physical memory initially allocated to its parent. Hence it is possible to implement 
lazy-copying by using copy-on-write techniques as described previously in Section 3. 

Distributed memory machines. A priori these share-nothing machines only allow 
the use of copy-on-reference for achieving lazy copying. An owning thread is created 
with an invalid private memory. A first access to it triggers the copying from the remote 
parent. In such an environment the owning threads implementation must be coupled with 
a Distributed Shared Memory system ([18, 17, 8]) and enable the reuse of the copies of 
parents' private memories which have already been fetched in (caching) between different 
owning threads. 

User level implementation of memory inheritance. The virtual memory models 
we presented above and the copy-on-write techniques can be implemented (simulated) at 
user-level by emulating with software the address translations done by the virtual memory 
hardware. Tests for checking whether the accessed locations are in valid pages and are 
writable must also be pedormed by software. The tests are still executed even when the 
accessed location has already been copied thus yielding an unnecessary overhead. Write 
accesses to a location which has not yet been copied trigger its copying from the parent. 

Because the address mapping must be simulated in software, multiple level address 
mapping is very costly. Therefore the user-level implementation of virtual memory inher
itance is only of useful efficiency when the regions to be copied are small, for instance, 
the VMHW model configured with a. hash window size of a few tens of entries. 

However, the user level implementation can be used as a simulation tool to study the 
pedormance of the VMBA model or the VMHW model with a. large hash window size. In 
the following section we report some results obtained from our user level implementation. 



www.manaraa.com

433 

Program Sequential 1 processor 8 processors speed-up 
8 queens 7.95 9.54 1.29 7.40 
hamilton 48.80 69.50 8.87 7.84 
farmer 4.84 6.41 2.24 2.86 
map 2.73 5.44 0.77 7.06 
mandelbrot 9.57 10.01 1.32 7.58 
16 queens(1st. solution) 120.21 145.42 7.18 20.25 
hamilton(1st. solution) 0.51 0.75 0.28 2.68 
biological 1290.40 187.02 6.90 

Figure 7: VMHW: speed up by using 8 processors; execution times in seconds 

5 Experimental Results 

It is not possible to implement the execution models proposed in this paper before oper
ating systems with the required support are available. To test our ideas, we have imple
mented an ElipSys prototype system based on an old version of SB-Prolog ([13]). The 
virtual memory system is simulated, using software virtual address translation. Copy-on
write is also simulated. Both the VMHW and the VMBA models have been implemented 
with this simulated virtual memory system. 

The prototype system, which we call PSB-Prolog, is currently running on a 12 pro
cessor Sequent Symmetry. 

5.1 Speed Ups 

As we have said, when a small hash window size is used for the VMHW model, a user 
level implementation of memory inheritance is good enough (actually better than OS 
supported virtual memory systems) as a real implementation. 

Figure 7 shows the execution times for a set of benchmark programs using the VMHW 
model with a hash window size of 32 words (128 bytes). The data for both a single 
processor configuration and an 8 processor configuration as well as the data for a pure 
sequential implementation of SB-Prolog are listed to show the speed up. 

Figure 8 compares the execution times of PSB-Prolog using the VMHW model and the 
VMBA model with that of PEPSys, the previous ECRC OR-parallel system [5), on the 
same set of benchmark programs, all using 8 processors. The page size simulated in the 
VMBA model is 32 words or 128 bytes. Although the two abstract machines of PEPSys 
and PSB-Prolog are not the same the figure shows that our simulations are comparable 
with a classical OR parallel logic system. 

The efficiency of the user-level VMBA model is not as promising as that of the user
level VMHW model. This is partly due to the overhead of simulating address translation 
and copy-on-write in software. 



www.manaraa.com

434 

Program PEPSys VMHW-32 VMBA 
8 queens 2.49 1.29 1.74 
hamilton 9.35 8.87 12.18 
farmer 3.10 2.24 2.77 
map 0.87 0.77 1.33 
mandelbrot 1.78 1.32 1.49 
hamilton(lst. solution) 0.30 0.28 -

16 queens(lst. solution) - 7.18 7.06 

Figure 8: Comparing VMHW and VMBA models with PEPSys; execution time in seconds 

Program NLD-rate Hit-rate deref/thread page/thread 
8 queens 7.6% 84.2% 49 0.77 
hamilton 15.8% 82.4% 24 0.93 
farmer 17.7% 87.0% 32 0.86 
map 18.0% 70.7% 10 0.76 
mandelbrot 2.2% 97.6% 1013 0.72 
16 queens (1st. sol) 86.3% 0.91 

Figure 9: Memory Reference Patterns in VMBA 

5.2 Memory Reference Behavior 

In Figure 9 some memory reference data for the VMBA model are shown. The page 
size used for simulation is 32 words (128 bytes), and the underlying machine is assumed 
to have a shared memory architecture. NLD-rate refers to the percentage of non-local 
dereferences among the total number of dereferences. Hit-rate refers to the percentage 
of non-local accesses (non-local reads and writes) to copy-on-write regions which do not 
trap for copying. Page/thread is the average number of pages actually copied by each 
owning thread. Finally, deref/thread is the average number of dereferences performed by 
each owning thread and is used as a measure of the size of the thread (granularity). 

Figure 10 shows the memory reference data collected for the VMHW model on a 
shared memory machine. Hash-windows are 32 bytes big, the same as a page. NLD-rate 
and deref/thread are the same as for the VMBA model and are not listed here. Ave. 
Search Length is the average length of search in the collision chains of hash windows for 
every non-local variable access. The average search length is practically short although 
potentially unbound. The page/thread ratio of VMHW is better than the one of VMBA. 
Considering additionally two these two results that the cost of handling inheritance is 
higher in VMBA than in VMHW, the latter seems to be a better choice than the former. 

From the figure we see that the expected length of search to the collision chains of 
hash windows is only slightly more than one. This is partly due to the reason that all the 
benchmark programs but the biological one are small, but on the other hand, it indicates 
that a good locality is kept by inheriting hash windows. 



www.manaraa.com

435 

Program Ave. Search Length page/thread 
8 queens 1.05 0.76 
hamilton 2.10 0.85 
farmer 1.11 0.77 
map 1.01 0.73 
mandelbrot 0.81 0.67 
16 queens {1st. sol) 1.59 0.85 
biological 1.18 0.58 

Figure 10: Hash window copying and search in VMHW 

5.3 Analysis and Comparisons 

The VMBA model can be viewed as an extreme case of the VMHW model when the size 
of the hash windows is infinite (indeed, as big as the number of non-local variables). In 
the other extreme, the VMHW model becomes the standard binding array model when 
the size of the hash window is reduced to one (corresponding to a binding list), although 
the latter uses a. per-worker binding array to buffer the "collision" chains (binding lists). 

As shown in Figure 11, the smaller the hash window size, the smaller the inherited 
regions, the more efficient a user level virtual memory simulation is and thus the support 
required from the underlying operating system is reduced. On the other hand, the larger 
the hash window is, the shorter the collision chains are and thus accesses to non-local 
variables are faster. An exception is the standard binding array model, in which accesses 
to non-local variables are made very fast by caching the binding lists in the binding arrays 
at the expense of updating binding arrays on el-thread context switches. 

It is not clear where the "best" point is, and this best point may be dependent on 
the level of support from the operating system. It is our future work to find through 
experiments the relationship between the efficiency and the various factors. Our initial 
results suggest that that the VMHW model with a tunable hash window size may be the 
appropriate choice for ElipSys. The VMHW model also demonstrates a good locality of 
references. 

6 Conclusion and Future Work 

We have proposed a series of executio models for OR-parallel logic systems based on the 
use of hardware support for a. well-defined and simple operating system paradigm, owning 
threads. This paradigm is a new kind of thread allowing lazy copying of data between 
parents and children. The requirements put on those threads the sufficient minimum to 
implement the models. The efficiency of standard thread handling (creation, switching) is 
thus maintained. User-level simulations of this proposal show that it compares favorably 
to other classical models. This is an incentive for pushing forward the idea and realizing 
it at the operating system level. 

It is our next goal to analyze the behavior of the VMHW model with bigger of hash-



www.manaraa.com

BA 

Support required from OS 
Cost of user-level simulation 

32 

436 

500 

Typical amoun1 of space 

to be cq>ied 

Figure 11: A general view of different binding schemes 

window sizes, to estimate the cost of owning thread creation and its influence to the 
virtual memory based models more precisely, and to study the behavior of the models in 
a distributed memory architecture. 

Acknowledgments 

This work was partially funded by the CEC as part of ESPRIT II project EP2025, Euro
pean Declarative System (EDS). 

We want to thank Mike Reeve and Michel Dorochevsky for their useful comments on 
previous versions of this paper. 

References 

(1] Vadim Abrossimov and Marc Rozier. Generic virtual memory management for oper
ating system kernels. In Symposium on Operating Systems Principles, pages 123-136, 
December 1989. 

[2] K. Ali. Muse. InK. Bowen R. Kowalski, editor, Proceedings of the Fifth International 
Conference and Symposium on Logic Pr·ogramming, pages 1531-1545, Seattle, August 
1988. 

[3] K. Ali. OR-parallel execution of Prolog on theBC-machine. InK. Bowen R. Kowalski, 
editor, Proceedings of the Fifth International Conference and Symposium on Logic 
Programming, pages 1531-1545, Seattle, August 1988. 

[4] H. Alshawi and D. Moran. The DELPHI Model and Some Preliminary Experiments. 
In K. Bowen R. Kowalski, editor, Proceedings of the Fifth International Conference 
and Symposium on Logic Programming, pages 1578-1589, Seattle, August 1988. 

[5] U.C. Baron, J. Chassin de Kergommeaux, M. Hailperin, M. Ratcliffe, P. Robert, J.C. 
Syre, and H. Westphal. The parallel ECRC Prolog system PEPSys: An overview and 



www.manaraa.com

437 

evaluation results. In Proceedings FGCS'BB, Tokyo, November 1988. International 
Conference on Fifth Generation Computer Systems. 

(6] A. Beaumont, S. Muthu Raman, and P. Szeredi. Scheduling OR-Parallelism in Aurora 
with the Bristol scheduler. In Proceedings PARLE, Eindhoven, June 1991. 

[7] P. Borgwardt. Parallel Prolog stack segments on shared-memory multiprocessors. In 
Proceedings Symposium on Logic Programming, pages 2-11, February 1984. 

[8] Lothar Borrmann. A virtually shared memory model with customized coherency. In 
11th ITG/GI Conference on Architecture of Computing Systems, March 1990. 

[9] R. Butler, T. Disz, E. Lusk, R. Olson, R. Overbeck, and R.Stevens. Scheduling OR
Parallelism: An Argonne Perspective. InK. Bowen R. Kowalski, editor, Proceedings 
of the Fifth International Conference and Symposium on Logic Programming, pages 
1590-1605, Seattle, August 1988. 

[10] R. Butler, E.L. Lusk, R. Olson, and R.A. Overbeck. ANLWAM - A Parallel Im
plementation of the Warren Abstract Machine. Internal report, Argonne National 
Laboratory, 1986. 

[11] A. Calderwood and P. Szeredi. Scheduling Or-Parallelism in Aurora- the Manchester 
Scheduler. In ICLP'89, pages 419-435. Univ. Manchester, June 1989. 

[12] A. Ciepielewski and S. Haridi. A Formal Model for OR-parallel execution of logic 
programs. In Proceedings Information Processing, pages 299-305, 1983. 

[13] Saumya Debray. SB-Prolog system, Version 2.5, a user manual. Technical report, 
Department of Computer Science, University of Arizona, September 1988. 

[14] S. Delgado-Rannauro, Kees Schuerman, and Jiyang Xu. The Elipsys computational 
model. EDS Deliverable EDS.DD.5E.CA-51, Computer Architecture Group, ECRC, 
December 1989. 

[15] S. A. Delgado-Rannauro. A Message Driven OR-Parallel Logic Architecture. PhD 
thesis, University of Essex, England, December 1989. 

[16] S.A Delgado-Rannauro. Computational Models of Parallel Logic Languages. Com
puter Architecture Group, technical report 46, ECRC, February 1989. 

[17] Brett D. Fleisch and Gerald J. Popek. MIRAGE: A coherent distributed shared 
memory design. In Symposium on Operating Systems Principles, pages 123-136, 
December 1989. 

[18] Kai Li a.nd Paul Hudak. Memory coherence in shared virtual memory systems. ACM 
Transactions on Computer Systems, 7(4):321-359, November 1989. 

[19] E. Lusk, R. Butler, T. Disz, R. Olson, R. Overbeck, R. Stevens, D.H.D. Warren, 
A. Calderwodd, P. Szeridi, S. Haridi, P. Brand, M. Carlson, A. Ciepielewski, and 
B. Hausman. The Aurora OR-parallel Prolog system. In Proceedings FGCS'88, 
Tokyo, November 1988. International Conference on Fifth Generation Computer Sys
tems. 



www.manaraa.com

438 

[20] EDS Project. European Declarative System, Executive Summary. Technical report 
ESPRIT II EP 2025, EDS Deliverable, 1989. 

[21] P. Szeredi and M. Carlsson. The Engine-Scheduler Interface in the Aurora Or-parallel 
Prolog System. In distributed in NACLP Workshop on parallel execution, Austin, 
Texas, October 1990. 

[22] Avadis Tevanian, Jr. Architecture-Independent Virtual Memory Management for 
Parallel and Distributed Environments: The Mach Approach. PhD thesis, Carnegie 
Mellon University, december 1987. 

[23] David H.D. Warren. An abstract Prolog instruction set. Technical report, 309, 
Artificial Intelligence Center, SRI International, 1983. 

[24] David S. Warren. Efficient Prolog memory management for flexible control strategies. 
In The International Symposium on Logic Programming, pages 198-202, 1984. 

[25) Jiyang Xu. Elipsys execution models: A preview. Computer Architecture Group, 
internal report: Elipsys-017, ECRC, February 1990. 



www.manaraa.com

Interfacing Engines and Schedulers in Or-Parallel 
Prolog Systems 

Peter Szeredi~ Rong Yang 
Department of Computer Science 

University of Bristol, Bristol BS8 1TR, U.K. 

Mats Carlsson 
Swedish Institute of Computer Science 
P.O. Box 1263, S-164 28 Kista, Sweden 

Abstract 

Parallel Prolog systems consist, at least conceptually, of two components: an engine and a 
scheduler. This paper addresses the problem of defining a clean interface between these components. 
Such an interface has been designed for Aurora, a prototype or-parallel implementation of the full 
Prolog language for shared memory multiprocessors. 

The practical purpose of the interface is to enable different engine and scheduler implementations 
to be used interchangeably. The development of the interface has, however, contributed in great 
extent to the clarification of issues in exploiting or-parallelism in Prolog. We believe that these 
issues are relevant to a wider circle of research in the area of or-parallel implementations of logic 
programming. 

We believe that the concept of an engine-scheduler interface is applicable to a wider range of 
parallel Prolog implementations. Indeed, the present interface has been used in the Andorra-1 
system, which supports both and- and or-parallelism. 

Keywords: Or-Parallel Execution, Multiprocessors, Implementation Techniques, Scheduling. 

1 Introduction 

Para.llel Prolog systems consist, at least conceptua.lly, of two components: an engine, which is re
sponsible for the actual execution of the Prolog code, and a scheduler, which provides the engine 
component with work. This paper addresses the problem of defining a clean interface between these 
components. We focus on a. particular interface which has evolved within the implementation of an 
or-para.llel Prolog system, Aurora.. The interface has successfully been used to connect the Aurora 
engine with four different schedulers. It has subsequently been applied in the implementation of the 
and-or-para.llellangua.ge Andorra.-I, thus proving that its generality extends beyond or-para.llel Prolog. 

Aurora. is a. prototype or-para.llel implementation of the full Prolog language for shared memory 
multiprocessors, based on the SRI model of execution (16), and currently running on Sequent and 
Encore machines. It has been developed in the framework of the Gigalips project [11], a. collabora
tive effort between groups at the Argonne National Laboratory in Dlinois, the University of Bristol 
(previously at the University of Manchester) and the Swedish Institute of Computer Science (SICS) 
in Stockholm. 

The issue of defining a clear interface between the engine and scheduler components of Aurora 
was raised in the early stages of the implementation effort. Ross Overbeek made the first attempt to 

• On leaH from (and pruenl addru•J SZKI IQSOFT, Donati u. 35-45, Budapest, Hungary. 



www.manaraa.com

440 

formulate such an interface and Alan Calderwood produced the version [7) used in the first generation 
of Aurora. (ba.sed on SICStus Prolog version 0.3). 

A funda.menta.l revision of the interface wa.s necessitated by several factors. Performance analysis 
work on Aurora. [14) ha.s shown tha.t some unnecessary overheads are ca.used by design decisions en
forced by the interface. Development of new schedulers and extensions to existing algorithms required 
the interface to be ma.de more genera.!. The Aurora. engine ha.s a.lso been rebuilt on the ba.sis of SICStus 
Prolog version 0.6. 

The new interface, described in the present pa.per, is part of the second generation of Aurora.. The 
ma.jor changes with respect to the previous interface are the following: 

• execution is governed by the engine, ra.ther than the scheduler; 

• the set of ba.sic concepts ha.s been made simpler and more uniform; 

• several potentia.! optimisations are supported; 

• the interface is extended to support transfer of information related to pruning operators [10). 

The pa.per is organised a.s follows. Section 2 summarises the SRI model and defines the necessary 
concepts. Section 3 gives a. top level view of the interface. Section 4 presents the da.ta. structures 
involved in the interface, while Sections 5 and 6 describe engine-scheduler interactions in va.rious pha.ses 
of Aurora. execution. Section 7 shows the extensions: handling of pruning information and various 
optimisations. Section 8 discusses the ma.jor issues involved in implementing the Aurora. engine side 
of the interface. Section 9 describes how the interface wa.s utilised to introduce or-para.llelism into 
the Andorra.-! system [12). Section 10 presents preliminary performance results from the Aurora. 
implementation. We end with a. short concluding section. 

A complete description of the interface is contained in [15). 

2 Preliminaries 

Aurora. is ba.sed on the SRI model [16). According to this model the system consists of several 
workers (processes) exploring the search tree of a. Prolog program in para.llel. Ea.ch node of the tree 
corresponds to a. Prolog choicepoint with a. branch a.ssocia.ted with ea.ch a.lterna.tive cla.use. A predicate 
ca.n optiona.lly be declared sequential by the user, to prohibit para.llel exploration of a.lterna.tive clauses 
of a. predicate. Corresponding nodes are a.lso annotated a.s sequential. All other nodes are parallel. 

As the tree is being explored, ea.ch node can be either live, i.e. ha.ve a.t lea.st one unexplored 
alternative, or dead. A node is a fork node if there are two or more branches below it; otherwise, it is 
a nonfork node. A fork node cannot be sequential. Live para.llel nodes, and live sequential nodes with 
no branches below them, correspond to ta.sks tha.t ca.n be executed by workers. Ea.ch worker ha.s to 
perform activities of two ba.sic types: 

• executing the actua.l Prolog code; 

• finding work in the tree, providing other workers with work and synchronising with other workers. 

In accordance with the SRI model ea.ch worker ha.s a separate binding array, in which it stores its 
own bindings to potentia.lly shared variables (conditional bindings). This technique a.llows constant 
time access to the value of a shared variable, but imposes an overhead of updating the binding arrays 
whenever a worker ha.s to move within the search tree. 

The or-tree is divided into an upper, public, pa.rt accessible to a.ll workers and a lower, private, part 
accessible to only one worker. A worker exploring its private region does not have to be concerned with 
synchronisation or ma.inta.ining scheduling data; it ca.n work very much like a. standard Prolog engine. 
The boundary between the public and private regions changes dyna.mica.lly. It is one of the critica.l 
aspects of the scheduling algorithm to decide when to ma.ke a node public, a.llowing other workers to 



www.manaraa.com

441 

share work a.t it. In the majority of schedulers, the worker will make his sentry node, i.e. his topmost 
private node, public when a.ll nodes above it have become dead, i.e. have no more alternatives to 
explore. This means that each worker tries to keep a piece of work on its branch available to other 
workers . 

• .. dead node 

0 -livenode 

S4 

Figure 1: THE OR.-TR.EE OF THE SRI MODEL 

PUBLIC 

PRIVATE 

For example, in Figure 1, an or-tree being explored by four workers (W1-W4) is shown. The 
workers' sentry nodes are denoted S1-S4. Assume that there is an unexplored alternative at node D2. 
Now if the branch being explored by worker Wl dies back and Wl takes the alternative at D2, the 
node D2 will become dead, and the scheduler will norma.lly extend the public region to include nodes 
S2-S3 so as to keep a. piece of work available on every branch. 

The exploration l)y a worker of its private region constitutes that worker's assignment, which nor
ma.lly terminates if the worker backtracks into the public part. The assignment terminates prematurely 
if the branch is suspended, or if it is pruned by some other worker. 

There are three pruning operators currently supported by Aurora: the conventional Prolog cut, 
which prunes a.ll branches to its right and a symmetric version of cut ca.lled commit, which prunes 
branches both to its left and right. A cut or a commit must not, and will not, go ahead if there is a 
chance of being pruned by a cut with a sma.ller scope. The third type of pruning operator is the cavalier 
commit which is executed immediately, even if endangered by a sma.ller cut. The cavalier commit is 
provided for experimental purposes only, it is expected to be used in exceptional circumstances, for 
operations similar to abort in Prolog. Work done in the scope of a pruning operator is said to be 
speculative. 

Suspension is used to preserve the observable semantics of Prolog programs executed by Aurora: 
when a built-in predicate with some side-effect is reached on a non-leftmost branch of the search tree, 
or when a pruning operator is reached on a branch which could be pruned by a cut with a sma.ller 
scope, the execution must be suspended. Furthermore the scheduler may decide to suspend the current 



www.manaraa.com

442 

branch when less speculative work can be done somewhere else in the tree. 
Four separate schedulers are currently being developed for Aurora. The Argonne scheduler [6] 

relies on data stored in the tree itself 1to implement a local strategy according to which live nodes 
"attract" workers without work. When several workers are idle they will compete to get to a given 
piece of work and the fastest one will win. The Manchester scheduler [8] tries to select the nearest 
worker in advance, without moving over the tree. It uses global data structures to store some of the 
information on available work and workers. The wavefront scheduler [5] uses a special distributed data 
structure, the wavefront, to facilitate allocation of work to workers. The Bristol scheduler [3] tries 
to minimise scheduler overhead by extending the public region eagerly: sequences of nodes are made 
public instead of single nodes, and work is taken from the bottommost live node of a branch. 

3 The Top Level View of the Interface 

The principal duty of the scheduler is to provide the engine with work. The thread of control thus 
alternates between the two components: the engine executes a piece of Prolog code, then the scheduler 
finds the next assignment, passes control back to the engine, etc. A possible way of implementing 
this interaction is to put the scheduler above the engine: the scheduler calls the engine when it finds 
a suitable piece of work to be executed and the engine returns when such an assignment has been 
finished. In fact this scheme was the basis of earlier interfaces in Aurora [7}. 

We use a different approach in the current version of Aurora. The execution is governed by the 
engine: whenever it finishes an assignment, it calls an appropriate scheduler function to provide a new 
piece of work. The advantage of this scheme is that the environment for Prolog execution (e.g. the set 
of WAM-registers) is not destroyed when an assignment is terminated and need not be rebuilt upon 
returning to work. This is of special importance for Prolog programs with fine granularity (i.e. small 
assignment size), where switching between engine and scheduler code is very frequent [14]. 

Figure 2 shows the top view of the current interface. This is centered around the engine doing 
work. All the other boxes in the picture represent scheduler functions called by the engine. Note the 
convention that the names of all scheduler functions are prefixed with 'Sched_'. 

The functions shown in Figure 2 are arranged in three groups: 

• finding work (left side of Figure 2); 

• communication with other workers during work (lower part of Figure 2), e.g. when cuts or side 
effect predicates are to be executed; 

• certain events during work that may be of interest to the scheduler (right side of Figure 2), e.g. 
creation and destruction of nodes. 

The four boxes on the left of Figure 2 represent the so called functions for finding work: 

Sched..Start_Work is used to acquire work for the first time, immediately after the initialisation of 
the worker; 

Sched...Die..Back is called when the engine backtracks to a public node; 

Sched..Be_Fruned is invoked when the worker's current branch is pruned off by another worker; 

Sched..Suspend is called when the worker has to suspend its current branch. 

These functions differ in their initial activities, but normally continue with a common algorithm 
for "looking for work" (see Section 5). This algorithm has two possible outcomes: either work is found, 
or the whole system is halted. Correspondingly each of the functions for finding work has two exits: 
the normal one (shown on the right side of the function boxes in Figure 2) leads back to work, while 
the other exit (left hand side) leads to the termination of the whole Aurora invocation. 



www.manaraa.com

443 

Start 

Sched_Suspend 

Finding work 

Sched_Synch 

Communication with other workers 

Haft 

Sched_Node_Created 

Sched_Node_Reused 

S._Node_Destroyed 

S._Clause_Entered 

• • • 
Events of interest 
to the scheduler 

Figure 2: THE TOP LEVEL VIEW OF THE INTERFACE 



www.manaraa.com

444 

The next group of interface functions provided by the scheduler is depicted at the bottom of 
Figure 2. These functions are called during work, when the engine may require some assistance from 
the scheduler (mainly in order to communicate with other workers): 

Sched_Frune -when a cut or commit is executed; 

Sched..Synch - when a predicate with side effects is encountered; 

Sched_Check -at every Prolog procedure call (to check for interrupts). 

The above functions have three exits. The normal exit (depicted by upwards arrows in Figure 2) 
leads back to work. The other two exits correspond to premature termination of the current assign
ment, when the current branch has been pruned or has to suspend (leftward and downward arrows). 
In both cases the engine will do the housekeeping operations necessary for the given type of assignment 
termination, and proceed to call the scheduler to find the next assignment. See Section 6 for a more 
detailed description of the functions for communication with other workers. 

The third group of functions shown in Figure 2 (right hand side) corresponds to some events 
during work that may be of interest to the scheduler. A common property of this group is that the 
interface does not prescribe any specific activity to be done by these functions: the scheduler is merely 
given an opportunity to do whatever is needed for maintaining its data structures. As an example, 
Sched..Node_Created (and the corresponding Sched..Node..Destroyed) can be used to keep track of 
the presence of parallel nodes in the private region-as a prospective source of work for other workers. 
Similarly Sched_Clause..Entered can be utilised for maintaining information about the presence of 
pruning operators in the current branch (see Section 7.2). 

There are further groups of scheduler functions, not shown in Figure 2. These are used in the 
initialisation of the whole system, in handling keyboard interrupts , and in the implementation of 
certain optimisations (Section 7.1). 

The engine side of the interface consists of several groups of functions that support the scheduler 
algorithm: 

• providing access to certain data structures (nodes and alternatives) maintained by the engine, 

• extending the public region on the current branch of execution, 

• positioning the engine (i.e. the binding array) in the search tree, while looking for work, 

• notifying the engine of certain events, e.g. work being found. 

The data structure aspects of the engine interface are presented in Section 4. Other interface functions 
provided by the engine will be described in Sections 5 and 6. 

4 Common Data Structures 

The engine is responsible for maintaining the node stack, a principal data area of major importance 
to the scheduler. The engine defines the node data type, but the scheduler is expected to supply a 
number of fields to be included in this structure for its own purposes. 

Among the node fields defined by the engine, some are of interest to the scheduler. Access functions 
for these fields are provided in the interface: 

Node.Level - the distance of the node from the root of the search tree, 

Node_Farent - a pointer to the parent node in the tree, 

Node..Al ternati vas - a pointer to the next unexplored alternative of the node. 



www.manaraa.com

445 

The scheduler-specific fields of the node data structure normally include pointers describing the 
topology of the tree. For example, most schedulers will have fields storing a pointer to the first child 
and the next sibling of a node. 

An additional common static data structure, the alternative, is introduced to allow the schedulers 
to keep static data related to clauses. This data structure is used in the Aurora engine to replace the 
'try', 'retry' and 'trust' instructions of WAM [9). Each clause of the user program is represented 
by an alternative, which stores a pointer to the code of the clause and a pointer to the successor 
alternative, if any. If a predicate is subject to indexing, the compiler may create several chains of 
alternatives to cater for different values in the indexing argument position. This means that several 
alternatives can refer to the same clause. 

The scheduler may supply a number of fields to be included in the alternative structure, to accom
modate any (static) information to be associated with clauses. The scheduler can derive this data from 
the information supplied by the engine when alternatives are created (Sched..Alternative_Created). 
There are two types of static data supplied by the engine: 

• information about sequential predicates-this information is normally stored in each alternative 
of the predicate. 

• pruning information-data on the number of pruning operators (cuts, commits and conditional 
expressions) contained in the clause or the predicate (see Section 7.2). 

The only engine field in the alternative structure that is of interest to the scheduler is the one 
pointing to the successor alternative (Alternative..Next). This field is used, for example, when the 
scheduler starts a new branch from a public node and needs to advance the next alternative pointer 
of the node. 

5 Finding Work 

Figure 3 shows the engine functions used by the scheduler while it is looking for work. The actual 
algorithms of the four functions for finding work will normally differ, but they all use the same set of 
engine support functions. 

Functions Mova..Engina_Up and Move..Engine..Dovn, shown on the right hand side of Figure 3, 
instruct the engine to move the binding array up or down the current branch. Initially, the binding 
array is positioned at or below the youngest public node on the branch. Before returning, the scheduler 
has to position the binding array above the new sentry node. 

Different schedulers employ different strategies in moving over the tree. The Argonne scl1eduler 
moves node-by-node, when approaching the potential work node. Other schedulers locate a piece of 
work from a distance and move the engine to the appropriate place in a few big jumps. 

There is no need to move the engine if work is taken from the parent of the old sentry node. 
An additional entry point to the scheduler, Sched_Gat_Work..At_Farant (see Section 7.1), has been 
provided for this special case. 

The left hand side of Figure 3 shows the engine functions for memory management of the node 
stack. A worker may have to remove some dead nodes from the tree as it moves upwards. This involves 
deleting these nodes from the scheduler data structures (normally the sibling chain) and invoking the 
Mark..Noda..Raclaimable engine function. As a special case, the old sentry node will have to be deleted 
from the tree at the beginning of Sched..Die..Back and Sched..Ba_Fruned. 

When the scheduler decides to reserve a new piece of work from alive public node (work node), 
it has to create a sentry node for the new branch. This involves calling the Allocata..Node function, 
which first removes all the nodes that have been marked as reclaimable from the top of the worker's 
stack and then allocates a new sentry node. The related Allocate..Foreign..Noda function is used 
if another worker allocates a node on the stack of the worker looking for work. This is used in the 
Manchester scl1eduler to implement handing work to an idle worker. 



www.manaraa.com

Sched_Start_Work 

Sched_Die_Back 

Sched_Be_Pruned 

Sched_Suspend 

Mark_Node_ Recl.aimable 

Allocate_Node(SENTRY) 

, .......................................................... . 
! Allocate Foreign Node -i<2-···· 
L .............. :: ...... J;!~l!~!l. .. r··· 

Normal exit 

446 

Look 
for 
work 

Move_Enqine_Up 

Move_Enqine_Down 

Halt 

Figure 3: ENGINE FUNCTIONS IN LOOKING FOR WORI( 



www.manaraa.com

447 

The new sentry node serves as a placeholder for the new assignment. The scheduler inserts the 
sentry into the search tree and simultaneously reserves an alternative to be explored by the new branch 
(by reading and advancing the Node.Alternatives field of the work node). 

The bottom part of Figure 3 shows the possible exit paths from the functions for finding work. 
The actual work found can correspond either to a new branch or to a branch which was hitherto 
suspended and can be resumed now. Functions Found..NewJlork and Found..Resumed_Work are used 
to notify the engine about the type of the work found, and to supply the new sentry node. The box 
for Found..New_Work in Figure 3 shows the SENTRY argument to highlight the fact that this argument 
should be the same as the one returned in Allocate~ .. Node. 

6 Communication with Other Workers 

The need for communication with other workers arises when a pruning operator or a built-in predicate 
with side effects is to be executed. In addition, a periodic check is needed to examine if there are 
communication requests from other workers. 

The Sched.Prune function is invoked when a pruning operator is encountered. At this moment the 
engine has already executed the private part of the pruning. The scheduler receives a pointer to the 
cut node (showing the scope of pruning) and an argument indicating the type of the pruning operator 
{cut, commit or cavalier commit). It has to check if the preconditions for pruning are satisfied: the 
current branch should not be pruned itself, and, except for the cavalier commit, it should not be 
endangered by cuts with a smaller scope, as discussed in [10]. The latter condition can be replaced 
by a requirement for the branch to be leftmost in the subtree rooted at the child of the cut node, if 
the scheduler does not maintain specific pruning information. 

If the preconditions of pruning are not satisfied, Sched..Prune uses one of the abnormal exits ( cf. 
Figure 2) to indicate that the branch has been killed or that it has to suspend (waiting to become 
leftmost). If the pruning operation can go ahead, the scheduler has to locate the workers that are in the 
pruned subtree and interrupt them. There may be branches in this subtree which have previously been 
suspended. A special engine function, Mark..Suspended..Branch..Reclaimable, is used for cleaning up 
such branches. 

The Sched..Synch function is invoked when a call to a built-in predicate with side-effects is en
countered. Normally such calls are executed only when their branch becomes leftmost in the whole 
tree. There are, however, some special predicates (e.g. those used to assert solutions in a setof), for 
which the order of invocation is not significant: their execution can go ahead if not endangered by a 
cut within a specific subtree. The Sched..Synch function receives an argument encoding the type of 
the check needed, and a pointer to the root of the subtree concerned. 

The third communication function, Sched_Check, is called at every Prolog procedure call. Frequent 
invocation of this function is necessary so that the scheduler can answer requests (e.g. interrupts) from 
other workers without too much delay. Note, however, that a scheduler may choose to do the checks 
only after a certain number of Sched_Check invocations (as is the case for the Manchester and Argonne 
schedulers). 

The nature of requests to be handled by Sched_Check varies from scheduler to scheduler. There 
are, however, two common sets of circumstances: the worker may be requested to kill its assignment 
or to make some of its private nodes public (to make work available to other workers). The latter 
activity needs assistance from the engine: the function Make..Public extends the public region on the 
current branCh down to a specified node. 

7 Extensions of the Basic Interface 

7.1 Simplified Backtracking 

When a worker backtracks to a live public node and is able to take a new branch from there, several 
administrative activities can be avoided. The sentry node can be re-used, rather than being marked 



www.manaraa.com

448 

as reclaimable and re-allocated. There is scope for a related optimisation in the scheduler: instead of 
deleting the old sentry from the sibling chain and then installing it as the last sibling, the scheduler 
can move the sentry node to the end of the sibling chain (or do nothing if the old sentry was the last 
child). The interface supports this important optimisation by a. function Sched_Get_Work..At.Parent, 
called when the engine backtracks to a live public node. If the scheduler, following the necessary 
synchronisation operations, still finds the node to be live, it can reserve an alternative from that node. 
If the scheduler cannot take work from the node in question, it returns to the engine, which will 
subsequently invoke Sched.Die..Back to acquire a. new piece of work. 

The Sched_Get_Work..At.Parent function also supports the contraction operation of the SRJ model 
[16). This operation removes a. dead nonfork node after the last alternative has been taken from it. 
The node in question can be physically removed only if it is on the top of the stack of the worker 
executing the given branch. 

7.2 Pruning Information 

Information about the presence of _pruning operators in a. clause may be needed by the scheduler 
to perform pruning more efficiently or to distinguish between speculative and non-speculative work. 
Various algorithms related to pruning have been developed and discussed in (10]. When designing the 
interface, we tried to generalise and extend the format of pruning data as described in [10], so that 
other possible approaches (e.g. [13]) can be supported as well. 

If one disregards disjunctions, the information needed about pruning is quite simple. A scheduler 
may wish to know whether a clause contains cuts or commits1• For more exact pruning algorithms the 
number of occurrences of each pruning operator may be needed. The fact that a. clause must fail, may 
also be of interest: when such a clause is entered, the pruning operators in the current continuation 
(i.e. in the previous resolvent) become inaccessible. The simple set of pruning data. would thus consist 
of three items for each clause: the number of cuts, the number of commits and the Boolean value 
indicating whether the clause ends in a. failing call (i.e. fail, but in the future, global compile time 
analysis might discover this property for other calls). 

The presence of disjunctions and conditionals makes the situation more complicated. In [15) we 
present a. set of pruning data. consisting of seven items, to describe the pruning properties of a general 
clause (one that may contain disjunctions and conditionals). 

8 Implementation of the Interface in the Aurora Engine 

The Aurora emulator [9] was produced by modifying the SICStus emulator to support the SRJ model 
and by converting it from a. stand-alone program to an Aurora. worker component connected by an 
algorithmic interface to a scheduler component. The total performance degradation resulting from 
these changes has been found to be around 25%. In an earlier paper [11] we gave an overview of the 
changes imposed by the SRI model. In this section we concentrate on the impacts of the interface on 
the engine and on changes introduced in the new design. 

8.1 Boundaries 

The engine needs to maintain the boundary between the public and private regions. Within the private 
region, it must distinguish between local nodes, i.e. nodes adjacent to the top of the worker's own stack, 
and remote nodes. This is achieved by storing a pointer to the respective boundary nodes in certain 
registers. These registers are initialised when an assignment is started (Found .•. Work). They are up
dated when the public region is extended (Make.Public) or contracted (Sched-.Get_Work..At.Parent), 
and when backtracking in the private region winds back to the worker's own stack. They are consulted 
to distinguish different cases of backtracking and pruning operations. 

1 Note that data on cavalier commits is not included in the pruning information, as this operation is expected to be 
used only for handling exceptional circumstances. 



www.manaraa.com

449 

8.2 Backtracking 

From the engine's point of view, the main complication of or-parallel execution is its impact on the 
backtracking routine. This routine has to check whether it is about to backtrack into the public 
region, in which case the scheduler must be invoked to perform public backtracking (Sched.Die.Back 
or Sched_Get_Work..At...Parent). Private backtracking has to face the complication that the pri
vate region may extend to other workers' stacks, and possibly wind back to the worker's own back 
again. As explained earlier, remote nodes carnnot be reclaimed when they are trusted; instead, 
Mark..Node.Reclaimable is invoked when dying back over a remote node. 

Shallow backtracking is optimised in the private region, but only if the current node is on -the top 
of the worker's own stack. 

8.3 Memory Management 

As stated earlier, the stack memory management relies on the node stack. While finding work, each 
worker maintains a pointer to the youngest node that has to be kept for the benefit of other workers. 
Such pointers are used and updated by the Allocate ... Node functions. When an assignment is started 
(Found ... Work) the top of stack pointers for the other WAM stacks are initialised from relevant fields 
of the node physically preceding the embryonic node of the new assignment, as these fields define how 
much of the other stacks has to be kept. 

8.4 Pruning Operators 

Pruning operations must distinguish between (i) pruning local nodes only, (ii) pruning remote nodes, 
and (iii) pruning public nodes. In cases (i) and (ii), the node can be pruned right away, but the 
memory occupied by the pruned node can .only be reclaimed in case (i). The trail must be tidied in 
all three cases, as explained in [11]. In case (iii), the scheduler is responsible for pruning the public 
nodes, but may decide to suspend or abort the current assignment instead, forcing the engine to invoke 
Sched..Suspend or Sched.Be...Pruned, respectively. Note that Sched...Prune is invoked in all three cases, 
to give the scheduler an opportunity to keep pruning information up to date. 

To support suspension of cuts and commits, the compiler provides extra information about what 
temporary variables need to be saved until the suspended task is resumed. This extra information 
also encodes the type of the pruning operator. 

8.5 Premature Termination 

To suspend the current assignment when the scheduler uses the "suspend" exit in Sched.Prune, 
Sched..Synch, or Sched_Check, the engine creates an auxiliary node which stores the current state of 
computation and calls Schad Suspend. It is up to the scheduler to decide when the suspended work 
may be resumed. 

To abort the current assignment when the scheduler uses the "be_pruned" exit in the above func
tions, the engine deinstalls all conditional bindings made by the current assignment, marks all remote 
nodes as reclaimable except the sentry node, and calls Sched.Be.Pruned. 

8.6 Movement 

While executing Prolog code, the binding array is kept in phase with the trail stack: whenever a 
binding is added to or removed from the trail, the bound value is also stored or erased in the binding 
array. While finding work, the engine maintains a pointer to a node in the tree corresponding to the 
current contents of the binding array. When the scheduler asks the engine to "move" the binding 
array up to a new position (Move..Engine_Up ), bindings which were recorded on the trail path between 
the current and the new position are deinstalled from the binding array, and the current position is 
updated. Similarly, Move..Engine.Down installs a number of trailed binding in the binding array and 
updates the current position. 



www.manaraa.com

450 

When an assignment is started (Found ... Work), the engine positions its binding array at the tip 
node of the new or resumed branch in order to get ready to start executing the Prolog code. 

9 Applying the Interface to Andorra-! 

The engine-scheduler interface has been originally designed for the Aurora or-parallel Prolog system. 
Its primary purpose has been to support exchangeable use of several schedulers with a single engine 
(i.e. the Aurora engine based on Sicstus). Recently the interface has been used to link the and-parallel 
engine of the Andorra-I system with the Bristol scheduler developed in the context of Aurora. 

In contrast with the Sicstus engine, Andorra-! performs and-parallel execution: any goals which 
can be reduced without making chokepoints (so called determinate goals) are executed eagerly in 
parallel; a team of workers work together to exploit and-parallelism. However, when no determinate 
goals remain, Andorra-! behaves similarly to Prolog: it uses the leftmost goal to make a choicepoint. 
Moreover, the backtracking routine resembles Prolog, as well: when a goal fails, the team backtracks 
to the nearest choicepoint, and starts to explore the next branch. Thus, despite the and-parallel 
execution phase, Andorra-I and Aurora behave in exactly the same way in exploring the or-tree. From 
the point of view of the interface, an Andorra-I team is exactly the same as an Aurora worker. 

In the Andorra-! implementation the following data structures have been introduced to support 
the interface. First, in a way similar to Aurora, Andorta-I requires two additional pointers for each 
team: one for marking the boundary between the public and the private regions of the tree, and 
another for storing the current binding array position. Second, a parent pointer has to be added to 
each node (Andorra-I originally did not require the parent pointer because of the fixed node size). The 
backtracking routine is modified so that engine always calls the scheduler (Sched.Die.Back), if it is 
in the public region. To simplify the implementation, Andorra-I currently does not allow a worker to 
work on other workers' stacks. Therefore, when a worker resumes a suspended branch which belongs 
to someone else, the branch has to be made public. 

The main difference between Aurora and Andorra-! arises in the handling of pruning operators. 
According to the interface, the engine should call the scheduler whenever it executes a pruning operator 
(Sched.Prune ). If the scheduler decides that the pruning cannot go ahead, the engine is required to 
suspend the current branch and call Sched...Suspend immediately. In Andorra-I, however, the pruning 
operator is executed during the and-parallel phase, and there might be some other goals being executed 
simultaneously by fellow workers in the team. When a worker needs to suspend because of the pruning 
operator, it has to take care of its team, i.e. inform all other workers to stop and then find new work 
together. In fact, even if there is only one worker in the team, it is not easy to stop the and-parallel 
execution phase prematurely, without slowing down the whole execution process. Therefore, we have 
decided to let the team carry on the and-parallel phase and suspend later, if 11ecessary. As a special 
case it may happen that the computation fails after Sched.Prune is called. In this case, the Andorra-I 
engine marks the suspended node as a cut-fail node. Later on, when the scheduler resumes the given 
branch, the engine will backtrack immediately. 

Preliminary performance results of the Andorra-! system are very promising (2}, showing that 
Andorra-! is capable of exploiting or-parallelism with similar efficiency as in Aurora. The overall 
experience of using the interface in the Andorra-I implementation is very positive: the interface proved 
to be well designed and of appropriate abstraction level. 

10 Performance Results 

No detailed performance analysis work has been done for the new Aurora implementation yet. Pre
liminary measurements have been performed with the Manchester scheduler, on the benchmark suite 
introduced in the performance analysis of the earlier Aurora version [14). The benchmarks are divided 
into three groups according to granularity: course granularity (top section in the tables), medium 
granularity (middle section), and :fine granularity (bottom section). 



www.manaraa.com

451 

Table 1 shows the running times for that benchmark suite on the first generation of Aurora (using 
the old interface and an engine based on Sicstus Prolog 0.3). Table 2 shows the running times for 
the same benchmarks in the second generation of Aurora. There is an overall improvement of up to 
60% in terms of absolute speed, mostly due to the new, much faster engine. For some of the fine 
granularity benchmarks the relative speedups have deteriorated; this is because the increase in engine 
speed implies a. relative increase in scheduler overheads. For benchmarks with coarse granularity, and 
especially for the ones with frequent suspension and resumption (e.g. tina), the relative speedups 
have improved, showing the advantages of the new interface. 

Aurora 
Goals Workers 

* repetitions 1 4 8 11 Sicstus 0.3 
8-queens1 10.11 2.54(9.98} 1.29(7.84} 0.97(10.4} 8.19(1.29} 
8-queens2 29.37 7.32(4.01} 3.73(7.87} 2.76(10.6} 23.60(1.24} 
tina. 21.30 5.57(3.89} 3.02(7.06} 2.37(8.98} 17.29(1.23} 
salt-mustard 11.71 3.03(9.87} 1.63(7.18} 1.27(9.24) 9.50(1.23} 
AVERAGE (3.92} (7.49} (9.80} (1.23} 
parse2 *20 9.24 2.92(9.17} 2.08(4.44) 1.96(4. 72} 7.54(1.29} 
parse4 *5 8.54 2.50(9.42} 1.67(5.11} 1.40(6.10} 6.91(1.24) 
parseS 6.02 1.74(3.46} 1.17(5.15} 0.98(6.14) 4.89(1.23} 
db4 *10 3.12 0.87(3.60} 0.53(5.87} 0.45(6.96} 2.69{1.16} 
db5 *10 3.80 1.04(3.66} 0.64(5.93) 0.55(6.92} 3.28(1.16} 
house *20 8.13 2.26(3.60} 1.40(5.81} 1.19(6.84} 6.51(1.25} 
AVERAGE (3.48} (5.38} (6.28} (1.21) 
parse1 *20 2.49 0.90(2. 77) 0.81(9.08} 0.87(2.87} 2.02(1.23} 
parse3 *20 2.13 0.84(2.54) 0.80(2.66) 0.83(2.57) 1.72(1.24) 
farmer *100 4.83 2.34(2.06} 2.41(2.00} 2.49(1.94) 3.80(1.27} 
AVERAGE (2 . ..f6) (2.58) (2 . ..f6) (1.25} 

Table 1: RUN TIMES, FIRST GENERATION OF AURORA 

11 Conclusions and Future Work 

We have described the engine-scheduler interface used in the second generation of the Aurora or
para.llel Prolog system. We have defined a. simple set offunctions to cover the two basic areas of engine
scheduler interaction: finding work and communication between workers. We have identified those 
events during Prolog execution that may be of potential interest to schedulers, e.g. creation of nodes, 
entering clauses, etc. We have also developed a. general characterisation of pruning properties of Prolog 
clauses that can be used both for scheduling speculative work and for improving the implementation 
of pruning operators. 

The interface described in this paper is fundamenta.lly revised with respect to earlier versions. The 
new interface is designed to help avoid scheduling overheads, to make the set of basic concepts simpler 
and more uniform, to give scope for potential optimisations including better memory management, 
improved treatment of pruning operations, and avoidance of speculative work. 

The main purpose of the interface is to enable different engines and schedulers to be used inter
changeably. To date, four separate schedulers have been written and connected to two different engines 
by means of the interface. Perhaps more importantly, the evolution of the interface has helped clarify 
many issues in implementin'g-or-para.llelism in Prolog, such as contraction and handling of pruning 
information. 

The interface has contributed to the overa.ll improvement of Aurora performance. We also believe 
that the new interface has played a significant part in the good performance results of the Bristol 



www.manaraa.com

452 

Aurora 
Goa.ls Workers 

* repetitions 1 4 8 11 Sicstus 0.6 
8-queens1 8.01 2.03(3.95) 1.03(7. 75) 0.76(10.6} 6.77(1.18) 
8-queens2 20.63 5.25(9.93} 2.64{7.81} 1.93{10. 7} 16.45{1.25} 
tina 18.40 4.65(9.96) 2.39(7.69} 1.79{10.9} 13. 78(1.94) 
sa.lt-mustard 10.89 2.82(3.86} 1.48(7.36) 1.11(9.86} 8.85(1.23} 
AVERAGE (9.92) (7.65) (10.4) (1.25) 
pa.rse2 *20 7.16 2.40(2.99} 1.71(4.18) 1.64(4.97) 5.87(1.22) 
pa.rse4 *5 6.67 1.85(9.60} 1.40(4. 76) 1.19{5.60} 5.40{1.:!4) 
pa.rse5 4.71 1.42{3.33} 0.96{4.89} 0.81{5.81} 3.82{1.29} 
db4 *10 2.94 0.81{3.63) 0.46{6.39} 0.38(7.82} 2.24{1.31} 
db5 *10 3.56 0.97(9.67) 0.57(6.25} 0.47(7.64) 2.73{1.30} 
house *20 5.07 1.47{9.46) 0.93(5.48) 0.79(6.42} 4.22(1.20} 
AVERAGE (9.45) (5.32) (6.28) (1.25) 
pa.rsel *20 1.89 0.76(2.47) 0.73(2.61} 0.78(2.42) 1.57(1.20} 
pa.rse3 *20 1.62 0.72{2.24) 0.68(2.37} 0.72(2.25) 1.34{1.21} 
fa.rmer *100 3.61 1.92(1.88} 2.13(1.69} 2.19(1.65) 3.06(1.18} 
AVERAGE (2.20} (2.22) (2.11) (1.20} 

Table 2: RUN TIMES, SECOND GENERATION OF AURORA 

scheduler. The Bristol scheduler ha.s been designed with the new interface in mind, a.nd, in spite 
of applying a very simple scheduling strategy, its performance is comparable (a.nd sometimes better 
tha.n) that of the ea.rlier schedulers [3]. 

The ma.in outstanding issue which ha.s not been treated in the interface is ga.rbage collection. 
Patrick Weemeeuw [17] ha.s addressed the problem of ga.rbage collection of the public pa.rts of the tree. 
Since such activities involve synchronisation between workers a.nd possibly relocation of scheduler 
data, it is likely that the interface will have to be extended to support ga.rbage collection. 

The interface ha.s recently been utilised in a project ba.sed on the Muse approach to or-pa.ra.llel 
Prolog [1]. An or-pa.ra.llel version ofBIM_Frolog [4] is currently being produced by modifying the HIM 
engine a.nd connecting it via the interface to the Muse scheduler. 

We a.re convinced that the applicability of the interface extends beyond or-pa.ra.llel Prolog systems. 
The Andorra experience is powerful evidence of this fact, but it must be stressed that in this case, the 
interface wa.s used to add or-pa.ra.llelism to a.n a.lready a.nd-pa.ra.llel system. Generalising the interface 
to cover issues of a.nd-or-para.llel scheduling could be a.n interesting resea.rch direction to be pursued 
in the future. 

12 Acknowledgements 

The work on engine-scheduler interfaces wa.s initiated by David Wa.rren. Earlier versions of the in
terface were developed by Ross Overbeek a.nd Alan Ca.lderwood. The design of the new interface 
benefited from severa.l discussions with Tony Beaumont, Per Bra.nd, Bogumil Hausma.n a.nd Ewing 
Lusk. 

The authors a.re indebted to Feliks Kluznia.k, Ewing Lusk, a.nd the a.nonymous referees for ca.reful 
reading a.nd va.luable comments on drafts of this paper. 

This work wa.s supported by ESPRIT projects 2471 ("PEPMA") a.nd 2025 ("EDS"). 

References 

[1] Khayri A. M. Ali and Rola.nd Karlsson. The Muse approach to or-para.llel Prolog. International 



www.manaraa.com

453 

Journal of Parallel Programming, 19(2):129-162, April 1990. 

[2] Anthony Beaumont, S. Muthu Raman, Vltor Santos Costa., Peter Szered.i, David H. D. Warren, 
and Rong Yang. Andorra-!: An implementation of the Basic Andorra Model. Technical Report 
TR-90-21, University of Bristol, Computer Science Department, September 1990. Presented at 
the Workshop on Para.llel Implementation of Languages for Symbolic Computation, July 1990, 
University of Oregon. 

[3] Anthony Beaumont, S. Muthu Raman, and Peter Szered.i. Flexible scheduling or-para.llelism in 
Aurora: the Bristol scheduler. In PARLE 91, Conference on Parallel Architectures and Languages 
Europe. Springer-Verlag, June 1991. 

[4] BIM. BJM_prolog release 2.4. 3078 Everberg, Belgium, March 1989. 

[5] Per Brand. Wavefront scheduling. Internal Report, Gigalips Project, 1988. 

[6] Ralph Butler, Terry Disz, Ewing Lusk, Robert Olson, Ross Overbeek, and Rick Stevens. Schedul
ing OR-para.llelism: an Argonne perspective. In Proceedings of the Fifth International Conference 
on Logic Programming, pages 1590-1605. MIT Press, August 1988. 

[7] Alan Calderwood. Aurora-description of scheduler interfaces. Internal Report, Gigalips Project, 
January 1988. 

{8] Alan Calderwood and Peter Szered.i. Scheduling or-para.llelism in Aurora-the Manchester sched
uler. In Proceedings of the Sixth International Conference on Logic Programming, pages 419-435. 
MIT Press, June 1989. 

(9] Mats Carlsson and Peter Szeredi. The Aurora abstract machine and its emulator. SICS Research 
Report R90005, Swedish Institute of Computer Science, 1990. 

{10] Bogumil Hausman. Pruning and Speculative Work in OR-Parallel PROLOG. PhD thesis, The 
Royal Institute of Technology, Stockholm, 1990. 

[11] Ewing Lusk, David H. D. Warren, Seif Haridi, et al. The Aurora or-para.llel Prolog system. New 
Generation Computing, 7(2,3):243-271, 1990. 

[12] Vitor Santos Costa., David H. D. Warren, and Rong Yang. Andorra-!: A para.llel Prolog system 
that transparently exploits both and- and or-para.llelism. In Proceedings of the Third ACM 
SIGPLAN Symposium on Principles and Practice of Parallel Programming. ACM Press, April 
1991. 

[13] Ra.ed Sindaha.. Scheduling speculative work in the Aurora or-para.llel Prolog system. Internal 
Report, Gigalips Project, March 1990. 

{14) Peter Szered.i. Performance analysis of the Aurora or-para.llel Prolog system. In Proceedings of the 
North American Conference on Logic Programming, pages 713-732. MIT Press, October 1989. 

[15] Peter Szered.i and Mats Carlsson. The engine-scheduler interface in the Aurora or-para.llel Prolog 
system. Technical Report TR-90-09, University of Bristol, Computer Science Department, April 
1990. . 

[16] David H. D. Warren. The SRI model for or-para.llel execution of Prolog-abstract design and 
implementation issues. In Proceedings of the 1987 Symposium on Logic Programming, pages 
92-102, 1987. 

[17] Patrick Weemeeuw. Memory compaction for shared memory multiprocessors, design and speci
fication. In Proceedings of the North American Conference on Logic Programming. MIT Press, 
October 1990. 



www.manaraa.com

Reduction of Coda Space in Parallel Logic Prograaaing Systaas * 

HWANG Zhiyi, HU Shouran, SUN Chengzheng and GAO Yaoqing 

Department of Computer Science 

changsha Institute of Technology 

Changsha, Hunan, P.R. China 

Keywords: logic programming, parallel processing, compile, AND-

parallelism, abstract interpretation, mode inference, PROLOG, computer 

languages. 

Abstract 

This paper presents the problem of the explosion of code space in 

methods for exploiting independent AND-parallelism in parallel logic 

programming systems, and proposes a scheme to solve it. The schaaa 

can largely reduce the code space with minimal loss of parallelism. 

Soma kay algorithms in the schema are presented in this paper. 

Finally, we give the experimental results and the preliminary 

performance analysis on the scheme. 

1. Introduction 

Thera have been many contributions to the exploitation of 

independent AND-parallelism in logic programs [3,4,5,&,7,8,9,14). 

These publications can be divided into three approaches: dynamic, 

static and static-dynamic combined. Because of the higher overhead of 

* This research was partially supported by the Fok Ying Tung Education 
Foundation and the Chinese National Natural Science Foundation. 



www.manaraa.com

455 

the dynamic and the lower parallelism exploited by the static, the 

static-dynamic approaches have become the most promising and 

interesting ones to which a great deal of attentions have bean 

dedicated [4,5,8,9,10,14,15]. With some run-time checks these 

approaches can exploit almost the maximum independent AND-parallelism. 

However, the deeper they go into the exploitation of parallelism and 

the more accurately they exploit parallelism, the mora Execution Graph 

Expressions(EGEs) these approaches will generate, which will lead to 

an enormous code space. The reason is that, in order to minimize the 

loss of parallelism when generating a linear EGE, the best method is 

to generate a linear EGE for each possible execution order of subgoals 

in the clause body. For instance, 

Cond -> 01;02 to generate a linear 

condition combination. But with 

[10] uses the expressions such as 

expression for each possible 

the exponential explosion of 

condition combinations, the increase in code space is intolerable. 

For example, consider the clause: 

H(A,B,C,D,E):-P(A,B),Q(B,C),R(C,O),S(O,E),T(E,A). 

According to the COG algorithm in [10], the number of expressions 

generated for this clause is at least 81 Nithout optimization. In 

other words, the code space is nearly 81 times the size of the 

sequential one. 

The same preble~ exists in CAAP(Compiling Approach for exploiting 

ANO_Parallelism in logic programs)[14]. CAAP consists of three 

phases: analysis of entry modes, derivation of exit modes and 

determination of EGEs. From the experimental results, this approach 

can exploit independent AND-parallelism effectively with trivial run

time overhead. In the approach, we generate an EGE for each possible 

entry mode of a clause. Therefore, the extended parallel WAM coda 

space [11] compiled from CAAP's EGEs expands largely and is two to six 

times the sequential WAM code spa~e, according to the experiment. 



www.manaraa.com

456 

With the entry modes' increasing exponentially, the code space will 

become larger and larger. To contain this trend, we adopt a special 

technique for automatic inference of entry modes. This technique can 

infer one or two entry modes that users often use. We refer to them 

as User-Usually-Used entry modes (U-modes in short). For tha other 

possibly used entry modes, we abstract a Default Entry Mode (DEM) from 

them. This mode can represent those possible modes. We usa an 

algorithm to generate a default EGE for it. When a subgoal calls a 

clause with one of the possible entry modes (excluding the U-modes), 

the default EGE will be invoked and executed. In this way, we can 

ensure the seldom used modes will be dealt with correctly without much 

loss of parallelism while we can accurately exploit AND-parallelism in 

most cases. Above all, the idea can largely reduce the coda space 

which will be constantly kept about two times the sequential WAM coda 

space. 

Basad on the above ideas, we propose a schema in the following 

section, which can overcome the drawbacks of CAAP schema. We also 

give the experimental results to show the performance of the schemes. 

2. Schema of coda space reduction 

We proposed the concepts of entry mode and exit mode for the first 

time in CAAP [14). An entry mode of a clause explains whether the 

arguments of the clause head are ground after a subgoal invokes it and 

unifies with its head: an exit mode of a clause explains whether the 

arguments of the clause head are ground after the subgoals of its body 

are solved. An entry mode of a subgoal explains whether its arguments 

are ground before it is about to be executed: an exit mode of a 

subgoal explains whether its arguments are ground after it is solved. 

Thera are three possible modes for an argument: G, means the 

corresponding argument is ground: N, means the argument is non-ground; 



www.manaraa.com

457 

?, means that whether the argument is ground or not is unknown. 

For a clause, its different entry modes will lead to different 

dependance relationships among subgoals in its body and different AND-

parallelism in it. Therefore, we generate an EGE for every entry mode 

of the clause so that the maximal AND-parallelism may be obtained. To 

analyze the data-dependence among subgoals, we used bottom-up abstract 

interpretation [12] in CAAP. The abstract domain is {G,N}. We view a 

logic: program as a directed graph in which each node represents a 

procedure and each node has pointers to the nodes it calls. There is 

a cycle if a procedure calls itself. A root node is a procedure that 

is not called by any other procedure except the top level query, and 

a terminal node is a procedure that does not call any other procedure 

except itself. For instance, the program in Example 2.1 can be viewed 

as the directed graph in Figura 2.1. 

Example 2.1 : Quicksort program 

quiaksort([_hl_t],_s):
split(_h,_t,_x,_y), 
quic:ksort(_x,_x1), 
quic:ksort(_y,_y1), 
append(_x1,[_hl_y1],_s). 

quicksort( [ ], []). 

split(_h,(_el_t],(_el_x],_y):-
_e < _h, 
split(_h,_t,_x,_y). 

split(_h,(_el_t],_x,(_el_y]):-
_a >• _h, 
split(_h,_t,_x,_y). 

split(_h,[],[],()). 

append( (] , __ 1 ,_1). 
append((_hl_t],_l,[_hl_l1]):

append{_t,_l,_l1). 

?- quic:ksort([5,3,2,4,1,8,6,?,9,10],_1). 

I 
split,:) 

quicksort~ 
I 

l 
append:) 

Fig.2.1 Directed graph of quicksort program 



www.manaraa.com

458 

In the scheme of code space reduction, we inherit soma idea of 

CAAP. We describe it in three phases as in CAAP: inference of entry 

mode; derivation of exit mode; and determination of EGE. The major 

difference between the CAAP and the scheme is that we generate a EGE 

for avery correct (possible) entry mode in the former, but generate 

EGEs only for U-modes and DEMs in the latter. 

generated for a clause ara largely reduced. 

2.1 Inference of entry made 

Therefore, the EGEs 

A good deal of work has bean done on automatic mode inference in 

recant years. The typical ones are [1,2,8]. Even though their 

techniques are similar, their purposes differ from each other to soma 

extent. These techniques may be used to optimize the sequential logic 

programs [1,2] or to exploit parallelism in logic programs (8]. In 

this section we propose a technique to infer the entry modes users 

often usa, so that the expense of code space in CAAP and other methods 

for exploiting independent AND-parallelism can be greatly reduced. In 

this paper, the mode inference with abstract interpretation is just a 

useful tool in our code space reduction schema, but it is not the main 

idea of the paper. What we are interested in is the result of the 

abstract interpretation. 

This technique is divided into two sub-phases: automatic inference 

of correct(possible) entry modes and automatic inference of U-modes. 

A correct entry mode is an arbitrary entry mode which may possibly 

succeed when it calls its procedure. A U-mode is definitely a correct 

entry mode, but a correct entry mode may not be a U-mode. 

In the first sub-phase, we adopt the bottom-up abstract 

interpretation, i.e., we analyze the procedures in the directed graph 

from bottom up until the root node is reached. The abstract domain is 

(G,N}. In the sub-phase, the mode information of built-in predicates 

is used to infer the correct entry modes of user defined procedures, 



www.manaraa.com

459 

e.g., built-ins<, > require its arguments are ground, i ... e., their 

entry modes are G. For example, consider the clause in Example 2.1: 

split(_h,(_el_t],(_el_x],_y):-_e < _h, split(_h,_t,_x,_y). 

From the requirement of built-in I ( t I we can straightforwardly 

conclude the first argument's entry mode of split must be G. This 

mode requirement of split can also be used by its top procedures, 

e.g.' quicksort. In this way, the correct entry modes of avery 

procedure in the logic program will be obtained. 

this sub-phase is given as below. 

The key algorithm in 

Algorithm I: 

Input: a clause C:C+ :- c- and its entry mode 

Output: an exit mode 

Vars: GV: current sat of ground variables 

i: pointer to subgoals in the clause body 

S: current subgoal 

SG: sets of ground variables of S after S is executed 

1. initialization. 

i :• 1, GV :• {variables in the clause head's 

arguments whose entry modes are G). 

2 .• if c- • (), than cis a. fact, go to 6. 

3. set s to the ith subgoa.l of c-. 

4. if S • nil, go to 6. 

5. do the following steps for S. 

i) determine the entry mode of S according to GV. 

ii) check if the entry mode of s matches the correct 

entry modes of s. If it does not, the entry mode of c is 

impossible or incorrect, stop. 

iii) if s invokes c recursively, 

then, derive the exit mode of s according to the entry 

mod a of s and the exit mode of facts in the 



www.manaraa.com

460 

recursive procedure. 

else, derive the exit mode of S according to the entry 

mode of S and the exit mode of procedure S. 

iv) evaluate SG according to the exit mode of S. 

v) sat GV to GV U SG. 

vii) i :• i + 1, go to 3. 

6. derive the exit mode of C according to GV. Stop. 

This algorithm is used to test whether an entry mode is correct or 

not. We use it to test every combination of entry modes and then get 

the correct entry modes and their respective exit modes for every 

clause. To get the correct entry modes of a procedure, we employ two 

operations. For a recursive procedure, we apply intersection among 

correct entry modes of clauses in the procedure. For a non-recursive 

procedure, we apply union among correct entry modes of clauses in the 

procedure. The reason is that we regard a recursive procedure as a 

whole body and its entry modes should sa~isfy the requirement of each 

of its clauses. 

Furthermore, in the same procedure, clauses may have different 

exit modes for the same entry mode. We will apply "*" operation to 

the different exit modes. The operation table is as Table 2.1. From 

Table 2.1, we can see the rule adopted is safe for the "producer-

consumer" scheme. That means if some argument of a procedure is 

known, with our approach, to have entry mode N and corresponding exit 

mode G, then the procedure is certain to be the real "producer" of 

variables in the argument by the "*" operation. 

I * I G I N I 
1-----------1 
I G I G I N I 
1-----------1 
I N I N I N I 

Table 2.1 An operation table 



www.manaraa.com

461 

As for the program in Example 2.1, adopting above method, we can 

obtain the correct entry/exit mode tables in Table 2.2 to Table 2.4. 

I entry mode I exit mode I 

1------------------------1 
I <G,G> I <G,G> I 

1------------------------1 
I <G,N> I <G,G> I 

Table 2.2 Entry/exit mode 
table for "quicksort" 

I entry mode I exit mode I 

1------------------------1 
I <G,G,N,N> I <G,G,G,G> I 

1------------------------1 
I <G,G,G,N> I <G,G,G,G> I 
1------------------------1 
I <G,G,N,G> I <G,G,G,G> I 
1------------------------1 
I <G,G,G,G> I <G,G,G,G> I 
1------------------------1 
I <G,N,G,G> I <G,G,G,G> I 

Table 2.4 Entry/exit mode 
table for "split" 

In the second sub-phase, 

I entry mode I exit mode 

1------------------------1 <N,N,N> I <N,N,N> 
1------------------------1 <N,N,G> I <G,G,G> 

1------------------------1 <N,G,N> I <N,G,N> 

1------------------------
1 <N,G,G> I <G,G,G> 

1------------------------1 <G,N,N> I <G,N,N> 
1------------------------
1 <G,N,G> I <G,G,G> 

1------------------------1 <G,G,N> I <G,G,G> 

1------------------------1 <G,G,G> I <G,G,G> 

Table 2.3 Entry/exit mode 
table for "append" 

we adopt the top-down abstract 

interpretation, i.e., we analyze the procedures in the directed graph 

from top down until avery leaf node is reached. The abstract domain is 

{G,N,?}. At first, we regard the correct entry mode as the 0-mode of 

the top procedure and usa it to infer the entry modes of procedures 

the top procedure invokes. We then regard these entry modes as their 

U-modas and usa them to continue above process. In this way, we can 

infer the U-mode of avery procedure in the program. The reason that 

we regard these types of entry modes as 0-modas is that that how the 

top procedure invokes the procedures below reflect the semantic 

information of the program and the tendency that users invoke the 

procedures. For example, we use the correct entry mode of quicksort 

<G?> to infer the entry modes of split and append. Their respective 



www.manaraa.com

462 

entry modes are <GGNN> and <GG?>. ? may represent G or N. 

algorithm in the sub-phase is presented in the folloNing. 

Algorithm II: 

Input: a clause C:C+ :- C- and its U-moda 

Output: 3U entry modes of subgoals in the body 

Vars: GV: current set of ground variables 

NV: current set of non-ground variables 

The key 

VS: current set of variables occurring in the clause 

S: currant subgoal 

SG, SN: sets of ground and non-ground variables of S after S 

is executed, respectively 

SV: variable set of S 

i: a pointer 

1. initialization. 

i := 1, 

GV :• {variables in the clause head's 

arguments Nhose entry modes are G}. 

NV :e {variables in the clause head's 

arguments Nhose entry modes are N}. 

VS :• {variables in the clause head}. 

2. set s to the ith subgoal of C-. 

3. if S • nil, stop. 

4. the folloNing steps are done for S. 

i) determine the entry mode of S according to GV, NV and VS. 

ii) record the entry mode as a U-mode of S. 

iii)find the exit mode of the entry mode according to the 

correct entry/exit mode tabla. 

iv) evaluate SG,SN and SV according to the exit mode of S. 

v) GV :• GV U SG, 

NV :• NV U SN, 



www.manaraa.com

463 

VS :• VS U SV. 

vi) i :~ i + 1, go to 2. 

Adopting Algorithm XX, we can obtain the U-modes of Example 2.1 as 

below. 

U-mode(quicksort(2),(GN,GG]). 

U-mode(split(4),(GGNN)). 

U-mode(append(3),[GGN,GGG]). 

We have employed above entry mode inference technique to improve 

the CAAP scheme. Xn the improved scheme, we only generate an EGE for 

every U-mode while we generate a default EGE for other possible entry 

modes. Xn this way, we can largely reduce the code space without much 

loss of parallelism. The experimental results in Section 3 can prove 

what we expect. 

For other correct entry modes, we can infer a OEM to represent 

them. The OEMs for Quicksort program inferred by (15] are as below: 

OEM(split(4),(G???]). 

OEM(append(3),(???]). 

'?' means the entry mode for the corresponding argument is may be 

either 'G'(ground) or 'N'(non-ground). Xt is not necessary to infer a 

OEM for quicksort(2) since it has no correct entry mode left apart 

from its U-modes. 

2.2 Derivation of exit .adas 

The function in this phase is the same as the one in CAAP. The 

exit modes can ba acquired straitforwardly from the entry/exit mode 

tables in Section 2.1 after using a searching algorithm. We simply 

give tha entry/exit mode tables of the Quicksort program as below: 

modatable(quicksort(2), ((GN,GG),(GG,GG)]). 

modetable(split(4),[(GGNN,GGGG),(G???,GGGG)]). 

modetable(appand(3),[(GGN,GGG),(GGG,GGG),(???,???)]). 



www.manaraa.com

464 

2.3 Determination of EGEs 

The algorithm for determining EGEs of U-modas remains the same as 

the one presented in [14]. 

following algorithm. 

But for the EGEs of OEMs, we employ the 

We hav·e soma principles to design the algorithm. Firstly, the 

EGEs generated should be simple, and there should be no nested 

condition checks in the EGEs so that the parallel WAM code compiled 

out from them is mora efficient. Secondly, the overhead of the 

algorithm should be small. Thirdly, the EGEs should not change the 

original order of the subgoals so as to facilitate the handle of 

side-effects problem. 

The idea of the algorithm is that we divide a clause body into 

some maximal sections, which satisfy the requirement that inside a 

section no two subgoals share any variable that occurs in the clause 

for the first time. Therefore we should execute the sections 

sequentially, 

parallelism. 

and we add condition checks inside a section to exploit 

Input: 

Algorithm for determining a clause's EGE of DEM 

a clause H:-B1, •.• ,Bm and its OEM. 

Output: EGE of the clause. 

Vars: G, set of ground variables determined with OEM. 

V, set of variables occurring in the previous sections. 

N, set of variables, which occur in the clause for the first 

time, in the current section. 

B, the remaining subgoals in the clause. 

i,j, pointers. 

1. initialization. 

G :a {variables in the arguments of H, 

according to OEM} 

V :• {variables occurring in H} 

whose entry modes are 'G' 



www.manaraa.com

2. 

465 

N :- fl/ 

B :a B1, ••• ,Bm. 

i :- 1, j :- i 

for the subqoal Bj, compute FV(Bj) :• V(Bj) - V, in which 

V(Bj) is the sat of variables occurring in Bj, and therefore 

FV(Bj) is the set of variables, which do not occur in the 

previous sections, in Bj. 

3. if FV(Bj) n N <> ~then goto 4 

N :• N U FV(Bj), 

j := j + 1, 

if j <= m than goto 2 

4. regard Bi, ••• ,Bj-1 as one section, compute 

S := U V(Bp) n V(Bq) (i =< p,q < j,p <> q) 

S is the set of variables which occur in both Bp and Bq, i •< p, 

q < j, p <> q. The EGE for the section is as below: 

GPAR(S)IPAR(V(Bi), ••• ,V(Bj-1))(Bi, ••• ,Bj-1). 

Because there is no need to check groundnass of variables in G 

and independence between variables in S and N, the EGE may be 

optimized as 

GPAR(S-G)IPAR(V(Bi)-S-N, ... ,V(Bj-1)-S-N)(B1, ••. ,Bj-1). 

Then, update the Vars: 

V :• V U N, 

N :• fll, 

i :- j, 

B :• Bj, ••• ,Bm. 

5. if B <> nil, goto 2. 

6. usa SEQ expression to contain above EGEs, which is the final EGE 

for the clause. Stop. 

For example, we have a clause p(X,Y,Z):-a(X,T), b(X,V), c(T,W), 



www.manaraa.com

466 

d(Y ,R), e(W,Z), f(R,Z). The DEM of the clause is '???'. Using the 

algorithm we can generate the following EGE: 

p(X,Y,Z):-
SEQ(GPAR(X)(a(X,T),b(X,V)), 

IPAR(T,Y)(c(T,W),d(Y,R)), 
GPAR(Z)IPAR(W,R)(e(W,Z),f(R,Z))). 

Now we give the EGEs of Quicksort program in the Improved CAAP 

scheme. 

quicksort(GN,(_hl_t],_s):
SEQ(split(GGNN,_h,_t,_x,_y), 

PAR(quicksort(GN,_x,_x1), 
quicksort(GN,_y,_y1)), 

appand(GGN,_x1, (_hl__y1] ,_s)). 
quicksort(GG,(_hl_t],_s):

SEQ(split(GGNN,_h,_t,_x,_y), 
PAR(quicksort(GN,_x,_x1), 

quicksort(GN,_y,_y1)), 
appand(GGG,_x1,[_hf_y1],_s)). 

split(GGNN,_h,[_al_t),(_al_x),_y):
PAR((GG,_a <_h), 

split(GGNN, __ h,_t,_.x,_y)). 
split(G???,_h,(_el_t],(_el_x),_y):

PAR((GG,_a < _h), 
split(G???,_h,_t,_x,_y)) 

split(GGNN,_h,[_el_t],_x,(_el_y)):
PAR((GG,_a >=_h), 

split(GGNN,_h,_t, __ x, .. _Y)). 
split(G???,_h,(~al_t),_x,[_el_y]):

PAR((GG,_a >• _h), 
split(G???,_h,_t,_x,_y)). 

append(GGN,(_hl_t),_l,[_hl_l1)):
append(GGN,_t,_l,_l1). 

append(GGG,(_hl_t),_l,(_hl_l1)):
appand(GGG,_t,_l,_l1). 

append(???,(_hf_t),_l,(_hl_l1)):
appand(???,_t,_l,_l1). 

Above EGEs are mora optimized forms than the algoritha generates. 

From the result, we know the EGEs generated are significantly lass 

than those in CAAP. 

3·. Experi-ntal results and parforaance analysis 

Basad on the improved schema, we have implemented a precompiler in 

SES-PIM system [ 13). The comparisons among CAAP, the above 

scheaa(called Improved CAAP) and the dynamic approach [17), which can 



www.manaraa.com

467 

detect the maximum AND-parallelism at run-time, are given in Table 

3.1' 3.2 and 3.3 after running some typical benchmarks, such as 

quicksort, n-queen problem, matrix multiplication, Hanoi tower, maze 

problem, factorial, in SES-PIM system. 

From Tabla 3.1 we know there is no loss of parallelism in the 

Improved CAAP. By the degree of parallelism, we mean the number of 

processes in ana inference step of logic program. The degree of 

parallelism in Table 3.1 implies the average parallelism. 

From Tabla 3.2 we know the run-time checks do not increase in the 

Improved CAAP. 

I I ICAAP I CAAP I the dynamic I 
1---------------------------------------------------------l 
I quicksort I 3.82 I 3.82 I 3.82 I 
1---------------------------------------------------------l 
I nquean I 1 9 • 2 1 I 1 9 • 21 I 1 9 • 21 I 
1---------------------------------------------------------l 
I matrix multiplication! 6.08 I 6.08 I 6.08 I 
1---------------------------------------------------------l 
I Hanoi tower I 5.21 I 5.21 I 5.21 I 
1---------------------------------------------------------l 
I maze problem I 10.59 I 10.59 I 10.59 I 
1---------------------------------------------------------l 
I factorial I 6.14 I 6.14 I 6.14 I 
1---------------------------------------------------------l 
I on average I 1 6 I 1 6 I 1 6 I 

Tabla 3.1 Degree of parallelism exploited in CAAP, 

the Improved CAAP (ICAAP) and the dynamic 

In Table 3.3, the first column is the number of clauses (excluding 

facts) in the corresponding program. The second column is the nuaber 

of EGEs generated by CAAP. The third column is the number of EGEs 

generated by the Improved CAAP. Even though we do not compile the 

EGEs into parallel WAM code (the code-size of a compiled EGE is nearly 

the same as that of an optimized WAN-compiled clause), we can give an 

estimation of the coda space from Table 3.3: the code space in CAAP is 

nearly four times the sequential WAM code space while the coda space 

in the improved CAAP is approximately two times the sequential one, on 



www.manaraa.com

468 

I I CAAP I ICAAP I 
1-----------------------------------------1 
I liPARI 0 I 0 I 
I quicksort 1---------------------------1 
I IGPARI 0 I 0 I 
1-----------------------------------------1 
I liPARI 0 I 0 I 
I nqueen 1---------------------------1 
I IGPARI 0 I 0 I 
1-----------------------------------------1 
I matrix I IPARI 12 I 12 I 
I multiplica- 1---------------------------1 
I tion IGPARI 0 I 0 I 
-----------------------------------------1 

Hanoi liPARI 0 I 0 I 
tower 1---------------------------1 

IGPARI 0 I 0 I 
-----------------------------------------1 

maze liPARI 0 I 0 I 
problem 1---------------------------1 

IGPARI 0 I 0 I 

-----------------------------------------1 
liPARI 0 I 0 I 

factorial 1---------------------------1 
IGPARI 0 I 0 I 

-----------------------------------------1 
liPARI 12 I 12 I 

in total 1---------------------------1 
IGPARI 0 I 0 I 

Table 3.2 Number of checks used during execution 

I I # clauses I # EGEs I # EGEs/redu. I 
1---------------------------------------------------------l 
I quicksort I 4 I 20 I 9 

1---------------------------------------------------------
l nqueen I 5 I 14 I 8 

1---------------------------------------------------------
l matrix multiplication! 6 I 18 I 12 
1---------------------------------------------------------
l Hanoi tower I 3 I 17 I 5 
1---------------------------------------------------------
l maze problem I 4 I 24 I 16 

1---------------------------------------------------------
l factorial I 2 I 4 I 4 

1------------~--------------------------------------------
l in total I 24 I 97 I 54 

Table 3.3 Number of EGEs generated in CAAP and the 

Improved CAAP 



www.manaraa.com

469 

an average. The result is satisfying. Most importantly, Na can 

predict that the code space in the Improved CAAP is constantly about 

two times the sequential code space with trivial loss of parallelism. 

The loss of parallelism in the Improved CAAP may occur when a 

default EGE of a clause has loss of parallelism according to [10) and 

the clause is invoked with the OEM during execution. The number of 

run-time checks may also increase if the EGE of a OEM is invoked. But 

if the precise U-modes are inferred the loss of parallelism and the 

increase of checks are trivial. From the experiment, we know our U-

mode inference technique is vary effective and the U-modes are very 

accurate. 

Sumaary 

In this paper, we present the problem of the explosion of code 

space in CAAP and other methods for exploiting independent AND-

parallelism, and propose an Improved CAAP scheme to solve it. The 

scheme can largely reduce the code space with minimal loss of 

parallelism. 

Hermenegildo's 

The idea of this paper can also be useful to 

COG algorithm. Only the linear expressions 

corresponding to conditions with high probability of success are 

generated while the rest are contained in one expression with a 

default condition. In this way, the code space generated by COG 

algorithm can also be reduced effectively. 

Acknowledgements 

We would like to thank Dr. 

and suggestions on this work. 

Rui for valuable discussions. 

Doug DeGroot for many helpful comments 

We would also thank Cao Pang and Shan 



www.manaraa.com

470 

References 

[1) c.s. Melish, The automatic generation of mode declarations for 
Prolog programs, DAI Research paper 163, Dept. of Artificial 
Intelligence, Univ. of Edinburgh (August 1981), U.K. 

[2] S.K. Debray and D.S. Warren, Automatic Mode Inference for Prolog 
Programs, Journal of Logic Programming, 207-229,Sept. 1988. 

[3) J.S. Conery, The AND/OR model for parallel interpretation of 
logic programs, Ph.D. Th., Dept. of Infer. and Computer Sci., 
Univ. of California, Irvine, 1983. 

[4) D. DeGroot, Restricted And-parallelism, Proc. of the Int'l Con£. 
on Fifth Generation Computer System, Tokyo, (Nov. 1984) pp. 471-
478. 

[5) D. DeGroot, A technique for compiling execution graph expressions 
for restricted And-parallelism in logic programs, Proc. of the 
1987 Int'l Supercomputing Con£., Athens, Greece, (June 1987). 

[6) J.-H. Chang, A. M. Despain and D. DeGroot, And-parallelism of 
logic programs based on a static data dependency analysis, COMPCON 
85, San Francisco, Feb., 1985, pp. 218-225. 

[7) Yu-Wen Tung and Dan I. Moldovan, Detection of And-parallelism in 
logic programming, Proc. of the 1986 Int'l Con£. on Parallel 
Processing,· IEEE, Pennsylvania, 1986, pp. 984-991. 

[8] H. Xia and W.K. Giloi, A Hybrid Scheme for Detecting AND
Parallelism in Prolog Programs, Proc. of ACM 1988 Int. Con£. on 
Supercomputing, France, July, 1988. 

[9) K. Muthukumar an!'! M. Hermenegildo, Methods for Automatic Compile
time Parallelization of Logic Programs using 
Independent/Restricted And-parallelism, Technical Report ACA-ST-
233-89, MCC, Austin, TX 78759, March 1989. 

[10)K. Muthukumar and M. Hermenegildo, The CDG, UDG and MEL Methods 
for Automatic Compile-time Parallelization of Logic Programs for 
Independent And-parallelism, Technical Report ACA-ST-023-90, MCC, 
Austin, TX 78759, 1990. 

[11)Gao Yaoqing and Hu Shouren, A RAP/LOP-WAM Abstract Instruction 
Set, Technical Report, Dept. of Computer Sci., Changsha Inst. of 
Tech., 1989. 

[12]C.S. Melish, Abstract Interpretation of Prolog Programs, In 3rd 
International Con£. on Logic Programming, pp 463-475, Imperial 
College, Springer-Verlag, July 1986. 

[13]Sun Chengzheng and Ci Yungui, SES-PIM: a simulation and experiment 
system for PIM-PSOF, the 2nd National Con£. on Logic Programming, 
China, 1986. 

[14)Hwang Zhiyi and Hu Shouren, A compiling approach for exploiting 
And-parallelism in parallel logic programming systems, Proc. of 
Parallel Architecture and Language Europe, Netherlands, 1989. 

[15)Hwang Zhiyi and Hu Shouren, An Improved CAAP Scheme, Technical 
Report, Dept. of Computer Sci., Changsha Inst. of Tech., 1989. 

[16)Hwang Zhiyi and Hu Shouren, Compilation techniques of parallel 
inference machines, Journal of Computer Science, 1990(3), China. 

[17)Sun Chengzheng and Ci Yungui, An automatic partition algorithm for 
And-parallel execution in the framework of OR-forest, Proc. of the 
2nd Int'l Con£. on Computers and Applications, Beijing, 1987. 



www.manaraa.com

Search Level Parallel Processing of Production Systems 

Satoshi Fujita, Masafumi Yamashita, and Tadashi Ae 
Faculty of Engineering, Hiroshima University 

Kagamiyama 1-4-1, Higashi-Hiroshima, 724 Japan 
Tel. +81-824-22-7111 (Ext. 3459), Fax. +81-824-22-7195 

Email: ae@csl.hiroshima-u.a.c.jp 

Abstract 

This paper examines parallel matching for PS's. The matching operation, which consists 
of the template matching and the join of matched data sets, is believed to be the most 
time consuming operation of PS's. Thus to realize a real-time PS, we should clarify the 
limitation on the speedup by the parallel processing and should find a mechanism to support 
it effectively. 

The matching operation includes two level parallelisms, say, the constraint satisfaction 
level and the DB search level. Many conventional approaches have focused on the former 
so far, however, the parallelism is not so large in existent PS programs (4]. Hence we 
should focus on the another level parallelism as well to acbieve a limitation on the speedup. 
The search level parallelism can be effectively supported by two kinds of parallel processing 
schemes based on (1) shared bus connected multiprocessor, and {2) multiprocessor with 
special memory devices. In this paper, we will provide the concrete specification of the 
scl1emes and verify the availability using few benchmark programs. 

1 Introduction 

A production system (PS) is one of execution models for declarative programming languages. 

Application programs on the PS model (PS programs) are composed of three parts: the database 

{DB), the rulebase {RB), and the conflict resolution strategy (CRS). DB is a. collection of facts, 

and a datum in DB is a tuple of name and attributes. RB is a collection of rules. Each rule 

is a pair of condition part and action part which implies if the condition part holds, then the 

action part can be executed. Action parts of rules contain DB manipulate instructions. CRS 

determines the direction of the computation. 

The computation of the PS model is a repetition of 

1. the matching phase to search rule instances whose condition parts hold, 

2. the conflict resolution phase to select the most adequate instance from the instances found 

in the matching phase, and 

3. the action phase to execute the action part of the instance selected in the conflict resolution 

phase. 



www.manaraa.com

472 

Since the computation time is generally large and is dominated by the matching phase, it is 

an essential problem for the speedup of PS's to find a mechanism for the quick matching phase 

execution. 

Many researchers initially considered matching algorithms on conventional machines. Forgy 

proposed a matching algorithm Rete [2] which is an extension of McDermott's filter [8]. Rete 

is designed focusing on the following two features of the matching operation, i.e., (1) locality of 

the DB modification, and (2) similarity among condition parts of rules. For the first feature, 

he proposed to save the state of the matching phase besides DB, which consists of result of 

the template matching ( i.e., constant test ), that of the join operation ( i.e., variable test ) 

and the final results ( i.e., instances of rules ). For the second feature, on Rete, sharing of 
instructions among analogous matching sequences is examined. This idea has been extended by 

many researchers after Rete [11][6]. 
Most of above minor changes of Rete, however, do not contribute to the drastic speedups ( 

i.e., they have an obvious limitation1) because they have to be executed sequentially. Hence to 

obtain further speedup on the computation of PS's, we should apply a sort of parallel processing 

to the operation. 

PSM project at Carnegie-Mellon University has examined bhe parallel execution of Rete 

algorithm. They directly implemented Rete on a commercial multiprocessor system Encore 
Multimax, and achieved 11 folds speedup using 16 processors [5). PESA-1 (12) and MANJI [9) are 

classified in this category. For general expert systems with 200-3,000 rules, these architectures 

work so effectively, since they support only the higher level parallelism, and in general, the 

magnitude of the parallelism is not too large [4]. Alternative idea applied so far is to extract the 

search level parallelism using significantly large number of processing elements. 'free-structured 

massively parallel processors DADO [14] and NON-VON [13] are classified in this category. 

Although they can perform several DB queries quickly, the effect is not drastic because of the 

fine granularity of the operation. 

Our target in this paper is to clarify the limitation on the speedup of the matching operation, 

and to provide parallel processing schemes to support it effectively. To achieve the first objective, 
we should review the nature of PS programs in detail. The parallelism of the matching operation 

is classified into following two levels : the constraint satisfaction level ( CE level ) and the DB 

search level ( search level ) . The former was supported by PSM and the latter was supported 

by DADO, respectively. In the following chapters, we will show the importance of the latter 

parallelism to achieve the limitation. For the second objective, we will propose two parallel 

processing schemes to support the search level parallelism. To implement them effectively, 

we assume two kinds of hardwares, i.e., (a) a. shared bus connected multiprocessor, and (b) 

multiprocessor with special purpose memory devices. The availability of the proposed schemes 

will be estimated using benchmark programs. 

1In fact, even if we use 5 MIPS 32 bit microprocessor, each DB modification takes few hundred nauo second 
as long as it applies sequential processing (4) 



www.manaraa.com

473 

2 State-Saving Matching Algorithm MASS 

This chapter introduces a simple state-saving matching algorithm MASS ( Matching Algorithm 
using State-Saving method ) for PS to clarify the discussion in later chapters. 

Previous to the concrete description of MASS, we should define the matching operation more 

precisely. It is essentially a pattern matching among patterns ( i.e., CE's of rules ) and objects 

( i.e., data in DB ). Each datum has a form (Ci, attr1, attr2, ••. , attrk) where Ci is the name 
and each attribute is a pair of attribute name and attribute value. On the other hand, each 
CE of rules has a form (Ci> fieldt. field2, ... , fieldh) where Ci is the name and each field is a 
predicate on the attribute. Remember that condition part of a rule is a conjunction of several 

CE's where any data in DB are instances of CE's. 

As an example, consider the following rule consisting of three CE's : 

rule r1 : if 

& 

& 

then remove 

make 

(station, name=< z >,flag= 1) · · · CE1 

(adjacent,pre =< z >,sue=< y >) • · ·CE2 

(station, name=< y >,flag= 0) ···CEa 

(station, name=< y >,flag= 0) 

(station, name=< y >,flag= 1). 

Rule r1 is a rule to find stations reachable from one station by train, which means that "if 
there is a reachable station, then the adjacent station is also reachable." Reachable stations are 
marked by "flag" attribute ( stations with fiag=1 are reachable and those with fiag=O have not 

yet been examined the reachability ). DB is referred to find reachable but not marked station, 

which will be marked in the action part. 

On the PS model introduced in Chapter 1, condition part of a rule may contain several 

variables in the predicate ( e.g., r1 contains two variables < z > and < y > ). Furthermore, 

they may be bound among CE's so that to have the same value ( e.g., in r1, < z > is bound 

between first attribute of CE1 and first attribute of CE2 ). Thus for example, a tuple of 

data ((station, name=tokyo, fiag=1), (adjacent, pre=tokyo, suc=kanda), (station, name=kanda, 
fiag=O)) satisfies the constraint on < z > and < y >, while ((station, name=tokyo, fiag=1), 
(adjacent, pre=tokyo, suc=kanda), (station, name=hiroshima, fiag=O)) does not satisfy it since 

< y > takes different value in CE2 (=kanda) and in CEa (=hiroshima). Precisely speaking, a 
given condition part of a rule and a tuple of data are said to be matched when both of following 

two conditions are held : 

1. For a given datum (in DB) and the corresponding CE, the datum has to be an instance 

of the CE (intra CE condition), and 

2. for given instances of C E1 and C E2, they have to satisfy the inter CE's constraint between 

C E1 and C E2 specified by bound variables. 0 



www.manaraa.com

474 

The target of MASS and other state-saving matching algorithms is to check above conditions 

effectively by saving the state of the matching operation. Intuitively, when the algorithm is 
applied, the inspection of whole DB and the check for all rules can be replaced by the check for 

the data newly added or deleted in the last action phase and the inspection of clusters related 

to the data. 
Figure 1 shows the outline of a concrete state-saving matching algorithm MASS. Algorithm 

MASS is composed of following three parts: (1) CT (Constant Test) processing (steps 1-7) (2) 

VT ( Variable Test ) processing (steps 8-19) (3) Generation of new conflict set (steps 20-24). 

3 Models for Parallel Matching 

In this chapter, execution models for the parallel matching are examined. Firstly, three kinds of 
parallelisms are extracted from MASS. Each of them will be represented as a parallel algorithm. 

Next in Section 3.2, three typical machine models for the parallel matching will be introduced. 

Each of them will be used as a simulation model in Chapter 4. 

3.1 Parallelism in MASS 

As was pointed out by Gupta, matching algorithms based on the state-saving method (e.g., 
MASS or Rete) also contains several kinds of parallelisms [4]. They are classified into following 
three types according to the level of the operation. (a) rule level OR parallelism in CT, (b) 

CE level AND/OR parallelism in VT, and (c) search level OR parallelism in VT. 
Figure 2 shows a parallel algorithm to support (a). Steps 3-6 of MASS can be executed by 

every CE's. For parallelism (b), we may merge two matching sequences for different rules, if 

they have an identical structure to save the processing time. Figure 3 shows a parallel algo

rithm to support (b). Parallelism (c) is positioned at the most primitive level of the matching 

operation. We could save the time for the operation by using a complicated data structure 

such as hash tables orB-trees. Figure 4 shows a parallel algorithm to support parallelism (c). 
Note that several techniques to save the processing time tend to reduce the degree of the par

allelism and to increase the overhead due to the complicated structure. Hence they would not 

be immediately applicable to the parallel execution. We have to carefully examine the trade-off 
on the effectiveness if we would improve the efficiency of the parallel processing applying these 
techniques. 

3.2 Machine Model 

3.2.1 The Number of Processors 

Gupta and Forgy provided several results about measurements on existent PS programs [3]. 

Their measurements are based on Rete algorithm and six existent PS programs with 100-2,000 

rules. The results concerned with parallel matching are summarized below (3]: 



www.manaraa.com

475 

(Al) About hundred attribute checks are made in CT per action in average, and the success 
rate is 5-15%. 

(A2) About ten clusters (a-nodes) are modified by an action in average. 

(A3) Dozens of CE's ( 20-40) are visited for VT processing (i.e., parallelism (b) ) per action 
in average. 

(A4) The sharing on (b) reduces the number of clusters to 20-50% and the number of AND 

evaluation among CE's to 80-100%. 

(AS) The sharing on (a) reduces the number of attribute check to 10-25%. 

Note that (A4) and (A5) are static properties of PS programs. (A2)-(A4) indicate that dozens 
of parallelism (32-64) is sufficient to support VT processing even if the sharing on (b) is not 
applied. Such locality of the state-saving matching operation is independent to the number of 
rules. For CT processing, 32-64 processors are sufficient as well. Consequently, we should adopt 
the machine model with at most 32-64 processors to support parallelism (a) and (b) effectively 

for general expert systems. 

3.2.2 Interconnection among Processors 

The parallel matching has the following properties : 

(B 1) Broadcasting of data and the collecting of rule instances are performed by every matching 

phase. 

(B2) The matching operation would have a dense and irregular structure. 

Hence, we should adopt an interconnection scheme with high connectivity and short diameter. 

Particularly, shared bus or multiple bus [10) would be reasonable because of the locality of 

activated clusters in VT processing (see Observation (A3)). 

3.2.3 Advantages of CAM 

CAM has become a practicable device for general computer systems [1]. The search level par

allelism includes a primitive operation suitable to CAM device, which is the search of data 
satisfying the predicates in a condition element. Although CAM device is available for the 
matching operation by itself [7), the effect of CAM increases in the following situations : 

( Cl) CAM is available if each predicate in CE's is simple or a composition of simple predicates. 

(C2) The number of data per cluster is sufficiently large and there exist no complicated data 

structures to support the data search effectively. 



www.manaraa.com

476 

In consequence, in following chapters, we will adopt the machine model with 32-64 processors 

on which CAM device may be used as the local memory. And we assert that those processors 

are connected to each other by shared bus or multiple bus. 

4 Simulation 

This chapter provides simulation results on the parallel matching. We firstly clarify the simu

lation model in Section 4.1. Simulation in later sections is classified according to the level of 

the parallelism, i.e., (1) the CE level parallelism, (2) the search level parallelism, and (3) the 

integration of them. 

4.1 Simulation Model 

We consider a shared bus ( or multiple bus ) connected multiprocessor system with at most 64 

processors in the following simulations. Firstly, we make several assumptions for simulation on 

the computation and the communication. 

Assume that every pattern matching between a datum and aCE takes a constant time tcomp· 
Thus in CT processing, test for each CE (i.e., a test-node in Rete ) takes tcomp time, while test 
for each CE in VT processing requires tcomp X n time where n means the number of data in the 
corresponding cluster. If CAM device is used for VT, the time reduces to tcomp x m where m is 
the number of successful data on the test. 

On the simulation in Section 4.2 [4], time for each node is weighted to reflect the effect of 

the use of a hash table, which is derived from the trace of simulation programs. Note that the 

weight is an average cost. 

Assumptions on communication among processors are summarized below. 

1. We consider contention free memory and shared bus, and each processor has an ideal (i.e. 
long enough) buffer for the communication. 

2. Each token is transmitted from one processor to others in tcomm time. 

3. We consider the communication overhead at the start of every data transmission. We 
assume that it takes tcommmJI• time per transmission. ( e.g., if n token are transmitted 

continuously, it takes tcomm X n + tcommmJh time ). 

The image of 1-3 is illustrated in Figure 5. 

The simulation in Section 4.2 assumes that the amount of tcammDDh during the program 

execution ( i.e., E tcomm""" ) reduces the total execution time to 60 % [4]. The simulation 

in Section 4.3 neglects tcommDDiu however, according to the experiment on a multiprocessor, 

tcmmnm•h would be negligible. In Section 4.4 we let tcomp = tcomn• + tcm"'"""'' to clarify the 
difference of two memory devices CAM and RAM (random access memory). 



www.manaraa.com

477 

4.2 CE Level Parallelism 

This section is a summary of (4]. Gupta further classified the CE level parallelism as follows. 

(1) Production parallelism 

Partition RB into several parts and perform VT for each parts independently. Note that 
it contains a redundancy, since matching sequences among different parts are not shared 
(the loss factor against sequential Rete is estimated about 1.64). 

(2) Node parallelism 

It is a direct parallel implementation of Rete on which VT is performed in parallel by CE 

as in Figure 3. To extract the parallelism, the sharing ratio should be reduced. The loss 
factor is about 1.22. 

(3) Intra-node parallelism 

Focusing on a CE to be examined, perform VT in parallel by token for the CE. The loss 
factor is the same as (2). 

(4) Action parallelism 

This parallelism includes CT besides VT, namely, for each datum in ll.DB(t-1), they are 

performed in parallel. Note that it can be applied together with (1)-(3). 

Gupta estimated the effect of 1-4 using eight existent PS programs. Programs consist of 100-

2,000 rules, and during the execution, 1,000-3,000 data are manipulated by rules. Matching 
processes are allocated onto processors as follows : (a) it allocates each cluster onto (plural) 
processors without the decomposition, and (b) the allocation is performed dynamically.· Table 
1 summarizes the results on which the average of eight programs is represented. 

In this table, two kinds of speedup measurements are represented. Nominal means the 

speedup against the sequential execution including some overhead due to the parallel execution 

(e.g., synchronization or scheduling), while true means the speedup against that without any 
overhead (i.e., the fastest sequential execution). 

From Table 1, we can assert the following facts. 

1. The speedup ratio is less than 10 without (4). It is caused by the irregularity of load in 

the parallel execution besides the essential parallelism indicated in Section 3.2 (A). 

2. The speedup ratio does not exceed 20 even if (4) is applied. It suggests that the degree of 
the parallelism on ( 4) is rather low on most PS programs. 

3. The total loss factor due to merge, scheduling, and synchronization reduces the effect of 
the parallel execution to one half or one third (e.g., we could obtain only twice speedup 

with (1)). 



www.manaraa.com

478 

Above examination implies that we can not achieve a significant (e.g. 100-1,000 folds) speedup 

only by the CE level parallelism, since the effect would be at most 10 folds. From another 

viewpoint, to support the parallelism effectively, a shared bus connected multiprocessor system 

consisting of at most 20 powerful ruse processors is sufficient as is pointed out by (5] as long 

as it applies only the CE level parallelism. 

4.3 Search Level Parallelism 

To estimate the effect of search level parallel processing of VT, we implemented procedure of 

Figure 4 on prototype multiprocessor UNIP. UNIP is a bus-connected multiprocessor with 31 

processors (1 master and 30 slave processors). 

Matching processes are allocated onto the multiprocessor as follows : (a) each cluster is 

partitioned into p subclusters where p means the number of available processors, and (b) a 

subclusters is allocated to a processor. The partition and the allocation of clusters are performed 
dynamically. UNIP provides two kinds of communication schemes at the hardware level, which 

are (1) broadcasting from master to all slaves and (2) point-to-point communication between 

master and each of slaves. Thus the broadcasting from arbitrary slaves has to be simulated using 

above facilities. To reduce the communication overhead L: tcommovlu the data transmission at 
step· 5 of Exam is suspended until current Buff(i) becomes empty ( thus the communication 

occurs synchronously ) . 

Simulation was performed in two steps, i.e., (1) preliminary software simulation to estimate 

the degree of the search level parallelism in the matching operation, and (2) simulation on the 

multiprocessor to evaluate the availability and the feasibility. We used two programs (Search1 

and Search2) for our experiments. 

Figure 6 shows results of the preliminary experiment. For the comparison, the effect of 

the CE level parallelism is also illustrated. The search level parallelism is more significant in 

Search1, while it is less significant in Search2. It means that if the DB size is large and the CE 

level parallelism is small, the availability of the search level parallelism for the speedup would 

be increased. 

Next we implemented problem Search1 on UNIP. Figure 7 shows a result of the scaling. On 

the scaling, we assume 10 MIPS CPU (e.g., 'lransputer [15]) and 100 Mbyte/sec communica

tion rate (5]. Figure 8 shows an ideal speedup based on preliminary experiments on which no 

scheduling time ( i.e., time for partition and allocation of clusters ) is considered. Because the 

curve in Figure 7 including scheduling time is close to the ideal curve in Figure 8, we can assert 

that the scheduling time on our scheme is sufficiently small to be negligible. It is contrastive 

to that the CE level parallelism requires a hardware scheduler to support the dynamic cluster 

allocation effectively (4]. 



www.manaraa.com

479 

4.4 Multiprocessor with CAM Local Memory 

The use of CAM device would increase the speed for the matching operation. To verify it by 
the simulation, we used following two programs. 

(EFarmer) An extension of "farmer's dilemma." consisting of 4 rules and 4 clusters. It is 
extended as follows : (1) the number of objects ( foxes, geese, and corn ) is n, which is used as 
a. parameter, and (2) geese ( corn) are eaten by foxes (geese ) when the number of geese ( corn 
) is equal to the number of foxes ( geese ) minus 2 or less. 

(EMonkey) An extension of monkey and banana's problem consisting of 20 rules and 20 
clusters. It is extended so that n redundant objects, which will be used as a parameter, are 
scattered in the room at the initial state. 

Figure 9 shows the effect of CAM on EFa.rmer on which single processor is assumed. The 
horizontal axis indicates the times of rule execution, and the vertical axis indicates the times of 
memory access during the program execution. Obviously, the frequency of the memory access 
can be reduced by using CAM ( note that similar speedup could be obtained using a. more 
complicated data. structure such as hash tables ). 

The performance of multiprocessor with CAM is evaluated by problem EMonkey. Matching 
processes are allocated onto processors as follows : each cluster is allocated onto a. processor in 
static without the decomposition. The CE level parallelism is supported by the multiprocessor, 
and the search level parallelism is supported by CAM adopted to each of processors. When the 
number of redundant objects n is sma.llm the speedup ratio is not so significant. However, as the 
number increases, the speedup ratio becomes remarkable. Furthermore, the difference between 
RAM and CAM will be expanded if we use an interconnection network with broad bandwidth. 
In the simulation, we assumed the use of a. multipart memory (denoted by 3-D CM ). 

5 Discussion 

From results in the last chapter, we have obtained following observations. 
Firstly, the CE level parallelism is not so significant for actual PS programs. It is due 

to the rule level synchronization at each conflict resolution phase and the locality of the DB 
modification. The first reason will be removed if we can apply parallel rule execution discussed 

in Section 2.2, however, the second reason is essential problem for the speedup. It means that the 

CE level parallelism contains an obvious limitation for the speedup. The search level parallelism, 
on the other hand, seems to have more possibility for the speedup. 

The originalities of our research are described as follows. Firstly, we applied two kinds of 
multiprocessor architectures different from tree-structured parallel processors [14][13), i.e. (a.) a. 
shared bus connected multiprocessor system, and (b) the use of advanced VLSI technology on 
the architecture. Both of them will be used to implement the search level parallelism effectively. 

We proposed a new parallel matching scheme based on (a.) on which load balancing during the 

matching operation can be effectively achieved with low scheduling overhead. It is expected to 



www.manaraa.com

480 

break the limitation of the CE level parallelism. In fact, if there are a large number of data 
to be searched ( e.g., several pages per cluster ) and if any other techniques to accelerate the 
DB search (e.g., hash tables or CAM ) are disable, the availability of the scheme based on (a) 
would be increased. 

The latter architecture, on the other hand, is assumed to integrate both of above two par
allelisms. Although CAM is powerful to support the search level parallelism by itself as shown 
in Figure 9, it can be further accelerated by coupling it·with a high speed communication net
work. It is obvious that the proposed scheme based on (b) illustrates the essential limitation 
on the speedup of the matching operation by the parallel processing, since there are no more 
parallelisms to be extracted. 

In this paper, we considered no trade-off due to the implementation cost or other practical 
factors, since the target of the paper is to illustrate the possibility and the limitation on the 
speedup by the parallel processing of the matching operation. In practice, therefore, although 
the scheme based on (b) is preferable to speedup the matching operation for building a real-time 
PS, we should select the scheme based on (a) if we consider the current technologies. The VLSI 
technology to realize an ideal multi port memory assumed in (b) is just at an experimental level, 
though it will be at an practical level within the next decade. 

6 Remarks 

Results obtained in this paper are summarized below. 

1. The parallel matching to speed up the computation of PS programs is experimentally 
examined. The matching operation contains two level parallelisms, i.e., the CE level and 
the search level. The former has an obvious limitation for the speedup caused by the 
nature of PS programs. Thus to reduce the computation time as much as possible, we 
should focus on the latter parallelism as well. 

2. To extract the search level parallelism, two kinds of parallel processing architectures are 
assumed. Based on the architectures, two parallel matching schemes to support the search 
level parallelism are newly proposed. The allocation of the schemes onto the parallel 
processing architectures are also illustrated. 

3. The availability of the proposed schemes are verified using benchmark programs. The 
simulation results show us the possibility of the search level parallelism for the further 
speedup of the matching operation. 

References 

[1] L.Chisvin and R.J.Duckworth, "Content-Addressable and Associative Memory: Alterna

tives to the Ubiquitous RAM," IEEE Computer, 22, 7 (July 1989) 51-64. 



www.manaraa.com

481 

[2) C.L.Forgy, "Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match 

Problem," Artif. Intel., 19 {1982) 17-37. 

[3) A.Gupta and C.L.Forgy: Mesurements on Production Systems, Technical Report CMU-CS-

83-167, Crnegie-Mellon Univ. (1983). 

[4) A.Gupta: Parallelism in Production Systems, Pitman Publishing (1987). 

[5) A.Gupta, et al.: Results of Parallel Implementation of OPS5 on the Encore Multiprocessor, 
Techinical Report CMU-CS-87-146, Carnegie-Mellon Univ. (1987). 

[6) T.Ishida, "Optimizing Condition Parts of Production System Programs," 77-ans. IPS Japan, 
29, 12 (Dec.1988) 1158-1169, in Japanese. 

[7) P.M.Kogge, et al., "VLSI and Rule-Based Systems," Proc. of Int'l Workshop on VLSI for 
Artif. Intel. (July 1988) D3. 

[8) J .McDermott, et al., "The Efficiency of Certain Production System Implementations," Pat
tern Directed Inference Systems Academic Press (1978) 155-176. 

[9) J.Miyazaki, et al., "A Shared Memory Architecture for MANJI Production System", 

Database Machines and Knowledge Base Machines, Kluwer Academic Pblishers (1988) 517-
531. 

[10) T.N.Mudge,et al., "Multiple Bus Architectures," IEEE Computer, 20, 6 (June 1987) 42-48. 

[11) L.L.Schor,et al., "Advances in Rete Pattern Matching," Proc. of AAAI-86, IEEE (1987) 
166-169. 

[12) F.Schreiner and G.Zimmermann, "PESA 1 - A Parallel Architecture for Production Sys
tems," Proc. of 1987 ICPP, IEEE (1987) 166-169. 

[13] D.E.Shaw, "On the Range of Applicability of an Artificial Intelligence Machine," Artij. 
Intel., 32 {1987) 151-172. 

[14) S.J.Stolfo, "Initial Performance of the DAD0-2 Prototype," IEEE Computer, 20, 1 

(Jan.1987) 75-83. 

[15) C.Whitby-Strevens, "The Transputer," Proc. of 12th International Symposium on Com
puter Architecture (June 1985) 292-300. 



www.manaraa.com

482 

procedure MASS 

input: CS(t-1) I* the conflict set at (t-1)th cycle *I 
1:J.. DB(t-1) /* differential of DB at (t-1)th cycle *I 
all CE~s /* the clustered database *I 

output: CS(t) /*the conflict set at t-th cycle *I 

begin 

1: Buff := ¢>; /* CT Processing *I 
2: for ali condition element CEi 

3: for all data in l:l.DB(t- 1) 

4: if data and CEi satisfy condition (1) then { 

5: T := <id of CEi, tag of data, value of data>; 

6: Buff:= BuffU {r}}; 

7: l:l.CS:=if>; /* VT processing *I 
8: repeat { 

9: pick up a token from Buff; 

10: if token is a rule instance 

11: then l:l.CS := l:l.CS U {token} 

else for each CEi to be examined { 

sign := ( tag of token) x (tag of CEi ); 

for all data in C Ei 

/* database search *I 12: 

13: 

14: 

15: 

16: 

17: 

18: 

19: 

20: 

if token and data satisfy condition (2) then { 

id := id determined by token and CEii 

T :=<id, sign, token U data >; 

Buff := Buff U{ T}} }; 
until Buff=¢>}; 

CS(t) := CS(t-1); 

21: for all token in l:l.CS 

22: if tag of token is plus 

/*Generation of CS(t) */ 

23: then CS(t) := CS(t) U {token} 

24: else CS(t) := CS(t)- {token} 

end. 

Figure 1 State-saving matching algorithm MASS 



www.manaraa.com

483 

I* parallelized CT processing *I 

1: Buff:= tP; 
2: for all condition element CEi do in parallel 

3: for all data in A.DB(t- 1) 

4: steps 4-6 of MASS; 

Figure 2 CT processing to support CE level parallelism. 

/* stream-or VT processing ( on processor i ) *I 

1: A.CS(i) := t/1; 
2: repeat { 

3: pick up a. token from Buff(i); 

4: if the token is a. rule instance 

5: then A.CS(i) := A.CS(i) U {token} 

6: else if the token is concerned with processor i then 

7: for each CEi to be examined { 

8: sign := ( tag of token ) x ( tag of C Ei ) ; 

9: for all data in CEi Exam(data, token, sign)}; 

10: until Buff(i)'s for all i are empty }; 

procedure Exam(data, token, sign) 

begin 

1: 

2: 

3: 

4: 
5: 

if token a.nd data satisfy condition (2) then { 

id := id determined by token a.nd CEii 

T := <id, sign, token U data>; 

for all i 

Buff(i) := Buff(i)U{ T}} 
end. 

/* broadcast of data *I 

Figure 3 VT processing to support CE level parallelism. 



www.manaraa.com

484 

/* search-or VT processing ( on processor i ) * / 

1: ~CS(i) := i/J; 
2: repeat { 

3: pick up a token from Buff(i); 

4: if token is a rule instance 

5: then ~CS(i) := ~CS(i) U {token} 

6: 

7: 

else for each C Ei to be examined { 

sign:= (tag oftoken)x(tag ofCEi)i 

/* database search * / 

8: for all data in CEi do in parallel Exam(data, token, sign)}; 

9: until Buff(i)'s for all i are empty }; 

Figure 4 VT processing to support search level parallelism. 

overhead token 

I I I I ---

IE ~I w 
tcornmovh tcomm 

Figure 5 Assumptions on communication. 



www.manaraa.com

485 

speedup r-----------------------------------------------~ 
[times] 

10 

5 

0 

speedup 

[times] 

10 

5 

0 

1 2 

[] 

[] 

1 2 

(a) Problem Search1 

0 

search level parallelism 

0 

CE level parallelism 

4 8 16 
number of processors 

(b) Problem Search2 

CE level parallelism 

0 0 0 a e e E) 

[] search level parallelism 

4 8 16 
number of processors 

Figure 6 Preliminary experiments on the search level parallelism. 



www.manaraa.com

486 

10,----------------------------------------. 

speedup 

[times] 

5 

Problem Sea.rchl ( 10 MIPS, 100 Mbytefsec } 

0 1 2 4 8 
number of processors 

Figure 7 Speedup on a. high speed multiprocessor 

( including tCDmlliDflh ) • 

16 

10,----------------------------------------. 

speedup 

[times] 

5 

Problem Search! ( 10 MIPS, 100 Mbytefsec } 

0 1 2 4 8 
number of processors 

Figure 8 Speedup on a high speed multiprocessor 

( without tCDmlliDflh ). 

0 

16 



www.manaraa.com

487 

number of 
steps 

108 Problem E_Farmer 

105 
without CAM 

104 

103 

102 

101 

100 

10° 101 102 103 

number of cycles 

Figure 9 Effect of CAM on a single processor. 



www.manaraa.com

488 

Table 1 Simulation results on CE level parallelism [4]. 

Type of Speedup ratio Saturation Overhead 

Parallelism nominal true 

(1) ( +(4) ) 5.1 (7.6) 1.9 (1.5) 

(2) ( +(4)) 5.8 (10.7) 2.9 (5.4) 

(3) ( +(4)) 7.6 (19.3) 3.9 (10.2) 

(1) Production parallelism 

(3) Intra-node parallelism 

Notes: 

No. of Proc. merge 

16tv32 1.64 

16tv32 1.22 

32tv64 1.22 

(2) Node parallelism 

( 4) Action parallelism 

(a) Speedup ratio is the average of 8 programs. 

total 

2.65 

1.98 

1.98 

Nominal is the speedup for sequential execution assuming overhead, 

and true is the speedup for that assuming no overhead. 

(b) Overhead factor due to "synchronization and scheduling" is 1.62. 

(i.e., 2.65=1.64x1.62, and 1.98=1.22x1.62) 



www.manaraa.com

Author Index Volume I 

Aarts, E.H.L. 166 Matherat, Ph. 83 
Alvarez, C. 288 Mattern, F. 137 
Balcazar, J.L. 288 Milikowski, R. 119 
Baumslag, M. 179 Mongenet, C. 236 
Das, Sajal K. 270 Monti, J .-M. 355 
Dongen, V. Van 191 Muller, H.L. 52 
Duato, J. 390 Opatrny, J. 179 
Ferianc, P. 209 Pakzad, S.H. 321 
Filloque, J .M. 69 Parberry, I. 252 
Gabarr6, J. 288 Paris, N. 83 
Gao, G.R. 34/355 Pilar de la Torre 6 
Gautrin, E. 69 Piquer, J.M. 150 
Govindarajan, R. 372 Pottier, B. 69 
Hagerup, T. 304 Rajopadhye, S. 219 
Hertzberger, 1.0. 52 Santha, M 288 
Heydemann, M.C. 179 Schmitt, A 304 
Hoogvorst, P. 83 Seidl, H. 304 
Horng, Wen-Bing 270 Sotteau, D. 179 
Hum, H.H.J. 34/355 Sykora, 0. 209 
Hurson, A.R. 321 Tel, G. 137 
llmberger, H. 406 Thiirmel, S. 406 
Jin, B. 321 Treleaven, P.C. 25 
Johnsson, Th. 1 Vasell, Je. 101 
Keryell, R. 83 Vasell, Jo. 101 
Karst, J .H.M. 166 Vree, W.G. 119 
Kruskal, C.P. 6 Wessels, J. 166 
Langendoen, K.G. 52 Yu, Sheng 372 
Lenstra, J.K. 166 Zhong, X. 219 
Louri, A. 338 



www.manaraa.com

Lecture Notes in Computer Science 
For information about Vols. 1-411 
please contact your bookseller or Springer-Verlag 

Vol. 412: L.B. Almeida, C.J. Wellekens (Eds.), Neural Net· 
works. Proceedings, 1990. IX, 276 pages. 1990. 

Vol. 413: R. Lenz, Group Theoretical Methods in Image 
Processing. Vlll, 139 pages. 1990. 

Vol. 414: A. Kreczmar, A. Salwicki, M. Warpechowski, 
LOGLAN '88- Report on the Programming Language. X, 133 
pages. 1990. 

Vol. 415: C. Choffrut, T. Lengauer (Eds.), STACS 90. 
Proceedings, 1990. VI, 312 pages. 1990. 

Vol. 416: F. Bancilhon, C. Thanos, D. Tsichritzis (Eds.), 
Advances in Database Technology- EDBT '90. Proceedings, 
1990. IX, 452 pages. 1990. 

Vol. 417: P. Martin-LOf, G. Mints (Eds.), COLOG-88. Inter
national Conference on Computer Logic. Proceedings, 1988. 
VI, 338 pages. 1990. 

Vol. 418: K.H. Blasius, U. Hedtstlick, C.-R. Rollinger (Eds.), 
Sorts and Types in Artificial Intelligence. Proceedings, 1989. 
Vlll, 307 pages. 1990. (Subseries LNAI). 

Vol. 419: K. Weichselberger, S. Pohlmann, A Methodology for 
Uncertainty in Knowledge-Based Systems. Vlll, 136 pages. 1990 
(Subseries LNAI). 

Vol. 420: z. Michalewicz (Ed.), Statistical and Scientific 
Database Management, V SSDBM. Proceedings, 1990 V, 256 
pages. 1990. 

Vol. 421: T. Onodera, S. Kawai, A Formal Model of 
Visualization in Computer Graphics Systems. X, I 00 pages. 
1990. 

Vol. 422: B. Nebel, Reasoning and Revision in Hybrid 
Representation Systems. XU, 270 pages. 1990 (Subseries LNAI). 

Vol. 423: L.E. Deimel (Ed.), Software Engineering Education. 
Proceedings, 1990. VI, 164 pages. 1990. 

Vol. 424: G. Rozen berg (Ed.), Advances in Petri Nets 1989. VI, 
524 pages. 1990. 

Vol. 425: C.H. Bergman, R.D. Maddux, D.L. Pigozzi (Eds.), 
Algebraic Logic and Universal Algebra in Computer Science. 
Proceedings, 1988. XI, 292 pages. 1990. 

Vol. 426: N. Houbak, SIL- a Simulation Language. VII, 192 
pages. 1990. 

Vol. 427:0. Faugeras (Ed.), Computer Vision-ECCV 90. Pro
ceedings, 1990. XII, 619 pages. 1990. 

Vol. 428: D. Bj¢mer, C.A.R. Hoare, H. Langmaack (Eds.), VDM 
'90. VDM and Z- Formal Methods in Software Development. 
Proceedings, 1990. XVII, 580 pages. 1990. 

Vol. 429: A. Miola (Ed.), Design and Implementation of 
Symbolic Computation Systems. Proceedings, 1990. XII, 284 
pages. 1990. 

Vol.430: J.W. de Bakker, W.-P. de Roever, G. Rozenberg(Eds.), 
Stepwise Refinement of Distributed Systems. Models, 
Formalisms, Correctness. Proceedings, 1989. X, 808 pages. 
1990. 

Vol. 431: A. Arnold (Ed.), CAAP '90. Proceedings, 1990. VI, 
285 pages. 1990. 

Vol. 432: N. Jones (Ed.), ESOP '90. Proceedings, 1990. IX, 
436 pages. 1990. 

Vol. 433: W. SchrOder-Preikschat, W. Zimmer (Eds.), Progress 
in Distributed Operating Systems and Distributed Systems 
Management. Proceedings, 1989. V, 206 pages. 1990. 

Vol. 434: J.-J. Quisquater, J. Vandewalle (Eds.), Advances in 
Cryptology- EUROCRYPT '89. Proceedings, 1989. X, 710 
pages. 1990. 

Vol. 435: G. Brassard (Ed.), Advances in Cryptology- CRYPTO 
'89. Proceedings, 1989. Xlll, 634 pages. 1990. 

Vol. 436: B. Steinholtz, A. S¢\vberg, L. Bergman (Eds.), Ad
vanced Information Systems Engineering. Proceedings, 1990. 
X, 392 pages. 1990. 

Vol. 437: D. Kumar (Ed.), Current Trends in SNePS- Semantic 
Network Processing System. Proceedings, 1989. VII, 162 pages. 
1990. (Subseries LNAI). 

Vol. 438: D.H. Norrie, H.W. Six (Eds.), Computer Assisted 
Learning- ICCAL '90. Proceedings, 1990. VII, 467 pages. 1990. 

Vol. 439: P. Gorny, M. Tauber (Eds.), Visualization in Human
Computer Interaction. Proceedings, 1988. VI, 274 pages. 1990. 

Vol. 440: E. Borger, H. Kleine Btining, M.M. Richter (Eds.), 
CSL '89. Proceedings, 1989. VI, 437 pages. 1990. 

Vol. 441: T. Ito, R.H. Halstead, Jr. (Eds.), Parallel Lisp: 
Languages and Systems. Proceedings, 1989. XII, 364 pages. 
1990. 

Vol. 442: M. Main, A. Melton, M. Mislove, D. Schmidt (Eds.), 
Mathematical Foundations of Programming Semantics. 
Proceedings, 1989. VI, 439 pages. 1990. 

Vol. 443: M.S. Paterson (Ed.), Automata, Languages and Pro
gramming. Proceedings, 1990. IX, 781 pages. 1990. 

Vol. 444: S. Ramani, R. Chandrasekar, K.S.R. Anjaneyulu 
(Eds.), Knowledge Based Computer Systems. Proceedings, 
1989. X, 546 pages. 1990. (Subseries LNAI). 

Vol. 445: A.J.M. van Gasteren, On the Shape of Mathematical 
Arguments. Vlll, 181 pages. 1990. 

Vol. 446: L. PlUmer, Termination Proofs for Logic Programs. 
Vlll ,142 pages. 1990. (Subseries LNAI). 

Vol. 447: J.R. Gilbert, R. Karlsson (Eds.), SWAT '90. 2nd 
Scandinavian Workshop on Algorithm Theory. Proceedings. 
1990. VI, 417 pages. 1990. 

Vol. 448: B. Simons, A. Spector (Eds.), Fault Tolerant 
Distributed Computing. VI, 298 pages. 1990. 

Vol. 449: M.E. Stickel (Ed.), lOth International Conference on 
Automated Deduction. Proceedings, 1990. XVI, 688 pages. 
1990. (Subseries LNAI). 

Vol. 450: T. Asano, T. Ibaraki, H. Imai, T. Nishizeki (Eds.), 
Algorithms. Proceedings, 1990. Vlll, 479 pages. 1990. 

Vol. 451: V. Marik, 0. Stepankova, Z. Zdrihal (Eds.), Artificial 
Intelligence in Higher Education. Proceedings, 1989. IX, 247 
pages. 1990. (Subseries LNAI). 

Vol. 452: B. Rovan (Ed.), Mathematical Foundations of Com
puter Science 1990. Proceedings, 1990. Vlll, 544 pages. 1990. 



www.manaraa.com

Vol. 453: J. Sebeny, J. Pieprzyk (Eds.), Advances in Cryptology 
- AUSCRYPT '90 Proceedings, 1990. IX. 462 pages. 1990. 

Vol. 454: V. Diekert, Combinatorics on Traces. XU, 165 pages. 
1990. 

Vol. 455: C.A. Floudas, P.M. Pardalos, A Collection of Test 
Problems for Constrained Global Optimization Algorithms. XIV, 
180 pages. 1990. 

Vol. 456: P. Deransart, J. Maluszyn'ski (Eds.), Programming 
Language Implementation and Logic Programming. 
Proceedings, 1990. V111, 401 pages. 1990. 

Vol. 457: H. Burkhart (Ed.), CONPAR '90- VAPP IV. Pro
ceedings, 1990. XIV, 900 pages. 1990. 

Vol. 458: J.C.M. Baeten, J.W. Klop (Eds.), CONCUR '90. Pro· 
ceedings, 1990. Vll, 537 pages. 1990. 

Vol. 459: R. Studer (Ed.), Natural Language and Logic. Pro
ceedings, 1989. Vll, 252 pages. 1990. (Subseries LNAI). 

Vol. 460: J. Uhl, H.A. Schmid, A Systematic Catalogue of Re
usable Abstract Data Types. XU, 344 pages. 1990. 

Vol. 461: P. Deransart, M. Jourdan (Eds.), Atrribute Grammars 
and their Applications. Proceedings, 1990. V111, 358 pages. 1990. 

Vol. 462: G. Gottlob, W. Nejdl (Eds.), Expert Systems in Engi
neering. Proceedings, 1990. IX, 260 pages. 1990. (Subseries 
LNAI). 

Vol. 463: H. Kirchner, W. Wechler (Eds.), Algebraic and Logic 
Programming. Proceedings, 1990. Vll, 386 pages. 1990. 

Vol. 464: J. Dassow, J. Kelemen (Eds.), Aspects and Prospects 
of Theoretical Computer Science. Proceedings, 1990. VI, 298 
pages. 1990. 

Vol. 465: A. Fuhrmann, M. Morreau (Eds.), The Logic of Theory 
Change. Proceedings, 1989. X, 334 pages. 1991. (Subseries 
LNAI). 

Vol. 466: A. Blaser (Ed.), Database Systems of the 90s. 
Proceedings, 1990. V111, 334 pages. 1990. 

Vol. 467: F. Long (Ed.), Software Engineering Environments. 
Proceedings, 1969. VI, 313 pages. 1990. 

Vol. 468: S.G. Akl, F. Fiala, W.W. Koczkodaj (Eds.), Advances 
in Computing and Information - !CCI '90. Proceedings, 1990. 
VII, 529 pages. 1990. 

Vol. 469: I. Guessarian (Ed.), Semantics of Systeme of 
Concurrent Processes. Proceedings, 1990. V, 456 pages. 1990. 

Vol. 470: S. Abiteboul, P.C. Kanellakis (Eds.), ICDT '90. Pro
ceedings, 1990. Vll, 528 pages. 1990. 

Vol. 471: B.C. Ooi, Efficient Query Processing in Geographic 
Information Systems. V111, 208 pages. 1990. 

Vol. 472: K.V. Nori, C.E. Veni Madhavan (Eds.), Foundations 
of Software Technology and Theoretical Computer Science. 
Proceedings, 1990. X, 420 pages. 1990. 

Vol. 473: I.B. DamgArd (Ed.), Advances in Cryptology -
EUROCRYPT '90. Proceedings, 1990. V111, 500 pages. 1991. 

Vol. 474: D. Karagiannis (Ed.), Information Syetems and 
Artificial Intelligence: Integration Aspects. Proceedings, 1990. 
X, 293 pages. 1991. (Subseries LNAI). 

Vol. 475: P. Schraeder-Heister (Ed.), Extensions of Logic Pro
gramming. Proceedings, 1989. V111, 364 pages. 1991. (Subseries 
LNAI). 

Vol. 476: M. Filgueiras, L. Damas, N. Moreira, A.P. Tomas 
(Eds.), Natural Language Processing. Proceedings, 1990. VII, 
253 pages. 1991. (Subseries LNAij. 

Vol. 477: D. Hammer (Ed.), Compiler Compilers. Proceedings, 
1990. VI, 227 pages. 1991. 

Vol. 478: J. van Eijck (Ed.), Logics in AI. Proceedings, 1990. 
IX, 562 pages. 1991. (Subseries in LNAI). 

Vol. 480: C. Choffrut, M. Jantzen (Eds.), STACS 91. 
Proceedings, 1991. X, 549 pages. 1991. 

Vol. 481: E. Lang, K.-U. Carstensen, G. Simmons, Modelling 
Spatial Knowledge on a Linguistic Basis. IX, 138 pages. 1991. 
(Subseries LNAI). 

Vol. 482: Y. Kodratoff (Ed.), Machine Learning- EWSL-91. 
Proceedings, 1991. XI, 537 pages. 1991. (Subseries LNAI). 

Vol. 483: G. Rozenberg (Ed.), Advances In Perri Nets 1990. VI, 
515 pages. 1991. 

Vol. 484: R. H. Mohring (Ed.). Graph-Theoretic Concepts In 
Computer Science. Proceedings, 1990. IX, 360 pages. 1991. 

Vol. 485: K. Furukawa, H. Tanaka. T. Fullsaki (Eds.), Logic 
Programming '89. Proceedings, 1989. IX, 183 pages. 1991. 
(Subseries LNAI) 

Vol. 486: J. van Leeuwen. N. Santoro (Eds.). Disrributed Algo
rithms. Proceedings, 1990. VI, 433 pages. 1991. 

Vol. 487: A. Bode (Ed.). Dlsrributed Memory Computing. Pro
ceedings, 1991. XI, 506 pages. 1991 

Vol. 488: R. V. Book (Ed.). Rewriting Techniques and Appli
cations. Proceedings, 1991. VII, 458 pages. 1991. 

Vol.489: J. W. de Bakker, W. P. de Roever, G. Rozenberg(Eds.), 
Foundations of Object-Oriented Languages. Proceedings, 1990. 
VIII, 442 pages. 1991. 

Vol. 490: J. A. Bergstra, L. M.G. Feljs (Eds .), Algebraic Meth
ods II: Theory, Tools and Applications. VI, 434 pages. 1991. 

Vol. 491: A. Yonezawa, T. Ito (Eds.). Concurrency: Theory, 
Language, and Architecture. Proceedings, 1989. VIII, 339 pages. 
1991. 

Vol. 492: D. Sriram, R. Logcher, S. Fukuda (Eds.). Computer
Aided Cooperative Product Development. Proceedings, 1989 
VII, 630 pages. 1991. 

Vol. 493: S. Abramsky, T. S. E. Maibaum (Eds.). TAPSOFT 
'91. Volume 1. Proceedings, 1991. VIII, 455 pages. 1991. 

Vol. 494: S. Abramsky, T. S. E. Maibaum (Eds.). TAPSOFT 
'91. Volume 2. Proceedings, 1991. VIII, 482 pages. 1991 

Vol. 495: 9. Thalheim, J. Demetrovics, H.-D. Gerhardt (Eds.), 
MFDBS '91. Proceedings, 1991. VI, 395 pages. 1991. 

Vol. 497: F. Dehne, F. Fiala. W.W. Koczkodaj (Eds. ), Advances 
in Computing and Intormation- !CCI '91 Proceedings, 1991. 
VIII, 7 45 pages. 1991. 

Vol. 498: R . .Andersen, J. A. Bubenko jr., A. S~lvberg (Eds.), 
Advanced Information Systems Engineering. Proceedings, 1991. 
VI, 579 pages. 1991. 

Vol. 499: D. Christodoulakis (Ed.), Ada: The Choice for '92. 
Proceedings, 1991. VI, 411 pages. 1991. 

Vol. 500: M. Held, On the Computational Geometry of Pocket 
Machining. XII, 179 pages. 1991. 

Vol. 501: M. Bidoit, H.-J. Kreowski, P. Lescanne, F. Orejas, D. 
Sannella (Eds.). Algebraic System Specification and Develop
ment. VIII, 98 pages. 1991. 

Vol. 502: J. Bllrzdi1)1!, D. Bjf/lrner (Eds.), Baltic Computer Sci
ence. X, 619 pages. 1991. 

Vol. 503: P. America (Ed.), Parallel Database Systems. Pro
ceedings, 1990. VIII, 433 pages. 1991. 

Vol. 504: J. W. Schmidt, A. A. Stogny (Eds.), Next Generation 
Information System Technology. Proceedings, 1990. IX, 450 
pages. 1991. 

Vol. 505: E. H. L. Aarts, J. van Leeuwen, M. Rem (Eds.), PARLE 
'91. Parallel Architectures and Languages Europe, Volume I. 
Proceedings, 1991. XV, 423 pages. 1991. 

Vol. 506: E. H. L. Aarts, J. van Leeuwen, M. Rem (Eds.), PARLE 
'91. Parallel Architectures and Languages Europe, Volume II. 
Proceedings, 1991. XV, 489 pages. 1991. 



www.manaraa.com

Author Index Volume II 

Ae, T. 471 Koutny, M. 59 
Alonso, L.M. 75 Lavington, S. 349 
Autant, C. 295 Lin, Chih-Ming 331 
Bakker, J.W. de 27 Magee, J. 313 
Beaumont, A. 403 Millot, D. 92 
Belmesk, Z. 295 Misra, J. 1 
Bouge, L. 166 Muthu Raman, S. 403 
Briat, J. 385 Nocker, E.G.J.M.H. 202 
Carlsson, M. 439 Palamidessi, C. 238 
Chassin de Kergommeaux, J. 385 Peiia, R. 75 
Delft, A. van 220 Plasmeijer, M .J. 202 
Delgado-Rannauro, S.A. 421 Sami, Y. 110 
Dulay, N. 313 Schnoebelen, Ph. 295 
Eekelen, M.C.J.D. van 202 Schuerman, K. 421 
Factor, M. 277 Shapiro, E. 58 
Fanchon, J. 92 Smetsers, J.E.W. 202 
Favre, M. 385 Singh, Ambuj K. 128 
Fujita, S. 471 Sun, Chengzheng 454 
Gao, Yaoqing 454 Szeredi, P. 403,439 
Gaudiot, J.-L. 331 Veron, A. 421 
Geyer, C. 385 Vidal-Naquet, G. 110 
Giddings, B. 349 Vink, E.P. de 27 
Hankin, C. 367 Waite, M. 349 
Haridi, S. 238 Warren, D.H.D. 403 
Hooman, J. 184 Xu, Jiyang 421 
Hu, Shouren 454 Yamashita, M. 471 
Hwang,-Zhiyi 454 Yang, R. 439 
Jagannathan, S. 254 Yantchev, J.T. 148 
Janicki, R. 59 



www.manaraa.com

Lecture Notes in Computer Science 
For information about Vols. 1-411 
please contact your bookseller or Springer-Verlag 

Vol. 412: L.B. Almeida, C.J. Wellekens (Eds.), Neural Net
works. Proceedings, 1990. IX, 276 pages. 1990. 

Vol. 413: R. Lenz, Group Theoretical Methods in Image 
Processing. Vlll, 139 pages. 1990. 

Vol. 414: A. Kreczmar, A. Salwicki, M. Warpechowski, 
LOG LAN "88- Report on the Programming Language. X, 133 
pages. 1990. 

Vol. 415: C. Choffrut, T. Lengauer (Eds.), STACS 90. 
Proceedings, 1990. VI, 312 pages. 1990. 

Vol. 416: F. Bancilhon, C. Thanos, D. Tsichritzis (Eds.), 
Advances in Database Technology- EDBT "90. Proceedings, 
1990. IX, 452 pages. 1990. 

Vol. 417: P. Martin-Uif, G. Mints (Eds.), COLOG-88. Inter
national Conference on Computer Logic. Proceedings, 1988. 
VI, 338 pages. 1990. 

Vol. 418: K.H. Blasius, U. Hedtsttick, C.-R. Rollinger (Eds.), 
Sorts and Types in Artificial Intelligence. Proceedings, 1989. 
Vlll, 307 pages. 1990. (Subseries LNAI). 

Vol. 419: K. Weichselberger, S. Pohlmann, A Methodology for 
Uncertainty in Knowledge-Based Systems. Vlll, 136 pages. 1990 
(Subseries LNAI). 

Vol. 420: Z. Michalewicz (Ed.), Statistical and Scientific 
Database Management, V SSDBM. Proceedings, 1990 V, 256 
pages. 1990. 

Vol. 421: T. Onodera, S. Kawai, A Formal Model of 
Visualization in Computer Graphics Systems. X, 100 pages. 
1990. 

Vol. 422: B. Nebel, Reasoning and Revision in Hybrid 
Representation Systems. XU, 270 pages. 1990 (Subseries LNAI). 

Vol. 423: L.E. Deimel (Ed.), Software Engineering Education. 
Proceedings, I 990. VI, 164 pages. I 990. 

Vol. 424: G. Rozenberg (Ed.), Advances in Petri Nets 1989. VI, 
524 pages. 1990. 

Vol. 425: C.H. Bergman, R.D. Maddux, D.L. Pigozzi (Eds.), 
Algebraic Logic and Universal Algebra in Computer Science. 
Proceedings, 1988. XI, 292 pages. 1990. 

Vol. 426: N. Houbak, SIL- a Simulation Language. VU, 192 
pages. 1990. 

Vol. 427: 0. Faugeras (Ed.), Computer Vision- ECCV 90. Pro
ceedings, 1990. XU, 619 pages. 1990. 

Vol. 428: D. Bj!lrner, C.A.R. Hoare, H. Langmaack (Eds.), VDM 
"90. VDM and Z- Formal Methods in Software Development. 
Proceedings, 1990. XVII, 580 pages. 1990. 

Vol. 429: A. Miola (Ed.), Design and Implementation of 
Symbolic Computation Systems. Proceedings, 1990. XU, 284 
pages. 1990. 

Vol. 430: J.W. de Bakker, W.-P. de Roever, G. Rozen berg (Eds.), 
Stepwise Refinement of Distributed Systems. Models, 
Formalisms, Correctness. Proceedings, 1989. X, 808 pages. 
1990. 

Vol. 431: A. Arnold (Ed.), CAAP "90. Proceedings, 1990. VI, 
285 pages. 1990. 

Vol. 432: N. Jones (Ed.), ESOP "90. Proceedings, 1990. IX, 
436 pages. 1990. 

Vol. 433: W. Schroder-Preikschat, W. Zimmer (Eds.), Progress 
in Distributed Operating Systems and Distributed Systems 
Management. Proceedings, 1989. V, 206 pages. 1990. 

Vol. 434: J.-J. Quisquater, J. Vandewalle (Eds.), Advances in 
Cryptology- EUROCRYPT "89. Proceedings, 1989. X, 710 
pages. 1990. 

Vol. 435: G. Brassard (Ed.), Advances in Cryptology-CRYPTO 
"89. Proceedings, 1989. Xlll, 634 pages. 1990. 

Vol. 436: B. Steinholtz, A. S!llvberg, L. Bergman (Eds.), Ad
vanced Information Systems Engineering. Proceedings, 1990. 
X, 392 pages. 1990. 

Vol. 437: D. Kumar (Ed.), Current Trends in SNePS- Semantic 
Network Processing System. Proceedings, 1989. VU, 162 pages. 
1990. (Subseries LNAI). 

Vol. 438: D.H. Norrie, H.W. Six (Eds.), Computer Assisted 
Learning- ICCAL "90. Proceedings, 1990. Vll, 467 pages. 1990. 

Vol. 439: P. Gorny, M. Tauber (Eds.), Visualization in Human
Computer Interaction. Proceedings, 1988. VI, 274 pages. 1990. 

Vol. 440: E. Borger, H. Kleine Btining, M.M. Richter (Eds.), 
CSL "89. Proceedings, 1989. VI, 437 pages. 1990. 

Vol. 441: T. Ito, R.H. Halstead, Jr. (Eds.), Parallel Lisp: 
Languages and Systems. Proceedings, 1989. XU, 364 pages. 
1990. 

Vol. 442: M. Main, A. Melton, M. Mislove, D. Schmidt (Eds.), 
Mathematical Foundations of Programming Semantics. 
Proceedings, 1989. VI, 439 pages. 1990. 

Vol. 443: M.S. Paterson (Ed.), Automata, Languages and Pro
gramming. Proceedings, 1990. IX, 781 pages. 1990. 

Vol. 444: S. Ramani, R. Chandrasekar, K.S.R. Anjaneyulu 
(Eds.), Knowledge Based Computer Systems. Proceedings, 
1989. X, 546 pages. 1990. (Subseries LNAI). 

Vol. 445: A.J.M. van Gasteren, On the Shape of Mathematical 
Arguments. Vlll, 181 pages. 1990. 

Vol. 446: L. Pliimer, Termination Proofs for Logic Programs. 
Vlll ,142 pages. 1990. (Subseries LNAI). 

Vol. 447: J.R. Gilbert, R. Karlsson (Eds.), SWAT "90. 2nd 
Scandinavian Workshop on Algorithm Theory. Proceedings, 
1990. VI, 417 pages. 1990. 

Vol. 448: B. Simons, A. Spector (Eds.), Fault Tolerant 
Distributed Computing. VI, 298 pages. 1990. 

Vol. 449: M.E. Stickel (Ed.), lOth International Conference on 
Automated Deduction. Proceedings, I 990. XVI, 688 pages. 
1990. (Subseries LNAI). 

Vol. 450: T. Asano, T. Ibaraki, H. Imai, T. Nishizeki (Eds.), 
Algorithms. Proceedings, 1990. Vlll, 479 pages. 1990. 

Vol. 451: V. Marik, 0. Stepankova, Z. Zdrahal (Eds.), Artificial 
Intelligence in Higher Education. Proceedings, 1989. IX, 247 
pages. 1990. (Subseries LNAI). 

Vol. 452: B. Rovan (Ed.), Mathematical Foundations of Com
puter Science 1990. Proceedings, 1990. VIII, 544 pages. 1990. 



www.manaraa.com

Vol. 453: J. Seberry, J. Pieprzyk {Eds.), Advances in Cryptology 
- AUSCRYPT '90 Proceedings, 1990. IX. 462 pages. 1990. 

Vol. 454: V. Diekert, Combinatorics on Traces. Xll, 165 pages. 
1990. 

Vol. 455: C.A. Floudas, P.M. Pardalos, A Collection of Test 
Problems for Constrained Global Optimization Algorithms. XIV, 
180 pages. 1990. 

Vol. 456: P. Deransart, J. Maluszyn'ski {Eds.), Programming 
Language Implementation and Logic Programming. 
Proceedings, 1990. Vlll, 401 pages. 1990. 

Vol. 457: H. Burkhart {Ed.), CONPAR '90- VAPP IV. Pro
ceedings, 1990. XIV, 900 pages. 1990. 

Vol. 458: J.C.M. Baeten, J.W. Klop {Eds.), CONCUR '90. Pro
ceedings, 1990. Vll, 537 pages. 1990. 

Vol. 459: R. Studer {Ed.), Natural Language and Logic. Pro
ceedings, 1989. Vll, 252 pages. 1990. {Subseries LNAI). 

Vol. 460: J. Uhl, H.A. Schmid, A Systematic Catalogue of Re
usable Abstract Data Types. Xll, 344 pages. 1990. 

Vol. 461: P. Deransart, M. Jourdan {Eds.), Attribute Grammars 
and their Applications. Proceedings, 1990. Vlll, 358 pages. 1990. 

Vol. 462: G. Gottlob, W. Nejdl {Eds.), Expert Systems in Engi
neering. Proceedings, 1990. IX, 260 pages. 1990. {Subseries 
LNAI). 

Vol. 463: H. Kirchner, W. Wechler {Eds.), Algebraic and Logic 
Programming. Proceedings, 1990. Vll, 386 pages. 1990. 

Vol. 464: J. Dassow, J. Kelemen {Eds.), Aspects and Prospects 
of Theoretical Computer Science. Proceedings, 1990. VI, 298 
pages. 1990. 

Vol. 465: A. Fuhrmann, M. Morreau {Eds.), The Logic of Theory 
Change. Proceedings, 1989. X, 334 pages. 1991. {Subseries 
LNAI). 

Vol. 466: A. Blaser {Ed.), Database Systems of the 90s. 
Proceedings, 1990. Vlll, 334 pages. 1990. 

Vol. 467: F. Long {Ed.), Software Engineering Environments. 
Proceedings, 1969. VI, 313 pages. 1990. 

Vol. 468: S.G. Akl, F. Fiala, W.W. Koczkodaj {Eds.), Advances 
in Computing and Information -!CCI '90. Proceedings, 1990. 
VII, 529 pages. 1990. 

Vol. 469: I. Guessarian {Ed.), Semantics of Systeme of 
Concurrent Processes. Proceedings, 1990. V, 456 pages. 1990. 

Vol. 470: S. Abiteboul, P.C. Kanellakis {Eds.), ICDT '90. Pro
ceedings, 1990. Vll, 528 pages. 1990. 

Vol. 471: B.C. Ooi, Efficient Query Processing in Geographic 
Information Systems. Vlll, 208 pages. 1990. 

Vol. 472: K.V. Nori, C.E. Veni Madhavan {Eds.), Foundations 
of Software Technology and Theoretical Computer Science. 
Proceedings, 1990. X, 420 pages. 1990. 

Vol. 473: I.B. DamgArd {Ed.), Advances in Cryptology -
EUROCRYPT '90. Proceedings, 1990. Vlll, 500 pages. 1991. 

Vol. 474: D. Karagiannis {Ed.), Information Syetems and 
Artificial Intelligence: Integration Aspects. Proceedings, 1990. 
X, 293 pages. 1991. {Subseries LNAI). 

Vol. 475: P. Schroeder-Heister {Ed.), Extensions of Logic Pro
gramming. Proceedings, 1989. Vlll, 364 pages. 1991. {Subseries 
LNAI). 

Vol. 476: M. Filgueiras, L. Damas, N. Moreira, A.P. Tomas 
{Eds.), Natural Language Processing. Proceedings, 1990. Vll, 
253 pages. 1991. {Subseries LNAI). 

Vol. 477: D. Hammer {Ed.), Compiler Compilers. Proceedings, 
1990. VI, 227 pages. 1991. 

Vol. 478: J. van Eijck {Ed.), Logics in AI. Proceedings, 1990. 
IX, 562 pages. 1991. {Subseries in LNAI). 

Vol. 480: C. Choffrut, M. Jantzen {Eds.), STACS 91. 
Proceedings, 1991. X, 549 pages. 1991. 

Vol. 481: E. Lang, K.-U. Carstensen, G. Simmons, Modelling 
Spatial Knowledge on a Linguistic Basis. IX, 138 pages. 1991. 
{Subseries LNAI). 

Vol. 482: Y. Kodratoff {Ed.), Machine Learning- EWSL-91. 
Proceedings, 1991. XI, 537 pages. 1991. {Subseries LNAI). 

Vol. 483: G. Rozen berg {Ed.), Advances In Petri Nets 1990. VI, 
515 pages. 1991. 

Vol. 484: R. H. Mohring {Ed.). Graph-Theoretic Concepts In 
Computer Science. Proceedings, 1990. IX, 360 pages. 1991. 

Vol. 485: K. Furukawa, H. Tanaka. T. Fullsaki {Eds.), Logic 
Programming '89. Proceedings, 1989. IX, 183 pages. 1991. 
{Subseries LNAI) 

Vol. 486: J. van Leeuwen. N. Santoro {Eds.). Distributed Algo
rithms. Proceedings, 1990. VI, 433 pages. 1991. 

Vol. 487: A. Bode {Ed.). Distributed Memory Computing. Pro
ceedings, 1991. XI, 506 pages. 1991 

Vol. 488: R. V. Book {Ed.). Rewriting Techniques and Appli
cations. Proceedings, 1991. VII, 458 pages. 1991. 

Vol. 489: J. W. de Bakker, W. P. de Roever, G. Rozenberg {Eds.), 
Foundations of Object-Oriented Languages. Proceedings, 1990. 
VIII, 442 pages. 1991. 

Vol. 490: J. A. Bergstra,L. M.G. Feljs {Eds .), Algebraic Meth
ods 11: Theory, Tools and Applications. VI, 434 pages. 1991. 

Vol. 491: A. Yonezawa, T. Ito {Eds.). Concurrency: Theory, 
Language, and Architecture. Proceedings,l989. VIII, 339 pages. 
1991. 

Vol. 492: D. Sriram, R. Logcher, S. Fukuda {Eds.). Computer
Aided Cooperative Product Development. Proceedings, 1989 
VII, 630 pages. 1991. 

Vol. 493: S. Abramsky, T. S. E. Maibaum {Eds.). TAPSOFT 
'91. Volume l. Proceedings, 1991. VIII, 455 pages. 1991. 

Vol. 494: S. Abramsky, T. S. E. Maibaum {Eds.). TAPSOFT 
'91. Volume 2. Proceedings, 1991. VIII, 482 pages. 1991 

Vol. 495: 9. Thalheim, J. Demetrovics, H.-D. Gerhardt {Eds.), 
MFDBS '91. Proceedings, 1991. VI, 395 pages. 1991. 

Vol. 497: F. Dehne, F. Fiala. W.W. Koczkodaj {Eds. ), Advances 
in Computing and lntormation- !CCI '91 Proceedings, 1991. 
VIII, 745 pages. 1991. 

Vol. 498: R. Andersen, J. A. Bubenko jr., A. S!illvberg {Eds.), 
Advanced Information Systems Engineering. Proceedings, 1991. 
VI, 579 pages. 1991. 

Vol. 499: D. Christodoulakis {Ed.), Ada: The Choice for '92. 
Proceedings, 1991. VI, 411 pages. 1991. 

Vol. 500: M. Held, On the Computational Geometry of Pocket 
Machining. XII, 179 pages. 1991. 

Vol. 501: M. Bidoit, H.-J. Kreowski, P. Lescanne, F. Orejas, D. 
Sannella {Eds.). Algebraic System Specification and Develop
ment. VIII, 98 pages. 1991. 

Vol. 502: J. BlirzdiQ~. D. Bj!ilmer {Eds.), Baltic Computer Sci
ence. X, 619 pages. 1991. 

Vol. 503: P. America {Ed.), Parallel Database Systems. Pro
ceedings, 1990. VIII, 433 pages. 1991. 

Vol. 504: J. W. Schmidt, A. A. Stogny {Eds.), Next Generation 
Information System Technology. Proceedings, 1990. IX, 450 
pages. 1991. 

Vol. 505: E. H. L. Aarts, J. van Leeuwen, M. Rem {Eds.), PARLE 
'91. Parallel Architectures and Languages Europe, Volume I. 
Proceedings, 1991. XV, 423 pages. 1991. 

Vol. 506: E. H. L. Aarts, J. van Leeuwen, M. Rem {Eds.), PARLE 
'91. Parallel Architectures and Languages Europe, Volume II. 
Proceedings, 1991. XV, 489 pages. 1991. 




